6,274 research outputs found

    On an explicit finite difference method for fractional diffusion equations

    Full text link
    A numerical method to solve the fractional diffusion equation, which could also be easily extended to many other fractional dynamics equations, is considered. These fractional equations have been proposed in order to describe anomalous transport characterized by non-Markovian kinetics and the breakdown of Fick's law. In this paper we combine the forward time centered space (FTCS) method, well known for the numerical integration of ordinary diffusion equations, with the Grunwald-Letnikov definition of the fractional derivative operator to obtain an explicit fractional FTCS scheme for solving the fractional diffusion equation. The resulting method is amenable to a stability analysis a la von Neumann. We show that the analytical stability bounds are in excellent agreement with numerical tests. Comparison between exact analytical solutions and numerical predictions are made.Comment: 22 pages, 6 figure

    A comparison between numerical solutions to fractional differential equations: Adams-type predictor-corrector and multi-step generalized differential transform method

    Get PDF
    In this note, two numerical methods of solving fractional differential equations (FDEs) are briefly described, namely predictor-corrector approach of Adams-Bashforth-Moulton type and multi-step generalized differential transform method (MSGDTM), and then a demonstrating example is given to compare the results of the methods. It is shown that the MSGDTM, which is an enhancement of the generalized differential transform method, neglects the effect of non-local structure of fractional differentiation operators and fails to accurately solve the FDEs over large domains.Comment: 12 pages, 2 figure

    Local discontinuous Galerkin methods for fractional ordinary differential equations

    Get PDF
    This paper discusses the upwinded local discontinuous Galerkin methods for the one-term/multi-term fractional ordinary differential equations (FODEs). The natural upwind choice of the numerical fluxes for the initial value problem for FODEs ensures stability of the methods. The solution can be computed element by element with optimal order of convergence k+1k+1 in the L2L^2 norm and superconvergence of order k+1+min{k,α}k+1+\min\{k,\alpha\} at the downwind point of each element. Here kk is the degree of the approximation polynomial used in an element and α\alpha (α(0,1]\alpha\in (0,1]) represents the order of the one-term FODEs. A generalization of this includes problems with classic mm'th-term FODEs, yielding superconvergence order at downwind point as k+1+min{k,max{α,m}}k+1+\min\{k,\max\{\alpha,m\}\}. The underlying mechanism of the superconvergence is discussed and the analysis confirmed through examples, including a discussion of how to use the scheme as an efficient way to evaluate the generalized Mittag-Leffler function and solutions to more generalized FODE's.Comment: 17 pages, 7 figure

    Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control

    Full text link
    This chapter presents some numerical methods to solve problems in the fractional calculus of variations and fractional optimal control. Although there are plenty of methods available in the literature, we concentrate mainly on approximating the fractional problem either by discretizing the fractional term or expanding the fractional derivatives as a series involving integer order derivatives. The former method, as a subclass of direct methods in the theory of calculus of variations, uses finite differences, Grunwald-Letnikov definition in this case, to discretize the fractional term. Any quadrature rule for integration, regarding the desired accuracy, is then used to discretize the whole problem including constraints. The final task in this method is to solve a static optimization problem to reach approximated values of the unknown functions on some mesh points. The latter method, however, approximates fractional problems by classical ones in which only derivatives of integer order are present. Precisely, two continuous approximations for fractional derivatives by series involving ordinary derivatives are introduced. Local upper bounds for truncation errors are provided and, through some test functions, the accuracy of the approximations are justified. Then we substitute the fractional term in the original problem with these series and transform the fractional problem to an ordinary one. Hereafter, we use indirect methods of classical theory, e.g. Euler-Lagrange equations, to solve the approximated problem. The methods are mainly developed through some concrete examples which either have obvious solutions or the solution is computed using the fractional Euler-Lagrange equation.Comment: This is a preprint of a paper whose final and definite form appeared in: Chapter V, Fractional Calculus in Analysis, Dynamics and Optimal Control (Editor: Jacky Cresson), Series: Mathematics Research Developments, Nova Science Publishers, New York, 2014. (See http://www.novapublishers.com/catalog/product_info.php?products_id=46851). Consists of 39 page
    corecore