887 research outputs found

    A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems

    Get PDF
    We present a unified boundary integral approach for the stable numerical solution of the ill-posed Cauchy problem for the heat and wave equation. The method is based on a transformation in time (semi-discretisation) using either the method of Rothe or the Laguerre transform, to generate a Cauchy problem for a sequence of inhomogenous elliptic equations; the total entity of sequences is termed an elliptic system. For this stationary system, following a recent integral approach for the Cauchy problem for the Laplace equation, the solution is represented as a sequence of single-layer potentials invoking what is known as a fundamental sequence of the elliptic system thereby avoiding the use of volume potentials and domain discretisation. Matching the given data, a system of boundary integral equations is obtained for finding a sequence of layer densities. Full discretisation is obtained via a Nyström method together with the use of Tikhonov regularization for the obtained linear systems. Numerical results are included both for the heat and wave equation confirming the practical usefulness, in terms of accuracy and resourceful use of computational effort, of the proposed approach

    Spectral/hp element methods for plane Newtonian extrudate swell

    Get PDF
    Spectral/hp element methods and an arbitrary Lagrangian-Eulerian (ALE) moving-boundary technique are used to investigate planar Newtonian extrudate swell. Newtonian extrudate swell arises when viscous liquids exit long die slits. The problem is characterised by a stress singularity at the end of the slit which is inherently difficult to capture and strongly influences the predicted swelling of the fluid. The impact of inertia (0 <Re < 100) and slip along the die wall on the free surface profile and the velocity and pressure values in the domain and around the singularity are investigated. The high order method is shown to provide high resolution of the steep pressure profile at the singularity. The swelling ratio and exit pressure loss are compared with existing results in the literature and the ability of high-order methods to capture these values using significantly fewer degrees of freedom is demonstrated

    Determination of normalized electric eigenfields in microwave cavities with sharp edges

    Full text link
    The magnetic field integral equation for axially symmetric cavities with perfectly conducting piecewise smooth surfaces is discretized according to a high-order convergent Fourier--Nystr\"om scheme. The resulting solver is used to accurately determine eigenwavenumbers and normalized electric eigenfields in the entire computational domain.Comment: 34 pages, 6 figure

    Reciprocal-log approximation and planar PDE solvers

    Full text link
    This article is about both approximation theory and the numerical solution of partial differential equations (PDEs). First we introduce the notion of {\em reciprocal-log} or {\em log-lightning approximation} of analytic functions with branch point singularities at points {zk}\{z_k\} by functions of the form g(z)=∑kck/(log⁡(z−zk)−sk)g(z) = \sum_k c_k /(\log(z-z_k) - s_k), which have NN poles potentially distributed along a Riemann surface. We prove that the errors of best reciprocal-log approximations decrease exponentially with respect to NN and that exponential or near-exponential convergence (i.e., at a rate O(exp⁡(−CN/log⁡N))O(\exp(-C N / \log N))) also holds for near-best approximations with preassigned singularities constructed by linear least-squares fitting on the boundary. We then apply these results to derive a "log-lightning method" for numerical solution of Laplace and related PDEs in two-dimensional domains with corner singularities. The convergence is near-exponential, in contrast to the root-exponential convergence for the original lightning methods based on rational functions.Comment: 20 pages, 11 figure

    Lumped finite elements for reaction–cross-diffusion systems on stationary surfaces

    Get PDF
    We consider a lumped surface finite element method (LSFEM) for the spatial approximation of reaction–diffusion equations on closed compact surfaces in R3R3 in the presence of cross-diffusion. We provide a fully-discrete scheme by applying the Implicit–Explicit (IMEX) Euler method. We provide sufficient conditions for the existence of polytopal invariant regions for the numerical solution after spatial and full discretisations. Furthermore, we prove optimal error bounds for the semi- and fully-discrete methods, that is the convergence rates are quadratic in the meshsize and linear in the timestep. To support our theoretical findings, we provide two numerical tests. The first test confirms that in the absence of lumping numerical solutions violate the invariant region leading to blow-up due to the nature of the kinetics. The second experiment is an example of Turing pattern formation in the presence of cross-diffusion on the sphere

    On the existence of traveling waves in the 3D Boussinesq system

    Full text link
    We extend earlier work on traveling waves in premixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. For three-dimensional channels not aligned with the gravity direction and under the Dirichlet boundary conditions in the fluid velocity, it is shown that a non-planar traveling wave, corresponding to a non-zero reaction, exists, under an explicit condition relating the geometry of the crossection of the channel to the magnitude of the Prandtl and Rayleigh numbers, or when the advection term in the flow equations is neglected.Comment: 15 pages, to appear in Communications in Mathematical Physic
    • 

    corecore