6 research outputs found

    Two New Approximations for Variable-Order Fractional Derivatives

    Get PDF
    We introduced a parameter σ(t) which was related to α(t); then two numerical schemes for variable-order Caputo fractional derivatives were derived; the second-order numerical approximation to variable-order fractional derivatives α(t)∈(0,1) and 3-α(t)-order approximation for α(t)∈(1,2) are established. For the given parameter σ(t), the error estimations of formulas were proven, which were higher than some recently derived schemes. Finally, some numerical examples with exact solutions were studied to demonstrate the theoretical analysis and verify the efficiency of the proposed methods

    Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations

    Full text link
    We consider an initial-boundary value problem for tutα2u=f(t)\partial_tu-\partial_t^{-\alpha}\nabla^2u=f(t), that is, for a fractional diffusion (1<α<0-1<\alpha<0) or wave (0<α<10<\alpha<1) equation. A numerical solution is found by applying a piecewise-linear, discontinuous Galerkin method in time combined with a piecewise-linear, conforming finite element method in space. The time mesh is graded appropriately near t=0t=0, but the spatial mesh is quasiuniform. Previously, we proved that the error, measured in the spatial L2L_2-norm, is of order k2+α+h2(k)k^{2+\alpha_-}+h^2\ell(k), uniformly in tt, where kk is the maximum time step, hh is the maximum diameter of the spatial finite elements, α=min(α,0)0\alpha_-=\min(\alpha,0)\le0 and (k)=max(1,logk)\ell(k)=\max(1,|\log k|). Here, we generalize a known result for the classical heat equation (i.e., the case α=0\alpha=0) by showing that at each time level tnt_n the solution is superconvergent with respect to kk: the error is of order (k3+2α+h2)(k)(k^{3+2\alpha_-}+h^2)\ell(k). Moreover, a simple postprocessing step employing Lagrange interpolation yields a superconvergent approximation for any tt. Numerical experiments indicate that our theoretical error bound is pessimistic if α<0\alpha<0. Ignoring logarithmic factors, we observe that the error in the DG solution at t=tnt=t_n, and after postprocessing at all tt, is of order k3+α+h2k^{3+\alpha_-}+h^2.Comment: 24 pages, 2 figure

    Improved modeling for fluid flow through porous media

    Get PDF
    Petroleum production is one of the most important technological challenges in the current world. Modeling and simulation of porous media flow is crucial to overcome this challenge. Recent years have seen interest in investigation of the effects of history of rock, fluid, and flow properties on flow through porous media. This study concentrates on the development of numerical models using a ‘memory’ based diffusivity equation to investigate the effects of history on porous media flow. In addition, this study focusses on developing a generalized model for fluid flow in packed beds and porous media. The first part of the thesis solves a memory-based fractional diffusion equation numerically using the Caputo, Riemann-Liouville (RL), and Grünwald-Letnikov (GL) definitions for fractional-order derivatives on uniform meshes in both space and time. To validate the numerical models, the equation is solved analytically using the Caputo, and Riemann-Liouville definitions, for Dirichlet boundary conditions and a given initial condition. Numerical and analytical solutions are compared, and it is found that the discretization method used in the numerical model is consistent, but less than first order accurate in time. The effect of the fractional order on the resulting error is significant. Numerical solutions found using the Caputo, Riemann-Liouville, and Grünwald-Letnikov definitions are compared in the second part. It is found that the largest pressure values are found from Caputo definition and the lowest from Riemann-Liouville definition. It is also found that differences among the solutions increase with increasing fractional order
    corecore