410,122 research outputs found
Inference of termination conditions for numerical loops
We present a new approach to termination analysis of numerical computations
in logic programs. Traditional approaches fail to analyse them due to non
well-foundedness of the integers. We present a technique that allows to
overcome these difficulties. Our approach is based on transforming a program in
way that allows integrating and extending techniques originally developed for
analysis of numerical computations in the framework of query-mapping pairs with
the well-known framework of acceptability. Such an integration not only
contributes to the understanding of termination behaviour of numerical
computations, but also allows to perform a correct analysis of such
computations automatically, thus, extending previous work on a
constraints-based approach to termination. In the last section of the paper we
discuss possible extensions of the technique, including incorporating general
term orderings.Comment: Presented at WST200
Inference of termination conditions for numerical loops in Prolog
We present a new approach to termination analysis of numerical computations
in logic programs. Traditional approaches fail to analyse them due to non
well-foundedness of the integers. We present a technique that allows overcoming
these difficulties. Our approach is based on transforming a program in a way
that allows integrating and extending techniques originally developed for
analysis of numerical computations in the framework of query-mapping pairs with
the well-known framework of acceptability. Such an integration not only
contributes to the understanding of termination behaviour of numerical
computations, but also allows us to perform a correct analysis of such
computations automatically, by extending previous work on a constraint-based
approach to termination. Finally, we discuss possible extensions of the
technique, including incorporating general term orderings.Comment: To appear in Theory and Practice of Logic Programming. To appear in
Theory and Practice of Logic Programmin
A Lifting Relation from Macroscopic Variables to Mesoscopic Variables in Lattice Boltzmann Method: Derivation, Numerical Assessments and Coupling Computations Validation
In this paper, analytic relations between the macroscopic variables and the
mesoscopic variables are derived for lattice Boltzmann methods (LBM). The
analytic relations are achieved by two different methods for the exchange from
velocity fields of finite-type methods to the single particle distribution
functions of LBM. The numerical errors of reconstructing the single particle
distribution functions and the non-equilibrium distribution function by
macroscopic fields are investigated. Results show that their accuracy is better
than the existing ones. The proposed reconstruction operator has been used to
implement the coupling computations of LBM and macro-numerical methods of FVM.
The lid-driven cavity flow is chosen to carry out the coupling computations
based on the numerical strategies of domain decomposition methods (DDM). The
numerical results show that the proposed lifting relations are accurate and
robust
- …
