4 research outputs found

    Spatial Distribution of Calcium-Gated Chloride Channels in Olfactory Cilia

    Get PDF
    Background: In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 mm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. Principal Findings: To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29 % of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. Conclusions: On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium

    Determination of the calcium channel distribution in the olfactory system

    Full text link
    In this paper we study a linear inverse problem with a biological interpretation, which is modeled by a Fredholm integral equation of the first kind. When the kernel in the Fredholm equation is represented by step func- tions, we obtain identifiability, stability and reconstruction results. Further- more, we provide a numerical reconstruction algorithm for the kernel, whose main feature is that a non-regular mesh has to be used to ensure the invert- ibility of the matrix representing the numerical discretization of the system. Finally, a second identifiability result for a polynomial approximation of degree less than nine of the kernel is also established

    Numerical Approximation of Solutions of a Nonlinear Inverse Problem Arising in Olfaction Experimentation

    No full text
    Identification of detailed features of neuronal systems is an important challenge in the biosciences today. Cilia are long thin structures that extend from the olfactory receptor neurons into the nasal mucus. Transduction of an odor into an electrical signal occurs in the membranes of the cilia. The cyclicnucleotide-gated (CNG) channels which reside in the ciliary membrane and are activated by adenosine 3’,5’-cyclic monophosphate (cAMP) allow a depolarizing influx of Ca 2+ and Na + and are thought to initiate the electrical signal. In this paper, a mathematical model consisting of two nonlinear differential equations and a constrained Fredholm integral equation of the first kind is developed to model experiments involving the diffusion of cAMP into cilia and the resulting electrical activity. The unknowns in the problem are the concentration of cAMP, the membrane potential and, the quantity of most interest in this work, the distribution of CNG channels along the length of a cilium. A simple numerical method is derived that can be used to obtain estimates of the spatial distribution of CNG ion channels along the length of a cilium. Certain computations indicate that this mathematical problem is ill-conditioned
    corecore