587 research outputs found

    The evaluation of discrete barrier options in a path integral framework

    Full text link
    The pricing of discretely monitored barrier options is a difficult problem. In general, there is no known closed form solution for pricing such options. A path integral approach to the evaluation of barrier options is developed. This leads to a backward recursion functional equation linking the pricing functions at successive barrier points. This functional equation is solved by expanding the pricing functions in Fourier-Hermite series. The backward recursion functional equation then becomes the backward recurrence relation for the coefficients in the Fourier-Hermite expansion of the pricing functions. A very efficient and accurate method for generating the pricing function at any barrier point is thus obtained. A number of numerical experiments with the method are performed in order to gain some understanding of the nature of convergence. Results for various volatility values and different numbers of basis functions in the Fourier-Hermite expansion are presented. Comparisons are given between pricing of discrete barrier option in the path integral framework and by use of finite difference methods

    Multilevel Monte Carlo for jump processes

    Get PDF
    This thesis consists of two parts. The first part (Chapters 2-4) considers multilevel Monte Carlo for option pricing in finite activity jump-diffusion models. We use a jump-adapted Milstein discretisation for constant rate cases and with the thinning method for bounded state-dependent rate cases. Multilevel Monte Carlo estimators are constructed for Asian, look-back, barrier and digital options. The computational efficiency is numerically demonstrated and analytically justified.\ud \ud The second part (Chapter 5) deals with option pricing problems in exponential Levy models where the increments of the underlying process can be directly simulated. We discuss several examples: Variance Gamma, Normal Inverse Gaussian and Ī±-stable processes and present numerical experiments of multilevel Monte Carlo for Asian, lookback, barrier options, where the running maximum of the Levy process involved in lookback and barrier payoffs is approximated using discretely monitored maximum. To analytically verify the computational complexity of multilevel method, we also prove some upper bounds on LpL^p convergence rate of discretely monitored error for a broad class of Levy processes

    The Evaluation Of Barrier Option Prices Under Stochastic Volatility

    Get PDF
    This paperc onsiders the problem o fnumerically evaluating barrier option prices when the dynamics of the underlying are driven by stochastic volatility following the square root process of Heston (1993). We develop a method of lines approach to evaluate the price as well as the delta and gamma of the option. The method is able to effciently handle bothc ontinuously monitored and discretely monitored barrier options and can also handle barrier options with early exercise features. In the latter case, we can calculate the early exercise boundary of an American barrier option in both the continuously and discretely monitored cases.barrier option; stochastic volatility; continuously monitored; discretely monitored; free boundary problem; method of lines; Monte Carlo simulation

    Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions

    Get PDF
    We present a pricing method based on Fourier-cosine expansions for early-exercise and discretely-monitored barrier options. The method works well for exponential Levy asset price models. The error convergence is exponential for processes characterized by very smooth transitional probability density functions. The computational complexity is O((Māˆ’1)Nlogā”N)O((M-1) N \log{N}) with NN a (small) number of terms from the series expansion, and MM, the number of early-exercise/monitoring dates.

    On the valuation of fader and discrete barrier options in Heston's Stochastic Volatility Model

    Get PDF
    We focus on closed-form option pricing in Hestons stochastic volatility model, in which closed-form formulas exist only for few option types. Most of these closed-form solutions are constructed from characteristic functions. We follow this approach and derive multivariate characteristic functions depending on at least two spot values for different points in time. The derived characteristic functions are used as building blocks to set up (semi-) analytical pricing formulas for exotic options with payoffs depending on finitely many spot values such as fader options and discretely monitored barrier options. We compare our result with different numerical methods and examine accuracy and computational times. --exotic options,Heston Model,Characteristic Function,Multidimensional Fast Fourier Transforms
    • ā€¦
    corecore