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Abstract

In this paper we study the numerical accuracy of computing one-dimensional man-
ifolds of (non-hyperbolic) equilibria in a planar vector field for which the manifolds
are known explicitly. We consider the (strong) stable manifolds of a saddle, a sink,
and a centre-stable equilibrium.

Introduction

The numerical approximation of stable or unstable manifolds is often used as a tool to
investigate the global behaviour of a dynamical system. Most methods are designed for
manifolds of hyperbolic equilibria and utilize the fact that integration can be done such
that the manifold is (locally) an attractor. This means that a bounded approximation of
the manifold can be computed as close to the true manifold as one likes. In this paper,
we consider the cases where a one-dimensional (strong) stable manifold of a vector field is
computed. This necessarily implies that it is the manifold of an equilibrium. We consider
both hyperbolic and non-hyperbolic equilibria.

The standard method to compute the one-dimensional stable manifold of an equilib-
rium in a vector field is to choose a point on the local manifold close to the equilibrium
and integrate it backward in time; for example, see [3]. Most methods use the linear
manifold as an approximation for the local manifold, because the (strong) stable mani-
fold is tangent at the equilibrium to the corresponding (strong) stable eigenspace [2]. Our
investigations use this method as well.

If the equilibrium is hyperbolic and has only a one-dimensional stable manifold, then
this manifold is an attractor in backward time, at least locally near the equilibrium. This
means that initially the distance of points on the computed trajectory to the true manifold
decays. This property is utilized to show that the computational error decays to zero as
δ → 0, even though the integration time that is needed to reach a specific finite arclength
evidently goes to infinity in the process; see [4].

If one considers a vector field with an equilibrium that is not hyperbolic, or if one
is interested in finding the strong stable manifold of an equilibrium with more than one
stable eigenvalue, then standard error bounds no longer apply. In this paper we investigate
how the maximum error varies with δ using a two-dimensional vector field for which the
manifolds are known explicitly. We consider the hyperbolic saddle, the hyperbolic sink
and the case where the equilibrium has one zero and one stable eigenvalue.

1



Explicit manifolds

We consider an example for which the (strong) stable manifold is known explicitly, namely
{

ẋ = αx,

ẏ = β y + γ x2,
(1)

with the explicit solution
{

x(t) = x0 e
αt,

y(t) = γ

2α−β
x2

0 e
2αt +

(

y0 −
γ

2α−β
x2

0

)

eβt.
(2)

Here we assume that α < 0 and β > α, so that the origin has at least a one-dimensional
stable manifold. Note that this automatically ensures that 2α − β 6= 0. If β > 0, then
the origin is a saddle and we can immediately see from (2) that trajectories with initial
condition (x0, y0) ∈ R

2 go to the origin if and only if

y0 =
γ

2α− β
x2

0. (3)

Hence, Eq. (3) defines the stable manifold W s(0) of the origin. Similarly, if β = 0, the
origin is non-hyperbolic with a strong stable manifold defined by Eq. (3). In fact, here any
point on the y-axis is an equilibrium and they all have one stable and one zero eigenvalue.
A system of this type is of interest, for example, in adaptive control theory [5].

Let us now assume that α < β < 0, so that the origin is stable with a one-dimensional
strong stable manifold. Since both α and β are negative, all solutions go to the origin.
However, since the attraction in the x-direction is stronger than in the y-direction, most
solutions converge to the origin tangent to the y-axis. The only exception are the solutions
on the strong stable manifold W ss(0), which is tangent to the x-axis at the origin. Hence,
we are looking for solutions with dy

dx
(t)→ 0 as t→∞. For x0 6= 0, we have

dy

dx
(t) =

ẏ(t)

ẋ(t)
=

β y(t) + γ x(t)2

αx(t)

=

βγ

2α−β
x2

0 e
2αt + β

(

y0 −
γ

2α−β
x2

0

)

eβt + γ x2
0 e

2αt

αx0 eαt

=
2γ

2α− β
x0 e

αt +
β

α x0

(

y0 −
γ

2α− β
x2

0

)

e(β−α)t.

Since α < β < 0 and thus e(β−α)t → ∞ as t → ∞, the strong stable manifold is again
defined by Eq. (3).

Throughout this paper, we choose γ = β − 2α such that the (strong) stable manifold
is always given by the graph of the function y = −x2.
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Numerical approximations

Our aim is to compute the (strong) stable manifold of the origin for our example (1) with
appropriate choices of α < 0, β > α and γ = β−2α. The linear (strong) stable manifold is
the x-axis. Hence, we approximate the branch {(x, γ

2α−β
x2) | x > 0} up to arclength L by

the horizontal segment from the origin to (δ, 0) followed by the backward-time trajectory
through (δ, 0), where δ > 0 is small. We use fourth-order Runge-Kutta integration with
fixed step size h = 10−5 to approximate such a trajectory. This obviously introduces an
integration error, but it appears to be negligible in our computations. Note that the total
integration time needed to reach arclength L increases as δ decreases.

The numerical approximation consists of a finite set Mδ(L) = {(xi, yi)}
N
i=0 of integra-

tion points, where (x0, y0) is the origin, (x1, y1) = (δ, 0) and N is the total number of
integration steps such that (xN , yN) is the first point along the trajectory for which the
approximate arclength distance to the origin is at least L. To keep the total number of
points in Mδ(L) small, we consider only a subset of the integration mesh points such that
we maintain a good resolution of the curve. We ensure that the angle formed by any three
consecutive points does not exceed a prescribed maximum αmax = 0.3. Furthermore, the
product of this angle with the distance between the last two of these three points never
exceeds (∆α)max = 10−9. In practice, this means that points will be distributed according
to curvature, while the bound (∆α)max ensures a small interpolation error. For ease of
notation, this reduced set of mesh points is still denoted by Mδ(L), and it contains NL

points, where typically, NL ¿ N .
The piecewise linear curve through the mesh points in Mδ(L) forms the approximate

(strong) stable manifold. The distance of this approximation to the true manifold is
considered pointwise. For convenience, we only consider the difference in the y-coordinate.
Hence, we define the error of our computation as

dist(Mδ(L),W
s(0)) = max

0≤i<NL

∣

∣

∣

∣

yi −
γ

2α− β
x2
i

∣

∣

∣

∣

.

Given how we compute the approximate manifold, this error depends on the initial point
(δ, 0) and on the arclength L of the computation.

We consider three different cases, namely the case of a hyperbolic saddle, a hyperbolic
sink and a non-hyperbolic centre-stable equilibrium. For each case we compute approxi-
mations of the (strong) stable manifold up to arclength L = 3 with δ = 0.001. Figure 1
shows the behaviour of the pointwise error as a function of the arclength distance to the
origin for all three cases. The stable manifold of the hyperbolic saddle is an attractor in
backward time. Hence, the first point (δ, 0) of the backward trajectory is furthest away
from the true manifold (namely 10−6 = |−δ2|), because the trajectory converges to the
manifold. In contrast, the strong stable manifold of a hyperbolic sink is a repellor in
backward time. The largest error now occurs at the last integration point. The error
along the stable manifold of the centre-stable equilibrium does not change at all.

Let us now study how the maximum error depends on δ. For each case we calculate
manifolds Mδ(L) with L = 3 fixed throughout, while δ varies. For L = 3, the reduced
mesh of Mδ(L) consists of NL ≈ 130 000 points, even though the required integration time
may grow as large as one million.
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Figure 1: The pointwise error versus arclength distance to the origin of approximate
(strong) stable manifolds Mδ(L) for the hyperbolic saddle, the hyperbolic sink and the
centre-stable equilibrium; for all cases δ = 0.001 and L = 3.

δ 10−1 10−2 10−3 10−4 10−5

error saddle 10−2 10−4 10−6 10−8 10−10

error centre 10−2 10−4 10−6 10−8 10−10

error sink 3.95 10−2 1.25 10−3 3.94 10−5 1.25 10−6 3.94 10−8

Table 1: Approximations of the (strong) stable manifold of the origin in (1) up to arclength
L = 3. For the hyperbolic saddle (α, β, γ) = (−1, 1, 3), for the non-hyperbolic centre-stable
equilibrium (α, β, γ) = (−1, 0, 2), and for the hyperbolic sink (α, β, γ) = (−2,−1, 3).

Hyperbolic saddle

The origin in example (1) is a hyperbolic saddle for α = −1, β = 1 and γ = 3. Note that
the parameters are such that W s(0) is defined as the graph of Eq. (3).

The second row in Table 1 shows the results of our computations when varying δ from
10−1 to 10−5. The error decreases quadratically with δ; see also Fig. 2. This behaviour is
as expected, because the largest error is always at the initial point.

Centre-stable equilibrium

The origin in example (1) has one zero and one stable eigenvalue for α = −1, β = 0
and γ = 2. Note that this example is degenerate: the y-axis is invariant and consists
entirely of non-hyperbolic equilibria. Hence, it is not suprising that the computational
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Figure 2: The maximal error dist(Mδ(L),W
s(0)) as a function of δ with L = 3 for

the hyperbolic saddle, the hyperbolic sink and the centre-stable equilibrium (same as the
saddle).

error remains the same along the entire manifold. (This also shows that the integration
error is small enough so that it is negligible.)

The maximal error behaves exactly the same as for the case of the hyperbolic saddle;
see Table 1. Hence, again, the error decreases quadratically with δ.

Hyperbolic sink

Example (1) has a hyperbolic sink at the origin for α = −2, β = −1 and γ = 3.
Since the strong stable manifold is a repellor in backward time, we now find that the

largest error is at the last computed point. The maximal error depends on δ as shown
in the last row of Table 1. We see that, as before, the error decreases with δ. More
precisely, when δ decreases by a factor 10, the error decreases by a factor 3.16 10−2. The
quantitative differences with the hyperbolic saddle are best seen in a log log-plot of the
error versus δ as visualised in Fig. 2.

For this example it is also of interest to investigate how the error depends on the
arclength L, because the largest error is always at the last integration point. We computed
approximations of the strong stable manifold using the same variations for δ, but now
also varying L from 100 to 104. The maximal error, i.e. the distance in the y-direction of
the last computed point to the true manifold, is shown in Table 2.

As before, for fixed arclength the error decreases by a factor 3.16 10−2 when δ is
decreased by a factor 10. That is, the contraction rate across the rows in Table 2 is
constant. The contraction rate across the columns in Table 2 is also fairly constant.
Namely, when the arclength is reduced by a factor 10, the error decreases by a factor
0.56. This reduction rate is slightly smaller (no less than 0.5) when L is relatively small.
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δ = 10−1 δ = 10−2 δ = 10−3 δ = 10−4 δ = 10−5

L = 100 2.77 10−2 8.74 10−4 2.76 10−5 8.74 10−7 2.76 10−8

L = 101 5.52 10−2 1.74 10−3 5.51 10−5 1.74 10−6 5.51 10−8

L = 102 9.98 10−2 3.15 10−3 9.97 10−5 3.15 10−6 9.97 10−8

L = 103 17.78 10−2 5.62 10−3 17.78 10−5 5.62 10−6 17.78 10−8

L = 104 31.62 10−2 10.00 10−3 31.62 10−5 10.00 10−6 31.64 10−8

Table 2: Example (1) with (α, β, γ) = (−2,−1, 3): Errors of approximations of the strong
stable manifold of the origin for varying arclengths L and initial points (δ, 0).

Discussion

The example that we consider in this paper is constructed so that the manifolds are
known explicitly. This necessarily means that the vector field is relatively simple and the
computational error of finding the (strong) stable manifolds behaves extremely regular.

In general, one should compute two or more approximations while varying δ and
consider the contraction rates of these successive approximations. Such relative errors
and contraction rates give a good idea of the behaviour of the true error and even give
information about the size of this error. It is our experience that the contraction rate of
the error for more general C2 vector fields is still of order 10−2; see [1].

Standard error bounds on integration routines predict that the error increases expo-
nentially with integration time. Indeed, when taking into account integration time in the
distance calculations, this may well be true, but we are interested in the geometric dis-
tance between the manifolds. Hence, in practice, the standard error bounds are nowhere
near the actual error. For extremely small δ, i.e. very large integration time, one expects
that the integration error will start to have an effect and the approximation error will
probably not converge to 0. However, our computations show that approximations with
errors of the order 10−8 are certainly reasonable to expect.
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