410,122 research outputs found

    Inference of termination conditions for numerical loops

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows to overcome these difficulties. Our approach is based on transforming a program in way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows to perform a correct analysis of such computations automatically, thus, extending previous work on a constraints-based approach to termination. In the last section of the paper we discuss possible extensions of the technique, including incorporating general term orderings.Comment: Presented at WST200

    Inference of termination conditions for numerical loops in Prolog

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows overcoming these difficulties. Our approach is based on transforming a program in a way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows us to perform a correct analysis of such computations automatically, by extending previous work on a constraint-based approach to termination. Finally, we discuss possible extensions of the technique, including incorporating general term orderings.Comment: To appear in Theory and Practice of Logic Programming. To appear in Theory and Practice of Logic Programmin

    A Lifting Relation from Macroscopic Variables to Mesoscopic Variables in Lattice Boltzmann Method: Derivation, Numerical Assessments and Coupling Computations Validation

    Full text link
    In this paper, analytic relations between the macroscopic variables and the mesoscopic variables are derived for lattice Boltzmann methods (LBM). The analytic relations are achieved by two different methods for the exchange from velocity fields of finite-type methods to the single particle distribution functions of LBM. The numerical errors of reconstructing the single particle distribution functions and the non-equilibrium distribution function by macroscopic fields are investigated. Results show that their accuracy is better than the existing ones. The proposed reconstruction operator has been used to implement the coupling computations of LBM and macro-numerical methods of FVM. The lid-driven cavity flow is chosen to carry out the coupling computations based on the numerical strategies of domain decomposition methods (DDM). The numerical results show that the proposed lifting relations are accurate and robust
    corecore