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Abstract

Petroleum production is one of the most important technological challenges in the current world.
Modeling and simulation of porous media flow is crucial to overcome this challenge. Recent years
have seen interest in investigation of the effects of history of rock, fluid, and flow properties on
flow through porous media. This study concentrates on the development of numerical models
using a ‘memory’ based diffusivity equation to investigate the effects of history on porous media
flow. In addition, this study focusses on developing a generalized model for fluid flow in packed

beds and porous media.

The first part of the thesis solves a memory-based fractional diffusion equation numerically using
the Caputo, Riemann-Liouville (RL), and Griinwald-Letnikov (GL) definitions for fractional-order
derivatives on uniform meshes in both space and time. To validate the numerical models, the
equation is solved analytically using the Caputo, and Riemann-Liouville definitions, for Dirichlet
boundary conditions and a given initial condition. Numerical and analytical solutions are
compared, and it is found that the discretization method used in the numerical model is consistent,
but less than first order accurate in time. The effect of the fractional order on the resulting error is
significant. Numerical solutions found using the Caputo, Riemann-Liouville, and Griinwald-
Letnikov definitions are compared in the second part. It is found that the largest pressure values
are found from Caputo definition and the lowest from Riemann-Liouville definition. It is also

found that differences among the solutions increase with increasing fractional order, a.

In the third part of the thesis, the memory-based fractional diffusion equation is solved using
graded meshes in time and uniform meshes in space. The computational procedure of the simulator
is sequential and iterative over each time step. The Riemann-Liouville definition for the fractional-
order derivative has been used, and the L1 algorithm for discretization on a non-uniform mesh is
derived. A second-order finite difference method is used to solve the fractional diffusion equation.
The solution scheme is analogous to Implicit Pressure and Explicit Saturation Method (IMPES).
Numerical solutions are compared to analytical solutions for different values of the fractional order

in the linear case and compared to manufactured solutions in non-linear cases. Comparisons are
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made for different initial, boundary, and flow conditions. The error results affirm that the
discretization method used in the numerical model is consistent, second-order accurate in space,

and first-order accurate in time.

The fourth part of the thesis compares the numerical models developed using uniform and graded
meshes. It is found that the non-uniform mesh grading in time used in this study provides more
accurate numerical solutions compared to uniform mesh grading. In this part, the value of the
fractional order in the mathematical model used in this paper is computed to fit different
experimental data for one-dimensional flow measurements through a porous layer with constant
pressure gradient. These data were collected from the literature. The value of the fractional order
and the relaxation time are found to be 0.05 and 730 seconds, respectively. From the error analysis,
the optimum number of time steps in unit time for this value of fractional order and for different
number of grids in unit length is determined. The optimum number of steps in unit time is required
to minimize the discretization and truncation error. The model can be used to investigate the effect

of memory on fluid flow through porous media.

Different models developed for different purposes incorporating memory are found in the
literature. In the fifth part of this theses, a general mathematical model has been proposed that can
be simplified to derive all these models. The model considers both time and space memory. The
model is generalized in the sense that all other established memory-based models can be derived
from this model. The model can be used to develop a small-scale single-phase memory-based

reservoir simulator.

In the last part of the thesis, a generalized semi-empirical equation is proposed that portrays the
flow of fluid in packed beds and porous media. The new model calculates total pressure loss from
viscous energy loss, local loss, and loss due to turbulence following the way of compact model
development from asymptotic solutions. Non-spherical particle diameter is redefined to more
accurately represent the wall surface area within the pore space. The model gives a new expression
for a modified Reynolds number for fluid flow through porous media. The most significant new
finding is that it portrays all the flow regimes that occur in porous media. The viscous term is

dominant at very low flow rates, and turbulence and inertial loss occur at very high flow rates
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while the viscous and inertial loss occur in-between, which is the central flow regime for porous
media. This new equation can also be used for modeling the physical properties of random porous
media. The model provides an innovative way to calculate tortuosity of porous media, diameter of

equivalent volume spheres, and the head-loss coefficient.
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Chapter 1

Introduction

1.1 General

Reservoir modeling is a critical component in the development, planning, and production
management of oil and gas fields. The ultimate goal of reservoir modeling is to aid the decision-
making process throughout all stages of field life. Few models in the literature combine Darcy and
non-Darcy flow, and none use transitions between various flow regimes within porous media and
fracture networks. The models in the literature that combine Darcy and non-Darcy flow do not

combine them following the way of compact model development.

In conventional reservoir models, the effect of history of rock, fluid, and flow properties on flow
phenomena are not considered. However, in recent literature, some mathematical models are found
that are based on the fact that fluid flow phenomena through porous media depend on their past
(Caputo, 2000; Hossain et al., 2008; laffaldano et al., 2005). When a complex fluid flows through
porous media, there is a change in both rock and fluid properties due to chemical reactions, mineral
precipitation, etc., and, therefore, permeability and viscosity change over time. The phenomenon
that rock and fluid properties change over time is represented by the term ‘memory’. To quantify
the effect of history, ‘memory’ is incorporated in the mathematical model. Two types of memory,
time memory and space memory, are found in literature. Space memory considers the previous

space that the fluids have passed through (Caputo, 2003).

Memory is incorporated in mathematical reservoir models using fractional-order derivatives in the
model. The definition of fractional-order derivatives provides a natural way to include history.
History of pressure, pressure gradients, or any other parameters can be taken into consideration

using fractional-order derivatives of that parameter. To consider time memory, fractional-order



derivatives in time are used, and to consider space memory, fractional-order derivatives in space

are used.

Once fractional-order derivatives come into the model to incorporate memory, the equation
becomes complicated and highly non-linear. The equation becomes very difficult to even
numerically solve. Unlike integer-order derivatives, fractional-order derivatives do not have a
single definition. Different definitions produce different equations for same model. It is also
difficult to discretize the model applying suitable finite-difference approximations. Developing

new schemes and algorithms to handle the fractional-order diffusivity equation is a great challenge.

Conventional mathematical models of fluid flow through porous media do not consider the effect
of memory. Currently, all reservoir simulators are based on conventional modelling. Development
of memory-based reservoir simulators is necessary to investigate the effects of memory.
Incorporation of memory in terms of fractional-order derivatives considering all the previous data,
in calculation of data at the current step. This increases the computational load by many folds.
Though memory-based models are assumed to increase accuracy, they will not be attractive if the
computational load is too high. Therefore, it is a great challenge to reduce the computational load.

The greatest challenge is to develop a reservoir simulator based on the memory-based approach.

1.2 Knowledge Gap

Hossain et al. (2008) developed a new porous media diffusivity equation through inclusion of
fractional order derivative to account for the rock and fluid memories, but the numerical solution
of the equation is not available yet. Also, other fractional-order diffusion equations developed to
model fluid flow through porous media are not solved, using the Caputo, Riemann-Liouville, and
Griinwald-Letnikov definitions for the fractional-order derivatives. In addition, the value of the

fractional order for the Hossain et al. (2008) model has not been computed yet.

Currently, no reservoir simulator uses a fractional-order diffusion equation to consider memory. It

is important to have a simulator based on this new approach to improve accuracy. Such a simulator,



if it can be developed, would answer many questions regarding memory, and take away the

confusion of the research community.

Fluid flow models are generally developed for specific flow phenomenon. Developing a general
equation instead of developing separate mathematical equations for each specific case is
worthwhile. The general equation can be simplified easily for different cases, but it is a bigger
challenge to develop a general mathematical model that will represent fluid flow for all type of
rocks, fluids and flow phenomena. There are few models that consider all the flow regimes relevant
to porous media flow. In addition, many models don’t consider all types of pressure losses that

occur during fluid flow.

1.3 Objectives

The main objectives of this study are:

i) To develop a numerical model to solve a memory-based diffusion equation using finite-
difference approximations, uniform meshes, and utilizing Caputo, Riemann-Liouville, and
Griinwald-Letnikov definitions for the fractional-order derivative.

i1) To compare the numerical solutions found from the application of Caputo, Riemann-Liouville,
and Griinwald-Letnikov definitions for the fractional-order derivative.

ii1) To develop an efficient numerical model to solve a memory-based diffusion equation using
finite-differences approximation, non-uniform meshes in time, uniform meshes in space, and
utilizing the Riemann-Liouville definition for the fractional-order derivative.

iv) To develop a small-scale memory-based reservoir simulator so that the effects of memory can
be investigated.

v) To develop a generalized memory-based mathematical model from which other memory-
based models can be derived.

vi) To develop a generalized semi-empirical equation that portrays the flow of fluid in packed

beds and porous media.



1.4 Organization of the Thesis

This thesis consists of nine chapters and is written in “manuscript” format. The rest of the thesis

is organized as follows:

Chapter 2 presents a literature review on modeling of fluid flow through porous media with

specific focus on memory and fractional-order derivatives.

A numerical model has been developed using uniform meshes and the Riemann-Liouville
definition for the fractional-order derivative to solve the model of Hossain et al. (2008) in Chapter
3. The model is validated comparing with an analytical solution for a specific case of the model.

This chapter is written to submit as a journal article.

Numerical models have been developed using uniform meshes and the Caputo, and the Griinwald-
Letnikov definitions for the fractional-order derivative to solve the model of Hossain et al. (2008)
in Chapter 4. These models are compared with the model developed in Chapter 3. This chapter is

written for submission as a journal article.

In Chapter 5, the model of Hossain et al. (2008) is solved numerically using graded meshes in time
and the Riemann-Liouville definition for the fractional-order derivative. The L1 algorithm is
derived for the applied graded meshes. The numerical model is validated. This chapter has also

been prepared for submission as a journal article.

Chapter 6 compares the numerical models developed using uniform and graded meshes. In
addition, experimental data is collected from the literature and the value of the fractional order and
the relaxation time have been computed from the data. Optimal spatial and time steps in unit space
and time have been computed for this value of fractional order by analyzing the error in an

analytical solution. This chapter is written to submit as a journal article.

A generalized memory-based mathematical model has been proposed in Chapter 7. Different

fractional-order diffusion equations can be derived from this model.
4



Chapter 8 proposes a generalized conventional model and dimensionless number for fluid flow in
packed beds and porous media. A generalized semi-empirical equation is proposed that portrays
the flow of fluid in packed beds and porous media. A new expression for the modified Reynolds
number has been derived from the model. Novel ways to calculate tortuosity of the porous media,
the diameter of the equivalent volume sphere and the head-loss coefficient are proposed. This

chapter is written to submit as a journal article.

Chapter 9 summarizes the outcomes of the present study and presents some recommendations for

future studies.
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Chapter 2

Literature Review

2.1 Introduction

Much theoretical, numerical and observational work has been published focused on fluid flow
through porous media. This research has placed memory and fractional derivatives in a central role
for accurate modeling of fluid flow through porous media. Models that do not consider the effects
of the history of the rock and fluid cannot accurately represent the characteristics of fluid flow.
Properties of both the rock and fluid change with time while fluid flows through porous media.
Pores of the medium might be enlarged, due to chemical reactions between the medium and the
fluid, or can be diminished or even closed, due to deposition of solid particles carried by the fluid
or by the precipitation of minerals from the fluid. Consideration of both space and time memory
is required to capture this continuous alteration of rock and fluid properties. Some models consider
only time memory, a few consider space memory, and classical models consider neither of these
memories. However, for accurate mathematical representation of flow, both types of memory
should be considered. Inclusion of time and space memory would give a path to formulate a
generalized mathematical model. The generalized model could represent almost all types of flow
phenomena that occur in porous media. Histories of the pressure and its gradient, as well as space
memory, can be included in mathematical models using fractional-order derivatives. Use of
fractional-order derivatives in modeling makes the model able to capture history but causes higher
computational loads. Fractional diffusion models should be used where consideration of the effect

of history is needed to justify the computational load.

The idea of including memory in subsurface flow modeling is comparatively new. In this
perspective, all materials are assumed to have memory, so the history of the rock and fluid is
considered to affect their present and future characteristics. Incorporation of memory includes this

natural phenomenon in the governing equations and improves the prediction accuracy. Memory
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incorporation makes the governing equations intricate and solving the equations becomes more
challenging. This paper reviews different existing subsurface flow models and addresses the
necessity of memory incorporation, problems that arise due to including memory, and the impact

of considering memory in subsurface flow modeling.

2.2 Conventional Modeling Approach in Porous Media Flow

The principles of conservation of mass, energy, and linear and angular momentum, along with the
equation of state and constitutive equation, describe the flow of fluids. Equations of state relate
pressure, volume, and temperature (Landel ef al., 1986). Velocity and stress fields of the flows can
be predicted by solving the conservation laws together with the constitutive model and equations

of state using a suitable method (Carreau et al., 1997; Keunings, 2003, and 2004; Hulsen, 1990).

Different constitutive models and equations of state are used depending on the type of fluid and
flow. No constitutive equation can be used for all purposes. There is also no constitutive equation
that can completely describe the behavior of complex fluids in general flow situations (Owens et
al.,2002; Larson, 1988). Modeling of flows of complex fluids is difficult, so several assumptions,
such as laminar, incompressible, steady-state, and isothermal flow, are usually made to make the

representation easier.

There are three different types of modeling depending on the scale of interest to represent the
physics of fluid flow in porous media. The first is called continuum modeling. It is based on the
continuum description of the porous medium that is associated with macroscopic semi-empirical
equations such as the Ergun Equation, Darcy’s law, or the Carman-Kozeny equation (Balhoff et
al., 2004). The second is pore-scale modeling or microscale modeling, which is based on the
microscopic description of the pore geometry and on the physical laws of flow and transport within
the pores. The third is multiple continua or hybrid modeling, which combines pore-scale and

continuum-scale behavior.

The continuum approach is simple, with apparently no computational cost and does not account

for the detailed physics at the pore level. Time-dependent transient effects cannot be modelled
8



with this approach. On the other hand, a detailed understanding of the physical processes occurring
at the pore scale and a complete description of the morphology of the pore space are required for

pore scale modeling. This is very complex and requires a lot of computation.

Different statistical (Adler et al., 1990; Roberts, 1997; Yeong et al., 1998) and process-based
(Bakke et al., 1997; Oren et al., 1998, and 2002) techniques have been developed to describe the
geometry of the pore space. Pore space can also be imaged directly using micro CT tomography
(Dunsmuir et al., 1991; Spanne et al., 1994). Two approaches can be applied to model flow at the
pore scale. Flow can be simulated directly in a three-dimensional pore-space image by solving the
Navier-Stokes equations or by using the Lattice-Boltzman techniques (Gunstensen ef al., 1991,
and 1993; Grunau et al., 1993; Ferreol et al., 1995; Van Katz et al., 1999; Pan et al., 2004) or by
the smoothed particle hydrodynamics (SPH) method (Tartakovsky et al., 2005). This is called
direct modeling. Direct modeling becomes cumbersome and computationally expensive for
capillary controlled flow with multiple phases. The Lattice-Boltzman and smoothed particle
hydrodynamics methods are Lagrangian, particle-based approaches. Another approach is to
describe the pore space as a network of pores connected by throats with some idealized geometry
(Qren et al., 2002; Delerue et al., 2002). Then a series of flow steps in each pore or throat are
combined to simulate flow in the medium. This is called pore-network modeling and has been the

most common pore-scale modeling method.

2.2.1 Continuum Modeling

This approach treats the porous medium as a continuum and does not consider the intricacies and
fine details of the microscopic pore structure. Darcy’s law, the Blake-Kozeny-Carman and Ergun
Equations are some examples of continuum modeling techniques. The commonly used equations

of these three continuum models are given in Table 2.1.

The simplest model to describe the flow in porous media is Darcy’s law that relates the pressure
gradient in the direction of flow to the volumetric flux of fluid through the medium, permeability,
and fluid viscosity. It is an empirical relation, yet it can be derived from the capillary bundle model

using the Navier-Stokes Equations. Since Darcy’s law contains only a viscous term and no inertial
9



Table 2.1: Commonly used equations for continuum model.

Model Equation
Darcy AP pu
L K
Blake-Kozeny-Carman AP 72C"pu(1 — $)?
L DZ¢3
Ergun AP 150pu (1 — ¢)? N 1.75pu? (1 — ¢)
L Dz  ¢3 D, ¢3

term, it is applicable only to laminar flow at low Reynolds numbers. The law cannot be applied
when the flow becomes slow due to interaction between the fluid and the pore walls. The Darcy
model only considers viscous Newtonian effects and does not consider boundary effects and heat
transfer. Hence, Darcy’s law is applicable to only isothermal, laminar, purely viscous, and
incompressible Newtonian flow. Darcy’s law has been modified and various generalizations to
include nonlinearities have been made to represent more complex phenomena, such as non-

Newtonian and multiphase flow (Shenoy, 1993; Schowalter et al., 1978).

The Blake-Kozeny-Carman (BKC) model is one of the most popular models to represent flow
through porous media. This model incorporates a number of equations that are developed under
various conditions and assumptions. These equations associate the pressure drop across a granular
packed bed to the volumetric flux of fluid through the fluid viscosity, the bed porosity, and the
granule diameter. Macroscopic properties of random porous media, such as permeability, can be
modelled from this family of equations. These relations are based on the capillary bundle concept
with various level of sophistication. The BKC model is applicable to laminar flow through packed
beds at low Reynolds numbers. The model has been extended to incorporate transitional and

turbulent flow conditions (Kozicki ef al., 1988; Chapuis et al., 2003).

The Ergun Equation is a widely used semi-empirical relation to model flow through porous
medium. It correlates the pressure drop along a packed bed to the volumetric flux. Unlike the Darcy
and Blake-Kozeny-Carman models, the Ergun Equation contains both viscous and inertial terms.

10



At low flow rates, the viscous term becomes dominant, while at high flow rates the inertial term
becomes dominant. Therefore, the Ergun model can represent larger range of flow regimes

compared to the Darcy or BKC models (Jones ef al., 1976; Plessis et al., 1994; Stevenson, 2003).

The continuum approach can describe the complex characteristics of flow through porous media
using a few simple averaging terms, and the computational cost of simulating continuum models
is very low. Nonetheless, this approach ignores the physics of flow at pore level. Most of these
continuum models have been modified to describe non-Newtonian behavior. To apply continuum
models for non-Newtonian fluid, an effective viscosity, which will have the dimensions and
physical significance of Newtonian viscosity, is defined so that the model can represent the non-
Newtonian fluid flow (Pearson et al., 2002). However, continuum models have had limited success
in predicting the flow of complex fluids in porous media. Non-Newtonian continuum models fail

to incorporate time-dependent effects and to model yield-stress.

2.2.2 Pore-Scale Modeling

Research on pore-scale modeling started its journey with the classical papers of Irvin Fatt on pore-
network modeling in the 1950s (Fatt, 1956a; Fatt, 1956b; Fatt, 1956¢). Pore-scale modeling is
important to understand the physics of flow through porous media. It helps to predict the
petrophysical properties and, thus, supplement and replace laboratory experiments. Pore-scale

modeling has become popular due to advances in image resolution and computational power.

Pore-scale modeling has significant advantages, yet there are also limitations. Different pore-scale
models that are used for same physical problem should be consistent. Many industrial processes
involve multiple physical processes on which pore-scale models do not focus. Upscaling the pore-
scale results is crucial to improve field-scale models. The question of how the available data from
image resolution, and detailed and complicated physics based models can be employed to calculate

simple and static properties is yet to be answered (Joekar-Niasar ef al., 2012).

2.2.2.1 Direct Modeling
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The most prevalent approach to model fluid flow directly in porous media is the lattice Boltzmann
method (Dunsmuir ef al., 1991; Chen and Doolen, 1998; Kang et al., 2006; Manwart et al., 2002;
Porter et al., 2009; Schaap et al., 2007; Pan et al., 2004; Hao and Cheng, 2010; Boek and Venturoli,
2010). It is a particle-based technique that is used for computational modeling of single and
multiphase fluid flows in complex geometries. The method is based upon the Boltzmann equation,
which considers the fluid to be composed of particles, and simulates the motion and collision of
particles. The rules governing the motion and collision are established such that the averaged
motion of a particle can be shown to be consistent with the governing Navier—Stokes Equations.
Writing code for the lattice Boltzmann method is relatively easy. However, the method is not
naturally computationally efficient, even with the use of parallel computing. Capillary controlled
displacement on large samples is very difficult to capture accurately. Hence, relative permeability
cannot be predicted reliably by this method. However, recent studies show that relative
permeability can be computed using pore-space images with advanced computer technologies (Pan
et al., 2004; Hao and Cheng, 2010; Boek and Venturoli, 2010; Ramstad ef al., 2011). The method
is suitable to compute permeability, dispersion coefficients, and effective reaction rates for single

phase flow.

Another direct modeling technique is the level-set method that is developed to study capillary-
controlled displacement. In this method, it is easy to follow changing topology. Hence, the method
can handle complex boundaries very easily. Computational load is also high for this method.
However, it gives insights into imbibition processes and fracture-matrix interactions (Sussman et

al., 1994; Prodanovic et al., 2010).

General models for fluid flow can be developed for different physical phenomena, non-Newtonian
rheology, and thermal effects by applying density-functional modelling techniques (Demianov et
al., 2011). These techniques have been successfully applied in the case of simple geometries.
However, for complicated geometries, such as realistic porous media, the method has not been

effective.

2.2.2.2 Pore-Scale Network Modeling

12



Quantitative description of the geometry of pore structure and solution of the governing equations
of motion are required to quantify the macroscopic transport properties of pore space from their
microscopic properties. Pore-scale network modeling follows these two steps. It combines

computational resources with the physics of flow and pore-space structure.

In this modeling, the porous space is characterised by a network of flow channels. Larger voids
are represented by pores that are interconnected by narrower regions called throats. The process to
construct a completely realistic pore network is very complicated. There are two types of methods
to generate pore-scale networks (Al-Raoush et al., 2003). In the first type, an equivalent network
is formed using pore- and throat-size distributions, coordination number, and size correlation
between adjacent pores. The model is tuned to match experimental data by adjusting the
coordination number, and pore- and throat- size distributions. The solution is not unique in this
case. In another approach, pore space is constructed with the help of measured porosity and
correlation functions (eg. Vogel and Roth, 1997; Bakke and Oren, 1997; Liang et al., 1999; Okabe
and Blunt, 2003), or by non-destructive three-dimensional imaging using microtomography or

magnetic resonance (eg. Baldwin ef al., 1996; Rintoul et al., 1996).

Two main types of pore network models are generally used to study fluid flow in porous media.
One type is quasi-static displacement models, and another is dynamic displacement models. In the
quasi-static models, the capillary force dominates. The static position of all fluid-fluid interfaces
is determined using capillary pressure on the network. The dynamic aspects of pressure
propagation and interface dynamics are ignored. The pores and throats change their configuration
one at a time. Quasi-static models are extensions of percolation models. These models do not work
in case of fracture flows, near-wellbore flows, and flows involving polymers, gels, and foams.
However, the effects of viscous forces are modelled in addition to the capillary effect in dynamic
displacement models. In dynamic models, a specified inflow rate for one of the fluids is imposed
and the subsequent transient pressure response and the associated interface positions are
calculated. In these models, a given volume of invading fluid is injected during a time step and
Poiseuille flow is assumed in the throats. At each time step, the element pressures are computed

and the displacement decisions are taken based on pressure difference rules.
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2.2.3 High Velocity Fluid Flow Modeling

Darcy’s model describes the fluid flow through porous media where the flow rate is low. At low
flow rates, viscous force is dominant. With the increase of flow rate, inertial forces become
significant. Darcy’s law can no longer model the fluid flow in the case of high velocity. At high
flow rates, the relationship between pressure gradient and superficial fluid velocity becomes non-
linear. Forchheimer (1901) corrected the Darcy equation adding a second order of the velocity
term to represent the microscopic inertial effect. In addition, Darcy’s law does not consider the
shearing effect between the fluid and the pore walls. In this regard, Brinkman (1947) modified the
Darcy’s equation adding the second-order derivatives of the velocity. Darcy (1856), Forchheimer

(1901), and Brinkman (1947) equations and their assumptions are tabulated in Table 2.2.

Table 2.2: High velocity fluid flow models.

Author Model Equation Assumptions
Darcy (1856) E _ hu e the solid is rigid, deformation of the solid is
L K negligible
e stecady flow

e negligible viscous effects within the fluid
5 e the solid is rigid, deformation of the solid 1s

(1901) “ox "k Theu negligible
e significant inertial forces
e negligible viscous effects within the fluid
Brinkman op pu 0%u  d*u_ |ethe solid is rigid, deformation of the solid is
(1947) | Tax = & MGzt 52 | negligible
e steady flow
e viscous effects within the fluid are not

negligible

Forchheimer dp uu

2.3 Inclusion of Memory in Porous Media Flow Modeling

It is difficult to determine the pore-size distribution, the surface areas, and the tortuosity of a porous
media. Through CT scanning, images have been used to determine the distribution of pore sizes
(Xu et al., 1999; Kamath ef al., 1998) and residual saturation (Hilpert et al., 2000), but this is very

costly. It is also not possible to scan a complete reservoir or rock samples taken from every part of
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a reservoir. There are many ways to describe the pore spaces (Qren et al., 1998; Patzek, 2001,
Dixit et al., 1998, 1999, and 2000; Blunt et al., 1990, and 1991), but, in all cases, the geometric
parameters are tuned to match available experimental data. So, these models do not represent the
exact structure that exists in a reservoir. They are developed in such a way so that their predictions
match given experimental results. It is even more difficult to observe the detailed processes that
occur during fluid flow at the pore level in complex heterogeneous porous media through

experiment.

Since each model, even at the pore level, is developed to match experimental data, it is rather good
to infer the detailed structure and flow processes at pore level from macro level observation and
from data obtained in idealized model experiments. Here, memory can be used to tune the

continuum model to represent the medium and flow more accurately.

2.3.1 Fundamentals of Memory

Different authors have defined memory in different ways. According to Zhang, memory is a
function of time and space, and forward time events depend on previous time events (Zhang, 2003).
Zavala-Sanchez et al. showed that the system ‘remembers’ its initial state, which is defined as
memory effects for the effective transport coefficients (Zavala-Sanchez ef al., 2009). Hossain and
Abu-Khamsin (2012) defined memory as the effect of past events on the present and future course

of developments. We define memory in the following comprehensive way.

When all affecting parameters (pressure, temperature etc.) excluding time remain unchanged, rock,
fluid, and flow characteristics are conventionally assumed to remain constant. However, we think
that they are changed, since time is not constant here. They depend on time and are changed with
time. So, rock, fluid, and flow properties at the present depend on their past, and the past must be
considered to determine the present behaviour. Future behaviour can also be predicted from the

past. Here, past is one of our keys to modelling the present and future.

Conventional continuum approaches model only the physical processes of flow and consider only

pressure and temperature to affect rock, fluid, and flow characteristics. Chemical and biological
15



processes that occur in the reservoir and change the rock, fluid, and flow behavior are not

considered. However, these processes occur even in the simplest to model reservoirs.

Reactive transport modeling considers chemical microenvironments, mineral—fluid reaction rates,
thermal— mechanical-chemical processes, and change in rock, fluid, and flow characteristics with
the processes (Steefel et al., 2005), but is very difficult to model, very complex, and has very high

computational costs.

Different models are developed to represent different types of reservoir, fluid, and different flow
characteristics. It would be nice if there were a general model that would act as a platform to
represent all cases and, yet, had low computational cost. The general model that we are thinking
about will follow the continuum approach and catch conventional physical processes explicitly.
Chemical and biological processes, effects of time, reservoir heterogeneity, and all the other
properties that may affect the flow phenomenon, will be included implicitly by using a memory

function.

Here, we are defining memory as a function that will describe how the present depends on past;
that will be used to evaluate the present and predict the future characteristics of an object from its
past, and/or to tune the model so that the model can represent all the processes that were not
considered explicitly in the model and can characterize the rock, fluid, and flow accurately and

completely as well.

2.3.2 Modeling with Memory

Memory has been implicitly or explicitly included in various models of porous media flow.
Memory comes into the model to serve different purposes, e.g. for better representation of flow in

disordered or fractal media, to incorporate the effects of history or rock, fluid, and flow, etc.

Giona and Roman (1992a, and 1992b) derived a fractional diffusion equation containing an

explicit reference to the history of the diffusion process by using fractional calculus. They did not
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include memory directly in their model. Memory is implicitly included in their equation, since a

fractional derivative has been used.

Metzler et al. (1994, and 1997) obtained a more general fractional model equation in which they
used Fox's H -function. Giona and Roman (1992a, and 1992b) and Metzler et al. (1994)
constructed an integrodifferential equation to express the memory effect via the integral term.
Their work gives good results for homogeneous fractal media, where conductivity is identical in
every diffusion path. They, however, failed to predict precisely the motion of a particle in

inhomogeneous fractal media.

Park et al. (1998) set up a governing equation describing the diffusion phenomena in disordered
media addressing a memory effect and non-locality, in which they formulated permeability as a
function of space and time. Tian and Tong (2006) incorporated memory in their flow models of

fluids by applying fractional derivatives.

Hossain and Islam (2006) described the memory of fluid as one of the most important and most
neglected feature in fluid-flow models. They reviewed fluid-flow models with memory, addressed

the intangible problems of memory, and identified the effects of considering memory.

Hossain et al. (2007) introduced a stress-strain model incorporating memory with viscous stresses.
They obtained the variation of shear stress as a function of strain rate for a fluid in a sample oil
reservoir to identify the effects of fluid memory. They showed the memory effects in space with
pressure gradient change. Their computation indicates that the effect of memory causes a nonlinear
and chaotic behavior for stress-strain relation. They claim that the model can be used in reservoir
simulation and rheological study, well test analysis, and surfactant and foam selection for enhanced

oil recovery. In a subsequent study (2009), they solved the model numerically.

Hossain et al. (2008) introduced a new model for fluid flow incorporating fluid and rock memory.
The model was derived by introducing the Caputo fractional derivative to the classic Darcy law to
account for the variation of fluid and formation properties with time. They modelled variable

permeability and viscosity over time using fractional order derivative. They claim that their model
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can be used in any crude oil flow through porous media. Furthermore, they proposed an explicit

finite- difference scheme to solve the resulting nonlinear integro-differential equation.

Hossain and Islam (2009) developed a comprehensive material balance equation (MBE) including
continuous variation of rock and fluid properties with time, due to changes of pressure and
temperature. Memory effects of fluids and rock in terms of continuous time functions are included
in their formulation. The developed MBE is highly non-linear, with a number of coefficients that
are inherently non-linear. They solved the developed MBE numerically with a newly developed
non-linear solver. The authors claim that the proposed MBE can be applied to fractured formations
with dynamic features. Furthermore, an improvement of 5% in oil recovery was observed from the
new MBE over the conventional MBE. However, the proposed MBE requires accurate rock and

fluid compressibility data obtained from laboratory measurements or from reliable correlations.

Kolomietz (2014) applied kinetic theory to a nuclear Fermi liquid treating the nuclear collective
dynamics in terms of the particle density, current density, pressure, etc. He studied the influence
of Fermi-surface distortion, relaxation processes, and memory effects on the nuclear dynamics. He
concluded that the memory kernel depends on the relaxation time and provided a connection
between both limiting cases of the classical liquid dynamics (short relaxation time limit) and the
quantum Fermi-liquid dynamics (long relaxation time limit). The research showed that memory
effects lead to an important consequence of hindrance of the collective motion and, in particular,

to nuclear fission.

Hristov (2015) applied the integral-balance method to diffusion models with fading memories with
weakly singular kernels. They expressed the memory as Volterra integrals and time-fractional

Riemann-Liouville derivatives.
Hassan et al. (2015a) investigated the effect of reservoir heterogeneity on the pressure distribution

using a memory-based diffusivity equation. They claim that the memory-based diffusivity

equation can be used to model the flow of fluid through heterogeneous reservoirs.
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Hassan et al. (2015b) introduced memory to model variable rock and fluid properties with time.
They used fractional derivatives as a memory formalism to account for the non-local aspects of
fluid flow behavior through porous media. They investigated the effects of different parameters
such as composite pseudopermeability, fluid velocity, and viscosity on the pressure response of
the reservoir. They showed that there is an effect of memory on reservoir rock and fluid parameters
and that it ultimately affects the pressure response of the reservoir. They concluded that the pseudo-
permeability, fluid velocity, and memory decreases with distance, up to a certain extent of the
reservoir, and then becomes constant toward the boundary of the reservoir. It was also concluded
that the effects of these parameters increase with time around the wellbore and decrease toward
the outer boundary. They solved the Integro-differential equation numerically in time and space

domains for different dependent rock and fluid properties.

Rammay et al. (2015a) conducted a study to compare the variations of PVT properties using Darcy
and memory-based diffusivity equations. Variable compressibility, formation volume factors, and
viscosity of oil were obtained by solving both equations numerically using MATLAB. They
obtained different variations of compressibility, formation volume factor, and viscosity of oil from
the Darcy and memory-based diffusivity equations. They consider that memory has an effect on
these PVT data and that the memory-based diffusivity equation is more rigorous than the Darcy
diffusivity equation, due to the incorporation of the memory formalism term as a fractional order
in the diffusivity equation. They conclude that viscosity and compressibility changes are more
sensitive to pore pressure as compared to formation volume factor. They suggest using memory-
based models in order to accurately predict the PVT properties for more rigorous and

representative convergence in reservoir simulators.

Rammay et al. (2015b) found different porosity and permeability variations from Darcy and
memory-based diffusivity equations. They observed that memory has an effect on porosity and
permeability. They concluded that permeability change is more sensitive to pressure as compared
to porosity change. They found differences between these two models, and they believe this
difference can be significant enough during the convergence process in reservoir simulators. They
also think that to accurately predict the rock properties for more rigorous and representative

convergence in reservoir simulators, memory-based diffusivity equations should be used.
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2.3.3 Experimental Investigation to Capture Memory

Many researchers believe that flow history has an effect on fluid flow through porous media. For
example, when a complex fluid flows through porous media, there is a change in permeability due
to chemical reactions, mineral precipitation, etc. and, therefore, permeability diminishes over time.
This phenomenon shows that the effect of fluid pressure at the boundary on the flow of fluid
through the medium is delayed, and the flow occurs as if the medium has a memory (Caputo,

2000). Experiments are conducted to justify this.

Memory phenomena have already been shown qualitatively by Elias and Hajash (1992) for
diffusion of fluids in porous media, revealing a good fit with the flux rate observed in five
laboratory experiments on diffusion of water in sand. Caputo (2000) validated his generalized
memory-based theory, accounting for the non-local aspects of fluid transport. Iaffaldano et al.
(2005) carried out an experimental study to capture the memory effect in the diffusion process of
water in a porous media and proved that permeability of sand layers could decrease due to
rearrangement of grains and subsequent compaction. De Espi‘indola er al. (2005) used the
fractional derivative model (i.e., a measure of memory) to identify the dynamic properties of
viscoelastic materials and experimentally validated their findings. Cloot and Botha (2006) used
the generalized classical Darcy law, and a non-integer order derivative of the piezometric head for
groundwater flow. Numerical solutions of their equation for various fractional orders of the
derivatives were compared with experimental data to observe the behavior of fractional derivatives
in a modified Darcy’s law. Di Giuseppe et al. (2010) modified the constitutive equations by
introducing a memory formalism operating on both the pressure gradient—flux and the pressure—
density variations and used fractional-order derivatives to represent the memory formalism.
Supported by laboratory experiments, a good agreement has been shown between the theoretical

and observed flows over time.

2.3.4 Memory and Fractional Derivatives

Rock, fluid and flow properties depend on their history, and memory functions describe how they

do depend on their history. So, the present condition of rock, fluid, and flow can be conveyed as
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the convolution of the memory function and their history. To accomplish this, fractional
derivatives can help better than conventional derivatives since fractional derivatives of a function
can be expressed via a convolution of two functions. Moreover, it acts as conventional derivative
when the order of derivative is a non-negative integer. Therefore, fractional derivatives can be
used to describe natural phenomena like conventional derivatives and, in addition, to represent the

effects of history.

Convolution systems are linear, causal, and time-invariant. Since the fractional derivatives of a
function is a convolution of two functions, to describe a system using fractional derivatives, the
system is required to be linear, causal, and time-invariant. Here, the question arises: are the systems
demonstrating flow through porous media, representing change in rock and flow behavior with
time linear, causal, and time-invariant? This is a subject of research, whether the systems are
actually convolution systems, but when fractional derivatives are used to mathematically describe
a system, the assumption comes implicitly that the system is linear, causal, and time-invariant.
Here, the system of flow through porous media, changes in rock and flow behavior with time are

assumed to be linear, causal, and time-invariant.

2.4 Fractional Calculus

In classical calculus, powers of the differentiation operator are integers. Differentiation and
integration do not have similar definitions. In fractional calculus, powers of the differentiation
operator can be real or complex numbers. Here, differentiation and integration are not treated in

different ways, rather, they are generalized.

2.4.1 History of Fractional Calculus

Calculus was built from infinitesimal analysis, first by Isaac Newton during the 17" century (Boyer
etal., 1970). Gottfried Wilhelm von Leibniz again, independently, made the same discovery during
the period 1673-1676. Leibniz first introduced the idea of a symbolic method and used the symbol

d™y/dx™ = D™y for the n-th derivative, where n is a non-negative integer (Boyer et al., 1970).

21



Leibniz asked Guillaume Frangois Antoine, Marquis de I'Hopital in a letter, ‘Can the meaning of
derivatives with integer order be generalized to derivatives with non-integer orders?’ L'Hopital
replied by another question to Leibnitz, ‘What if the order will be %2?’. On September 30, 1695
Leibnitz replied in a letter, “You can see by that, sir, that one can express by an infinite series a
quantity such as d'/?xy or d%?xy. Although infinite series and geometry are distant relations,
infinite series admits only the use of exponents which are positive and negative integers, and does
not, as yet, know the use of fractional exponents.’ Later, in this letter, he continues prophetically,
“Thus it follows that d*/?x will be equal to xv/dx: x. This is an apparent paradox from which, one
day, useful consequences will be drawn.” This date, September 30, 1695, can be said to be the
exact birthday of fractional calculus (Machado et al., 2010; Leibniz et al., 1965; Ross, 1977).
Leibniz mentions derivatives of ‘general order’ in a letter to Johann Bernoulli in the same year

(Leibniz, 1695; Ross, 1977).

In 1697, in a letter to John Wallis (1616-1703), Leibniz discusses Wallis’s infinite product for /2
and states that differential calculus might have been used to achieve this result. He uses the notation

d'/?y to denote the derivative of order 1/2 (Leibniz, 1697; Ross, 1977).

In 1730 Leonhard Euler wrote, “When n is a positive integer, and if p should be a function of x,
the ratio d"p to dx™ can always be expressed algebraically, so that if n = 2 and p = x3, then
d?(x3) to d(x?) is 6x to 1. Now it is asked what kind of ratio can then be made if n be a fraction.
The difficulty in this case can easily be understood. For if n is a positive integer d" can be found
by continued differentiation. Such a way, however, is not evident if n is a fraction. But yet with
the help of interpolation which I have already explained in this dissertation, one may be able to
expedite the matter.” (Euler, 1738; Ross, 1977). Fractional calculus attracted Euler’s attention, and
according to him, the result of the evaluation of d"y/dx" of the power function x™ has a meaning

for non-integer m.

In 1772, Joseph-Louis Lagrange developed the law of exponents (indices) for differential operators

n dm+n

. . am d
of integer order. The law is that o gy =

o Y- This is an indirect contribution to fractional

calculus. Mathematicians were interested in finding an analogous rule that would hold true for
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arbitrary m and n (Ross, 1977). Pierre-Simon Laplace (1820) defined fractional derivatives by

means of an integral.

In 1819, Sylvestre Frangois Lacroix first mentioned a derivative of arbitrary order in a text of 700
pages in which he devoted less than two pages to this topic. Writing the n-th derivative of y = x™
as d™y/dx™ = (m!/(m — n))x™™", where n is a positive integer and m > n, he generalized the
factorial using the gamma function and got d"y/dx"™ = ('(m + 1)/T(m — n + 1))x™™", where
m and n may be fractional numbers. In particular, he calculated the derivative of order 1/2 of x
by putting y =x and n=1/2 and found (dzy/dx) = ('(2)/T(3/2))x2 = 24/x/VT.
Lacroix’s method did not give any information about the application of a derivative of arbitrary

order (Ross, 1977; Lacroix, 1819).

After Lacroix, Jean-Baptiste Joseph Fourier made mention of derivatives of arbitrary order. He
obtained the integral representation for f(x) as, f(x) = % fjozo f(@)da f_t:’ cos[p(x — a) +

nr/2]dp.

For integer values of n, (d"/dx™)cosp(x — a) = p™cos[p(x — a) + nm/2]. Fourier replaced

formally n with u, where u is arbitrary, and obtained, (d“/dx“)f(x) = (1/
21) fjozo f(a)da fjozo pYcos [p(x — a) + umr/2]dp. In this way, he defined a fractional operation.

According to Fourier, ‘The number u which appears in the above will be regarded as any quantity

whatsoever, positive or negative.” (Fourier, 1822; Ross, 1977).

The first use of fractional operations was made by Niels Henrik Abel in 1823. To solve an integral
equation that arises in the formulation of the tautochrone (isochrone) problem, he used fractional
calculus. This problem is about the determination of the shape of a frictionless plane curve through
the origin in a vertical plane along which a particle of mass m can fall in a time which is

independent of the starting position (Debnath, 1995). In this problem, the constant time of slide is
1
givenby k = [ ;C (x — t) "z f(t)dt. The function f(t) in the integrand is unknown and needs to be

1 1
determined. Abel wrote the right side of the equation as vrr(d 2/dx " 2) f (x). He then operated on
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1 1 1 1
both sides with (dz/dx2) and obtained (dz/dx2)k = Vmf(x). So now f(x) can be determined
from the fractional derivative of order %2 of the constant k. The derivative of a constant function
may not always be equal to zero. This is an elegant solution according to mathematicians (Abel,

1881).

In 1832, Joseph Liouville published three large memoirs. He formally extended the formula for
the derivative of integer order m, D™e®* = a™e®* to derivatives of arbitrary order v, DVe®* =
a’e®. Arbitrary derivatives of a function f(x) which can be expanded in a series, f(x) =
Yo Cne* was assumed to be found by the formula, DVf(x) = Y=o cpnane®*. This formula
is referred to as Liouville’s first formula for fractional derivatives. Here, v can be any number-

rational, irrational, or complex. But v cannot have a value for which the series does not converge.

Liouville knew this restriction, and he formulated a second definition. He started with a definite
integral, [ = f Ooo u%le™®du,a > 0,u > 0 to reach his second definition. This integral is related
to the Euler integral of the second kind (the gamma function). Plugging in xu =t gives [ =
fom(ta_le_t)dt/x“ =TI'(a)/x% or, x % = (1/T(a))I. Then, he operated on both sides with DV
and got DVx~% = (1/T'(a))D? fooo u%le *%dy . Applying Liouville’s basic assumption, the
arbitrary derivative was written as, DVx"% = ((—=1)?/T(a)) [ Ooo udtv=le=*Udy . Finally,
Liouville’s second definition of a fractional derivative became, DVx~% = ((—1)"T'(a +

v)/T(a))x~*"". He successfully applied both formulas to problems in potential theory. The

second definition has also limitation. It can’t be applied to all functions. However, it is useful for

functions of the type x~¢.

2.4.2 Physical Meanings of Fractional Derivatives

Fractional derivatives are used extensively to model natural phenomena and to better fit
experimental results, but their physical meanings are not yet well and lucidly understood. Some
authors have tried to understand the physical meaning of fractional derivatives. Glockle and
Nonnenmacher (1994) found the fractional relaxation equation to be a special type of non-

Markovian process. Schiessel and Blumen (1993) and Heymans and Bauwens (1994) showed that

24



fractional differential or integral equations are not mathematical artifacts, but rather they arise
naturally when expressing the rheological behavior of a fractal model. Podlubny (2002) recently
suggested physical and geometric interpretations of operations of fractional integration and
differentiation. J. A. Tenreiro Machado, in 2003, presented a probabilistic interpretation of
fractional-order derivatives, based on the Grunwald—Letnikov definition of fractional-order

differentiation.

Interpretation of initial conditions is another problem arising in modeling with fractional
derivatives. Though initial conditions for the Caputo derivatives are expressed in terms of initial
values of integer-order derivatives, Riemann-Liouville fractional derivatives require initial
conditions expressed in terms of initial values of fractional derivatives of the unknown function
(Podlubny 1999, Samko et al. 1993). Heymans and Podlubny (2006) showed that it is possible to
attribute physical meaning to initial conditions expressed in terms of Riemann Liouville fractional
derivatives, and the corresponding quantities can be obtained from measurements. They suggested
to consider the “inseparable twin” of the function and relate them via a basic physical law, and
measure the function’s initial values by measuring the corresponding values of its twin to express
initial conditions in terms of fractional derivatives of the function. They also demonstrated that, in
many instances of practical significance, zero initial conditions, which are used frequently in
practice, appear in a natural way. Though in many cases it is possible to explain the physical
meaning of initial conditions expressed in terms of fractional derivatives, the definite and general

meaning of this language is still difficult to understand.

2.5 Application of Fractional Derivatives in Modeling

It is not a completely novel idea to use fractional calculus for describing dynamical processes in
complex media mathematically. Fractional calculus has been applied mostly in electrochemistry
to study AC response of rough electrodes. Oldham made significant contributions regarding the
mathematical developments of fractional calculus in electrochemistry. Fractional derivatives were
applied to model rheological properties of solids, frequency-independent quality factor
Fennoscandian uplift, heat diffusion, and in other fields of research (Zhang, 2003; Bagley, 1986;

Caputo, 1967; Kornig et al., 1989; Lemehaute, 1983; Hossain et al., 2011; Al-Mutairi et al., 2013;
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Zaslavsky, 2002; Hilfer, 2000; Metzler et al., 2004). It was introduced to model sub/super-
diffusion transport in the absence and presence of an external field (Barkai et al., 2000; Metzler et
al., 1999), tumor invasion (Iomin et al., 2004; Tomin, 2005, and 2006;), and studies related to the
dynamics of interfaces between nanoparticles and substrate (Chow, 2005). Using fractional
derivatives, one can consider memory of a property by definition (Park ez al., 2000). Even though
it seems to be more complicated, this approach can be applicable for all time and all distance

regimes.

2.5.1 Fluid Modeling with Fractional Derivatives

Fractional calculus has been proven to be a successful tool to extensively describe the constitutive
relationships of viscoelastic fluids. Generally, development of fractional-order derivative models
of non-Newtonian fluids is initiated by replacing the time derivative of an integer order of a

classical differential equation by the Riemann—Liouville or Caputo fractional calculus operators.

Sloninsky (1967) modified the Kelvin-Voigt model by introducing fractional derivatives to
describe the relaxation processes in polymers. Bagley and Torvik (1983) showed that models of
viscoelastic materials developed using fractional differential equations of order 1/2 are in harmony
with molecular theory. Friedrich (1991) established relaxation and retardation functions for the
four-parameter Maxwell model. Material functions (complex moduli) of the modified Maxwell
model were developed and compared with experimental results by Li and Jiang (1994). Bagley
and Torvik (1986) generalized the standard solid model or Zener model using fractional
differential equations. They determined the material functions and calculated the parameter range
for thermodynamic admissibility. Friedrich (1992) and Glockle (1991) generalized the models
further, respectively. The two models were compared with respect to their usefulness and
thermodynamic compatibility by Friedrich (1993). Junqi and Ciqun (1996), Wenchang et al.
(2002), and Mingyu and Wenchang (2001, 2002) analyzed various problems of rheology using
fractional calculus. They found the fractional calculus approach to be more appropriate for
viscoelastic fluids. Song and Jiang (1998) obtained a very good fit with experimental data for

viscoelastic glue fluids by applying fractional calculus. Fractional derivatives can describe
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viscoelastic behavior quite flexibly (Schiessel et al., 1995; Palade et al., 1999; Rossihin et al.,
2001).

2.5.2 Applications in Ground-Water Flow

Botha and Cloot (2006) generalised the classical Darcy law regarding the water flow as a function
of a non-integer order derivative of the piezometric head. In Darcy’s law, the Darcy velocity at a
given point and a given time was considered to be dependent on the piezometric head and/or its
derivatives at that point or in the direct neighbourhood around that point at that time. They tried to
catch the effect of the global spatial distribution of piezometric field and also its past history on
the Darcy velocity at the point of consideration at a given time. The information relative to the
direct neighbourhood of the specific point under consideration was regarded to have greater
influence on the fluid flow than the information dealing with events taking place far away from
that point by assigning a weighting factor. To take the effect of history into account, as it is not
possible to know the history from time, the behaviour of the fluid particles situated at different but
larger distances from the considered point was taken as an image of the behaviour of the fluid
particles present at that point for different times in the past. To give more importance to
contemporary history than the far past, a weighting factor contained in the integral model acts as
a time filter. According to their work, the effect of the geometry of the flow was implicitly included
in the model through the integral character of the equation. Then, the generalised Darcy law and
the law of conservation of mass were combined to derive a new equation for groundwater flow.
Numerical solutions of this equation for various fractional orders of the derivatives were compared
with experimental data and Barker’s generalised radial flow model, for which a fractal dimension
for the flow is assumed. It was found that Cloot and Botha’s model and Barker’s model had much

In common.

In the same line of ideas with Cloot and Botha (2006), Atangana (2014) derived a new equation
for groundwater flow by combining the law of conservation of mass and generalized Darcy law
regarding the water flow as a function of a noninteger order derivative of the piezometric head.

They examined an approximate solution of the generalized groundwater flow equation via the
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Frobenius method. The results obtained from his investigation showed better prediction compared

to conventional groundwater flow equation.

2.5.3 Applications in Flow Modeling in Petroleum Reservoir

Generally, fractional derivatives are introduced in the flow model of viscoelastic fluids through
porous media. Fractional calculus is also used to describe fractal geometry, fractional dimension,

and flow through fractals.

Le Mehaute (1984) shows how the fractional derivative must be introduced to describe an
irreversible process in a fractal media that involves coupling relations between space and time. He
proposed a fractional constitutive equation for describing transfer processes in fractal media. He
developed a kinetic equation to describe irreversible phenomena using fractional derivatives. He
incorporated the interfacial characteristics into the fractional derivative in space-time. His idea of
representing the temporal anomalies in the transfer processes by a convolutional constitutive
equation between fluxes and driving forces is interesting, though it cannot be applied to the more

general problem of diffusion on fractals.

Giona and Roman (1992) formulated a diffusion equation on fractals for a one-dimensional system
in a very simple way within the framework of fractional calculus. Their approach is aimed at
describing the average behaviour of the physical quantities on fractals only. They developed a one-
parameter family of general fractional-differential diffusion equations, which reproduce the
asymptotic behaviour of fractional Brownian motion and the standard model. They solved the
fractional equation in one dimension and compared with exact results for fractional Brownian

motion and the one-dimensional version of the standard diffusion equation on fractals.

Roman and Giona (1992) generalized their previously developed fractional diffusion equation in
isotropic and homogenous fractal structures for d - dimensional Euclidean systems. They obtained
the asymptotic behaviour of the probability density function exactly and derived analytical

expressions for the scattering and relaxation functions.
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Giona and Roman (1992a, and 1992b) considered the ‘standard’ diffusion equation on a fractal to
be correct and represented the equation in terms of fractional derivatives. Their research shows
that a fractional diffusion equation represents the ‘standard’ diffusion equation on a fractal
accurately and more generally. Though they did not consider fractional derivatives as a tool to
model independently diffusion on random fractal structures, their research shows that one can use
fractional derivatives to model flow in fractal media accurately and generally. Their developed
model contains the limitations of the ‘standard’ diffusion equation inherently, because they

considered the ‘standard’ diffusion equation to be correct.

Park et al. (2000) introduced fractional calculus in the flow equation for fluid in a fractal reservoir.
They proposed a general mathematical formula for the analysis of pressure behaviour that is
applicable for the whole spatio-temporal domain in the fractal reservoir. The model captures the
history and nonlocality of transport. They derived a new general constant-flow-rate solution, which
is applicable to whole spatio-temporal ranges, using the Fox H-function. They find that the
fractional calculus approach agrees with real fractal reservoirs, particularly that the described
pressure behavior of the early-time stages is more accurate. However, they considered
compressibility and density to be independent of the position of the media. Additional analysis for

various field data and numerical studies is still required.

Tong et al. (2004) established relaxation models of non-Newtonian viscoelastic fluids with
fractional derivatives in fractal reservoirs. They studied flow characteristics by using the integral
transform, the discrete Laplace transform of sequential fractional derivatives and the generalized
Mittag-Leffler function. They obtained exact solutions for arbitrary fractional-order derivatives
and also long-time and short-time asymptotic solutions for an infinite reservoir. The pressure
transient behavior of non-Newtonian viscoelastic fluid flow through an infinite fractal reservoir
was studied by using Stehfest's inversion method for the numerical Laplace
transform. Their research shows that the clearer the viscoelastic characteristics of the fluid, the

more the fluid is sensitive to the order of the fractional derivative.

Tian et al. (2006) introduced fractional derivatives into the study of non-Newtonian fluids in

porous media and fractal reservoirs. They studied the flow by using the finite integral transform,
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the discrete Laplace transform of sequential fractional derivatives, and the generalized Mittag-
Leffler function. They obtained exact solutions for arbitrary fractional-order derivatives. The long-
time and short-time asymptotic solutions for an infinite reservoir were also obtained. The pressure
transient behavior of fluids flowing through an infinite fractal reservoir was studied using
Stehfest’s inversion method for the numerical Laplace transform. They showed that the order of
the fractional derivative affects the whole pressure behavior, particularly that the effect of pressure

behavior at the early-time stage is larger.

Shan et al. (2009) established relaxation models of non-Newtonian viscoelastic fluids in dual
porous media. They studied the flow characteristics using the Hankel transform, the discrete
Laplace transform of sequential fractional derivatives, and the generalized Mittag-Leffler function.
They obtained exact solutions for arbitrary fractional-order derivatives and also showed results of
long-time and short-time asymptotic solutions for an infinite reservoir. The pressure transient
behavior of non-Newtonian viscoelastic fluid flow through an infinite dual porous media was
studied using Stehfest’s inversion method for the numerical Laplace transform. Their research
shows that the characteristics of the fluid flow are appreciably affected by the order of the

fractional derivative.

Suzuki et al. (2010) employed fractional advection-dispersion equations (fADE) to describe non-
Fickian mass transport in fractured rock masses. The fractional time derivative in fADE was
responsible for the variance of travel time in the tracer responses, resulting in the non-Fickian
transport. Their research supports that fADE can be used for characterizing complex fluid flow in

geothermal reservoirs.

2.6 Discussions and Future Directions

Due to difficulty in describing pore space, difficulty in observing detailed processes occurring in
the pore space, and the high cost of CT scanning, a general mathematical model is required that
would act as a platform to represent different types of flow of different fluids in different
reservoirs, would have low computational time, and would capture the majority of the processes

occurring in a reservoir. Memory functions and fractional derivatives come to the model to capture
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the effects of history and the effects of other processes within the reservoir that are not captured
explicitly. This development of general models could be an exciting research topic for future

researchers.

2.7 Conclusions

Memory, an important characteristic of rock and fluids, has been reviewed and defined. Models
that incorporate memory have been reviewed. Fractional derivatives and their physical meaning

have been studied, and their application in incorporating memory is discussed. Finally, the

necessity of a general memory-based model is realized and recommended.
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Meshes
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3.1 Abstract

Fractional order derivatives, that arise in the diffusion equation to incorporate memory make the
equation complex and more challenging to solve analytically and numerically than the
conventional diffusion equation. In this paper, a numerical model utilizing the Riemann-Liouville
definition of the fractional-order derivative is developed for a time-fractional non-linear diffusion
equation. Uniform meshes in both space and time have been used. The equation is also solved

analytically for Dirichlet boundary conditions and for an initial condition to validate the numerical
44



model. Numerical and analytical solutions are compared, and it is found that the numerical and
analytical solutions match with negligible error, calculated at a fixed final time for different
numbers of time steps. The error results affirm that the discretization method used in the numerical
model is consistent, but less than first order accurate in time. The effects of the fractional order on
the error are significant, with increasing as the value of the fractional order is increased. The model

can be used to investigate the effect of the fractional order on the solution of the diffusion equation.

Keywords: Memory, Numerical Modeling, Fractional diffusion equation, Riemann-Liouville

definition, Uniform mesh.
3.2 Introduction

Modeling and simulation of porous media flow is important for development and recovery of
petroleum resources. Numerous models and ways to look at subsurface flow phenomena have been
developed over more than the past fifty years. Recent years have seen interest in investigation of
the effects of history of rock, fluid, fluid flow, and its implication on flow through porous media,
commonly referred as memory of rock, fluid, and fluid flow. Memory incorporation makes the

governing equations intricate and solving these equations becomes more challenging.

The ‘memory’ idea is relatively new and growing in petroleum engineering. Zavala-Sanchez et al.
(2009) showed that a system “remembers” its initial state, which defines memory effects for the
effective transport coefficients. Hossain and Abu-Khamsin (2012) defined memory as the effect
of past events on the present and future course of developments. Hossain (2006) considers the
memory of the fluid as one of the most important and most neglected feature in fluid flow models.

In this direction, Hossain et al. (2008) proposed the following diffusivity equation

sl 5w G = poec 3. 6D
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where p(x, t) is the pressure, p(x, t) the fluid density, ¢(x, t) the porosity of the fluid medium,
k(x, t) the permeability of the medium, u(x, t) the dynamic viscosity of the fluid, c;(x, t) the total

compressibility of the system, a the fractional order of differentiation and T the characteristic time.

The fractional-order derivative is introduced into the mathematical model when memory is
incorporated. There is no simple physical or geometric interpretation of the fractional-order
derivative. Fractional derivatives have been suggested because they have been shown in some
cases to improve the ‘fit” between measured physical data and numerical models. However, the
discretization of fractional derivative gives some sensible physical meaning and relation to the
physical world. The expression found after discretizing the fractional-order derivative term
includes discrete history terms that tells that history can be incorporated using fractional-order

derivatives.

Derivation of numerical solutions to fractional order differential equations is challenging because
of their non-local behaviour. However, a number of studies on numerical approaches to the
solution of fractional diffusion equations have appeared in the literature. Shen et al. (2005)
proposed an explicit finite-difference approximation for a space-fractional diffusion equation.
Tadjeran et al. (2006) used the Crank—Nicholson method combined with spatial extrapolation to
obtain temporally and spatially second-order accurate numerical estimates for a fractional
diffusion equation. Liu et al. (2011) developed a meshless approach using the L1 approximation
for the time-fractional derivative and radial basis function (RBF) approximation for the spatial
discretization. Sun and Wu (2006) constructed a finite-difference scheme for fractional diffusion-
wave systems. Sweilam ef al. (2012) applied the Crank-Nicolson finite-difference method to solve
a time-fractional diffusion equation. A variational iteration method and the Adomian
decomposition method were used by Monami et al. (2006) to solve linear fractional partial
differential equations. Langlands and Henry (2005) discussed a fractional diffusion equation with
Neumann boundary conditions. Cui (2009), Du et al. (2010) and Gao et al. (2011) presented high

spatial accuracy schemes for fractional sub-diffusion and super-diffusion equations.

Instead of treating the fractional order derivative by its definition and discretizing the term that

contains the fractional-order derivative, Hossain et al. (2008) considered the term as a parameter
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and then solved the equation numerically in the way that an integer-order partial differential
equation is solved. Hence their numerical solution is not accurate in the mathematical sense. The
solution of this fractional-order diffusivity equation is important because it shows the way to solve

other fractional-order diffusivity equations.

In this paper, the model of Hossain et al. (2008) is solved numerically using the Riemann-Liouville
definition of the fractional-order derivative. The L1 algorithm (Oldham et al., 1974) that uses the
Riemann-Liouville definition for the fractional-order derivative is applied to discretize the

diffusivity equation.

The mathematical model is discretized using uniform meshes in both space and time. For some
positive numbers X, and T, and positive integers N,,, and N;, the grid sizes in space and time are
defined by Ax = X/N, and At = T /N, respectively. The grid points in the space interval [0, X]
are given by x; = iAx,i = 0,1, 2, ..., N,, and the grid points in the time interval [0, T] are labeled
t, =nAt,n =0,1,2,..,N;. The value of the function p at the grid points is denoted by p;* =
p(xi, ty).

3.3 Discretization and Numerical Solution Algorithm for Riemann-Liouville Definition
Denoting C; (x,t) = ’;—kT“ and C,(x,t) = p¢pc; in Eq. (3.1) gives
Op
~ et oz (—)] = Gy ta) 2L . (3.2)
Discretizing this using implicit Euler in time and centred differences in space, writing Fﬁrl =

-2
o155 (G2 ves
2

n-1
— (F - F ) ¢, (xu n) % . (3.3)
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To represent the fractional derivative, we use the L1 algorithm (Oldham et al., 1974), writing

6“u(xi,tn) tn“n® [

ot T r(2-a) u(xl' O)

n¢

+ ;-‘;3 {u (xi, t, — %) —u (xi, ty — (]H)t")} {G+ 1)t —ji-ay] . (3.4)

Using this, Firil and Fl-ril can be written as
2

1 _ _
Firil = EQ (x”; t )Ua At[ (P1+1 lp) + D0 D8 — Pzn+11 + i !
2

n—j-1

+ ] (a)(pl+1 pl j_pl+1 +p:1 J- 1)]: (35)

Fla=4G (xi_E t )frm[ (0 = pi-) + P — it — PP+ P
2

i— A
+ X w0 @r =i o + PO, (3.6)
where
(0‘) (] + 1)1 a __ -1—a , (37)
= 3.8
Gat = Nrarz-a) (3.8)

Substitution of Eq. (3.5) and (3.6) into Eq. (3.3), and rearrangement, gives

Ca( i'tn)A 2
sy [ ) 6 ) £

2

Co (g, tn)Ax?
G xi+%'tn)pin+1 zzamTpn 1+C1( 1,t )G Cl( L >Hn
1- 1—
Cy (xH; tn) e Pl =P =G (xi_; tn) el G VR (3.9)
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where

GI'=—pi +pi7 + ;l=_11 wj(a) (p?+_1] - pin_] - pin+_1]_1 + pin_]_l) ’ (3.10)
HY = —pf 7 + 9l + B o @ = o T . (311

Fig. 3.1 shows the computational algorithm for the numerical model. Using the Riemann-Liouville
definition of the fractional-order derivative, Eq. (3.9) is written for each grid-point and, then, the
coupled system of equations is solved. Here a problem arises to solve the equation. The pressures,
the solution of the equation, depend on the calculation of the density, permeability, viscosity,

porosity, and compressibility, which themselves depend on these pressures.

To get rid of this dilemma an iterative scheme (fixed-point iteration) is used to update the density,

permeability, viscosity, porosity, and compressibility. The approach is illustrated qualitatively by

A(p, k, [1, d): Ct)n,z pn,z+1 — RHSn’Z.

For each time step, and each inner iteration, the pressure, density, permeability, viscosity, porosity,
and compressibility data are assumed known from the most recent computational value. At the
start of a new time step, the most recent value is that from the solution at the previous time step,
while during a given time step, it is that from the last iteration. The coefficients are updated using
the new values of pressure as the pressures are updated and this process is continued. The iteration
process terminates when the convergence criterion is satisfied. A MATLAB program has been

written based on Eq. (3.9) to numerically solve Eq. (3.1).

3.4 Analytical Solution

To validate this algorithm, we consider the case where C; = C, = 1, and find the analytical
solution of Eq. (3.1). For C; = C, =1, the equation becomes linear. Initial and boundary

conditions are taken as p(x, 0) = sin(mx), and p(0,t) = p(1,t) = 0 respectively.
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Figure 3.1: Computational algorithm to solve the numerical model.
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Utilizing the Riemann-Liouville definition for the fractional-order derivative, the analytical

solution of Eq. (3.1) is found as (details shown in Appendix, Eq. A 3.19)
p(x,t) = E;_,(—m?t1"%)sin(mx) , (3.12)
where E;_,(s) is the Mittag-Leffler function, and is defined for (1 — @) > 0 as

sk

Ei_4(s) = Zk=om- (3.13)

3.5 Results and Discussion

Finding analytical solution of Eq. (3.1) for initial and boundary conditions used in real field
applications is very difficult. Numerical model can be helpful in this regard to find the solutions.
However, it is required to validate the numerical model before using it to find the solutions. In this
section, the validation of the developed numerical model has been checked. In addition, the order

of temporal and spatial accuracies of the developed model have been investigated.
3.5.1 Validation of Numerical Models

Numerical solutions are compared with analytical solutions to validate the numerical models. The
initial condition, p(x, 0) = sin(mx), and boundary conditions, p(0,t) = 0,p(1,t) = 0, are used
for the numerical solution as they are used in the analytical solution. The solutions at 201 equally
spaced time steps between t = 0 and ¢ = 1 are shown in Fig. 3.2 and Fig. 3.3. Fig. 3.2 shows the
solutions for &« = 0 and Fig. 3.3 shows the solutions for @ = 0.25. The analytical and numerical
solutions match very well for « = 0. For a = 0.25, numerical solutions deviate slightly from the

analytical solution for the chosen values of N, and N;.

Error values are also computed for different numbers of steps in space and time, and for different
a values. Fig. 3.4 presents the change in error with number of time steps for a =

0,0.1,0.25,0.50,0.75, and 0.90, where the one-dimensional space is divided into 50, and 100
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grid-points. In general, the error decreases linearly with the increase in number of time steps with
good rate initially. With the increase of number of time steps, the error becomes smaller and the
rate of change of the error decreases, until the error values reach a plateau before other errors start
to dominate. The trend in error with the number of time steps implies that the numerical model is
consistent. Order of temporal accuracies are computed for different values of fractional order, «,
and are shown in Table 3.1. Table 3.1 shows that the numerical model is (1 — a)th-order accurate
in time. For large values of a, increasingly many points in time are needed to achieve fixed

accuracy. Also, notable in this figure is that the error increases with higher a values.

Fig. 3.4 also depicts that the error decreases with the increase of number of grid-points in space.
At very small number of time steps, the differences between error found from 50 and 100 spatial
grid-points is insignificant. However, at large numbers of time steps, the differences seen are

substantial, reflect smaller spatial discretization error with N,, = 100.

I
a=0 — " T —— Intial Pressure
L=1 ——Analytical Solution
0.8 —IN =100 —--Numerical Solution ||
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Figure 3.2: Comparison between analytical and numerical solutions for @ = 0 in RL case.
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Table 3.2 shows the error values found using different numbers of grid-points in space and
different a values for 200 time steps. Here, the change in error with the change in number of grid-
points in space is very small. Since the discretization is first-order in time (for @ = 0) and second-
order in space (for &« = 0), the errors in this table are dominated by the temporal discretization
error. Table 3.3 shows the error values using different numbers of time steps and different a values
for 200 grid-points in space. Increasing the number of grid-points in space and/or number of time
steps decreases the error. However, the rate of decrease in error is not the same in the two cases.
The change observed in the error with changing in number of grid-points in space and time steps
implies that the numerical model here is consistent. The tabulated values also show that the
deviation of the numerical solution from the analytical solution increases with the increase in the

value of «.

Table 3.4 shows the order of spatial accuracies computed for different values of fractional order,
a. Order of accuracies for N, = 12800, 25600, and 51200 are calculated using the error values
for N, = 10, 20, and 40. It is found from Table 3.4 that the numerical model here is second-order

accurate in space for a = 0.

Considering « = 0, Ax = 0.01, and At = 0.0001, the error value 5.6726Xx10~7 is achieved. We
now consider the maximum values of length of time step needed to get the same error for Ax =
0.00025 and for different a values. It is found that the maximum values of length of time step,

At < 1x1077 fora = 0.1, < 1x107° for @ = 0.25, and < 1x10~* for & = 0.5.
These results satisty Theorem 2 provided by Gracia et al. (2017), that, if translated to our notation,

states that the finite difference solution to the time-fractional heat equation is accurate to O (h?) in

space, but only O (t17%) in time.
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Table 3.1 Order of temporal accuracy.

Value of fractional | Order of temporal accuracy
order, a N, =50 N, =100

0 0.9946 1.0256
0.10 0.8889 0.9042
0.25 0.7496 0.7535
0.50 0.5006 0.5009
0.75 0.2501 0.2502
0.90 0.1000 0.1000

Table 3.2 Error values for different number of spatial steps and « (No. of time steps = 200).

Total length of space = 1, Total time = 1, Number of time steps = 200

No. of grid-

Absolute Error

points in space

a=0

a=0.25

a=0.50

50

1.395695e-05

3.927319e-03

3.282228e-02

100

1.380472¢-05

3.918687¢-03

3.280845¢e-02

200

1.376672e-05

3.916529¢-03

3.280499¢-02

400

1.375721e-05

3.915990e-03

3.280413e-02

800

1.375481e-05

3.915855e-03

3.280391e-02

1600

1.375395e-05

3.915818e-03

3.280385¢e-02

3200

1.375051e-05

3.915796e-03

3.280383e-02

6400

1.373193e-05

3.915752e-03

3.280381e-02

Table 3.3 Error values for different number of time steps and a (No. of spatial steps = 200).

Total length of space = 1, Total time = 1, Number of spatial steps = 200

No. of time steps

Absolute Error

a=0

a=0.25

a=20.50

200

1.376672e-05

3.916529¢-03

3.280499¢-02

400

6.594127¢-06

2.319126e-03

2.317149¢-02

800

3.230522¢-06

1.374807¢-03

1.637395e-02

1600

1.602791e-06

8.156872¢-04

1.157351e-02

3200

8.022427¢-07

4.843112e-04

8.181768e-03

6400

4.052734¢e-07

2.877807¢-04

5.784659¢-03
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Table 3.4 Order of spatial accuracy.

N; Order of spatial accuracy
a=0 a=0.10 a=0.25
12800 1.8587 1.6168 0.9162
25600 1.9447 1.7756 1.1657
51200 1.9913 1.8758 1.3968
102400 2.0156 1.9347 1.5882

3.5.2 Significance of the Model and Sensitivity Analysis

It is difficult to interpret analytical solutions of the time fractional diffusion equation for some
initial and boundary conditions. This model can help to numerically solve the equation for any
initial and boundary conditions. The model also gives us an idea about the effect of the fractional
order values on the solution. The solutions of Eq. (3.1) for different a values are shown in Fig. 3.5
considering (pk/u)T* = 1, and p¢pc; = 1. Initial and boundary condition are taken as p(x, 0) =
sin(mx), and p(0,t) = p(1,t) = 0 respectively. It is found that, with the increase of the a value,
the numerical values of the solutions also increase within the range of 0 < a < 1. The equation
gives different numerical solutions based on its fractional order while keeping the other parameters
constant. Field data shall be used to determine the value of fractional order to accurately model

flow phenomenon. From the value of fractional order, the dependence of flow phenomenon on

history can be quantified.
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Figure 3.5 Solutions of the time fractional diffusion equation for different a values.

3.6 Conclusions

Numerical models are developed to solve a time-fractional diffusion equation applying the
Riemann-Liouville definition for the fractional-order derivative. Uniform mesh spacing in both
space and time has been used. The numerical model is validated comparing with an analytical
solution. From the error analysis, it can be concluded that the numerical model is consistent, and
(1 — a)th-order accurate in time. The differences among the analytical and numerical solutions
increase with the increment of fractional order, . It is also found that the solution of the diffusion

equation increases in size with the increase of a value.
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Appendix

Analytical Solution

Considering unit value for all the coefficients of Hossain et al.’s equation, Eq. (3.1) can be written

as
2)-2
Take, p(x,t) = f(t)sin(mx) with f(0) = 1.
This gives
p(x,0) = sin(mx) ,
p(0,t) =0,

p(1,t) =0.

aa

Then, a—j;sin(mc) = —m? (ataf(t)> sin(mx) ,

of _  _209%%(®) _
or,—- = —m°—==, [f(0) =1].

Taking the Laplace Transform in time

£|ZL]=sF(s) - (0) = sF(s) - 1.

For the Riemann-Liouville definition of the fractional order derivative,
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(A 3.1)

(A3.2)

(A 3.3)

(A 3.4)

(A 3.5)

(A 3.6)

(A3.7)



L[5E] = s%F(s) = D" f (Dm0 - (A3.8)

ot®

where D¥~1£(t) represents the derivative of f(t) of order a — 1.

Take [D¥ 1 f(t)]4=0 = C . (A 3.9)
We get
SF(s) —1=—-m?(s*F(s) — ¢), (A 3.10)
or, F(s) = ZEC = WO ™ (A3.11)
It is known that

s€2—¢C1

L[x4E, . (c3x2)] = oy (A 3.12)
where E represents the generalized Mittag-Leffler function.
Comparing zz;:: with u:_i?;;a wegetc, =1—a,¢c; =1,¢c3 = —m?.
Therefore, f(t) = (1 + n%c)E;_q,(—m?t1™%) . (A 3.13)
Recognizing D 1f = ['7%f, sincea — 1< 0, (A 3.14)
where 117 represents the integral of f of order (1 — ), we have

P(Ey_q (A1) = 2 (B1_e (At~ — 1) (A 3.15)
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(1+m2c)
_TL-Z

or, DYIf(t) = (Ey—o(—m?t17%) = 1)

o7, DU f (O] mo = LR (B (@) - D =c.

But E;_,(0) = % =1, Hence, ¢ = 0.

Therefore, f(t) = E;_,(—m?t1™%) .
Therefore, the analytical solution of Eq. (A 3.1) is

p(x,t) = E;_,(—m?t1~%)sin(mx) .
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4.1 Abstract

Unlike the conventional diffusivity equation, memory- based diffusivity equations use fractional-
order derivatives that make the equations complicated and difficult to solve, both analytically and
numerically, compared to the conventional diffusivity equation. In this paper, a numerical model
that utilizes the Caputo definition of the fractional-order derivative, is developed for a time-
fractional non-linear diffusion equation. Analytical solution of the equation is derived for Dirichlet

boundary conditions and for an initial condition to validate the numerical model. Numerical and
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analytical solutions are compared and it is found that numerical and analytical solutions match
with negligible error. Deviation of the numerical solution from the analytical solution gets larger
with increases in the value of the fractional order, a. The time-fractional non-linear diffusion
equation is also solved using the Griinwald-Letnikov definition of the fractional-order derivative.
The Griinwald-Letnikov definition of the fractional-order derivative is itself a numerical
algorithm, hence, validation by analytical solution is not required in this case. Numerical solutions
found using the Caputo and Griinwald-Letnikov definitions are compared. They are also compared
with the numerical solutions found from a numerical model that uses the Riemann-Liouville
definition of the fractional-order derivative. It is found that the use of the Caputo definition gives
the largest pressure values, and use of the Riemann-Liouville definition gives the lowest pressure
values. Pressure values obtained using the Griinwald-Letnikov definition lie between those found

from the application of the Caputo and Riemann-Liouville definitions.

Keywords: Memory, Numerical Modeling, Fractional diffusion equation, Caputo definition,

Riemann-Liouville definition, Griinwald-Letnikov definition, Uniform mesh.

4.2 Introduction

Recent years have seen interest in the investigation of the effects of history of rock, fluid, and flow
of fluid on flow through porous media. From this perspective, it is assumed that all materials have
memory, and that memory affects the present and future characteristics of the materials.
Incorporation of memory makes the governing equations intricate, and solving the equations

becomes more challenging.

The ‘memory’ idea is relatively new and growing in petroleum engineering. Zhang (2003) defined
memory as a function of time and space, where forward-time events depend on previous-time
events. Hossain and Abu-Khamsin (2012) defined memory as the effect of past events on the
present and future course of developments. Hossain et al. (2006) claim that the memory of the
fluid is the most important and most neglected feature in considering fluid flow models. In this

direction, Hossain et al. (2008) proposed the following diffusivity equation
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where p(x, t) is the pressure, p(x, t) the fluid density, ¢(x,t) the porosity of the fluid medium,
k(x, t) the permeability of the medium, u(x, t) the dynamic viscosity of the fluid, c;(x, t) the total

compressibility of the system, a the fractional order of differentiation and T the characteristic time.

Memory is incorporated in the mathematical model by the inclusion of a fractional-order
derivative. Finding numerical solutions to fractional-order differential equations is challenging
because of their non-local behaviour. However, a number of studies on numerical approaches to
fractional diffusion equations have recently appeared in the literature. Sun et al. (2011) solved
time-fractional diffusion equations by applying a semi-analytical finite-element method. Wang et
al. (2011) solved a space-fractional advection diffusion equation by developing a fast characteristic
difference method. Murillo and Yuste (2009) compared the solutions of the time-fractional
anomalous diffusion equations utilizing three explicit difference methods, where all three methods
were based on the Griinwald—Letnikov discretization. Based on the L1 discretization, Zhuang et
al. (2006) constructed a finite-difference scheme and analyzed its stability and convergence using
a maximum principle argument. Celik and Duman (2012) applied the Crank-Nicolson method with
the Riesz fractional derivative to numerically solve a fractional diffusion equation. Lin and Xu
(2007) combined the L1 approximation for the time-fractional part with spectral approximations

for spatial derivatives.

The solution of a particular fractional-order diffusivity equation is important because it shows the
way to solve other fractional-order diffusivity equations. While the physical meaning of a
fractional-order differential equation is very difficult to understand, we can use its discrete solution

to give some sensible physical interpretation.

In this paper, the model of Hossain ef al. (2008) is solved numerically for two cases: a) for the
Caputo definition of the fractional-order derivative, and b) for the Griinwald-Letnikov definition
of the fractional-order derivative. An implicit finite-difference approximation for the computation

of the Caputo fractional derivative given by Murio (2008) is used to discretize the Eq. (4.1) for
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case (a). The G1 algorithm that uses the Griinwald-Letnikov definition for the fractional-order
derivative is applied to discretize the diffusivity equation for case (b). The solutions found for case
(a) and case (b) are compared with the numerical solutions found by Zaman et al. (2017) using the

Riemann-Liouville definition of fractional order derivative.

The mathematical model is discretized using uniform meshes in both space and time. For some
positive numbers X, and T, and positive integers N,,, and N, the grid sizes in space and time are
defined by Ax = X/N, and At = T /N, respectively. The grid points in the space interval [0, X]
are given by x; = iAx,i =0, 1,2, ..., N, and the grid points in the time interval [0, T] are labeled

t, =nAt,n =0,1,2,..,N;. The values of a function p at the grid points are denoted by p;* =
p(xi' tn)'

4.3 Numerical Solutions for Different Approaches

4.3.1 For Caputo Definition

Writing C; (x, t) = ’;—kT“ and C,(x,t) = ppc, in Eq. (4.1) and use of the Caputo definition for the

fractional-order derivative gives

) e rap\]" op™
et o (3)], = Co0ut) %L 4.2)
. . %% rop .. .
where the left superscript, ¢ in Tora (E) stands for the Caputo definition of the fractional-order

derivative.

Discretization by implicit Euler in time and staggered finite differences in space, with Fl_:l_l =
-2

n

Cha
a 6p) .
[Cl Cota (ax ] , 8IVes
liE
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i(F —F" ) C,(xy t,) PP (4.3)

Ax l+2 At

Murio’s (2008) approximation formula for the Caputo definition of the fractional-order derivative

is
Co%u(x;tn) —j+1 —j
e = Oaat Xj=1 (‘)j(a) w7 —u), (4.4)
where gy ¢ = m and a)(a) Ji7%=( — 1)~ Applying Murio’s formula, F* 1 and F" 1
2 2

can be written as

n _ 1 n n n-1 n-1
Fi% = i C1 (le; tn) OanelPivs = Pi — i1 +0i

+ 370 (i = = o + 0P )1 (4.5)

1 - -
Fli=—0C (xi_z, tn) OgaclPl =PIty — DI P

i—=
2

+ 0 (o] =P e P (4.6)

Substitution of Eq. (4.5) and (4.6) into Eq. (4.3) and rearrangement gives

Cyp (xy,tn)Ax?
=G (xy )it [0 () + () + 2505 o -

Cz (x4, tn)Ax? _
G (XH_ )pl+1 2 ;‘aMAtx pr i+ ¢ (xH%, tn> G!'— C; (xl._%, tn> H, 4.7)
where
Gl = —prt + P+ X, 0@l = =l i) (4.8)
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4.3.2 For Griinwald-Letnikov Definition

Using the Griinwald-Letnikov definition of the fractional-order derivative, Eq. (4.2) can be written

as

Laa rap\]" aph
2|6 Gt e ()] = ot 2L (4.10)
L

GL FL
where the left superscript, GL in [Py (z—z) stands for the Griinwald-Letnikov definition of the

fractional-order derivative.

Again, discretizing using implicit Euler in time and staggered finite differences in space with

GL n
% (op .
i+l Gy CLra \ox)| 1 B'VES
2 liE

n-1

AX(FL’_‘F Fl,”_l) C,(x; t n)%. (4.11)
2

We now use the G1 algorithm (Oldham ef al., 1974) to approximate the fractional-order derivative
as

GLaa

u(xjptn) _ n-1TU-a) n-j
GLota r(- a)ZJ 0Tgen i (4.12)

Applying the G1 algorithm, F" 1 and F" 1 can be written as
2 2

Fla= 5 (v ) s M@, — o) + S S Gl -9 @13)

i+= J=1 rG+1)
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Substitution of Eq. (4.13) and (4.14) into Eq. (4.11) and rearranging terms gives

. 2
—C; <xi_b tn) pitq, + [Cl (x ) +C; ( 1,t ) + CZ(zlt’:n:iAx ]Pln -
2

C (xi:tn)sz - 1 1
C (xi%, tn) Pl = SO oy (xH%,t )F( = 67 Cl( - tn> SSHE L (419)

where
rj-a
Gl =Xt @i =21 (4.16)
F( ) . i
=Yy @ e (4.17)

4.3.3 For Riemann-Liouville Definition
Zaman et al. (2017) developed the following numerical model using uniform meshes both in space

and time to numerically solve Eq. (4.1) when the fractional-order derivative is taken using the

Riemann-Liouville definition,

Cyp (xy,tn)Ax?
gt (6 (x ) .6 () + 225 -

Cz(xltn)Ax n 1 n
) =01 50— )+
1_
Cr (%200 ) S s = D) = € (33t ) 52 02 = D), (4.18)
2
where
Gl =—plT + ! + X 0P ol — o =i T e, (4.19)
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For the Caputo and Griinwald-Letnikov definitions of the fractional-order derivative, Eq. (4.7) and
(4.15) are written for each grid-point, respectively and, then, the system of equations is solved.
Here, solution of the system is complicated by its nonlinearity. The density, permeability,
viscosity, porosity, and compressibility themselves depend on the pressure, the solution of the
equation. To resolve this, an iterative scheme (fixed-point iteration) is used to update the density,

permeability, viscosity, porosity, and compressibility. The approach is illustrated qualitatively by
A(p, k, [1, d): Ct)n,z pn,z+1 — RHSn’Z.

For each time step, and each iteration level, the pressure, density, permeability, viscosity, porosity,
and compressibility data are assumed known from the most recent computational value. At the
start of a new time step, the most recent value is that from the solution at the previous time step,
while during a given time step it is that from the last iteration. The coefficients are updated using
the new values of pressure as the pressures are updated and this process is continued. The iteration
process terminates when the convergence criterion is satisfied. Two MATLAB programs have
been written based on Eqgs. (4.7), and (4.15) to numerically solve Eq. (4.1). MATLAB program
written by Zaman et al. (2017) has been used to solve Eq. (4.18).

4.4 Analytical Solution
To validate this algorithm, we consider the case where C; = C; = 1, and find the analytical
solution of Eq. (4.1). For C; = C, =1, the equation becomes linear. Initial and boundary

conditions are taken as p(x, 0) = sin(mx), and p(0,t) = p(1,t) = 0 respectively.

Utilizing the Caputo definition for the fractional-order derivative, the analytical solution of Eq.

(4.1) is found as to be

p(x,t) =sin(nx) O0<a<1. 4.21)
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Figure 4.1 Computational algorithm to solve the numerical model.
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For a = 0, Caputo derivative does not coincide with the classical derivative. In this case, the
analytical solution of Eq. (4.1) is not derived. Instead, we use the analytical solution of the equation
(0/0x)[(0%/9t*)(dp(x,t)/0x)] — m? sin(mx) = (dp/dt) with the same initial and boundary

condition, and obtain

p(x,t) = sin(mx) e ™t . 4.22)
4.5 Results and Discussion
4.5.1 Validation of Numerical Model

The numerical solutions are compared with the analytical solutions to validate the numerical
models. The initial condition p(x,0) = sin(mx) and boundary conditions p(0,t) = 0,p(1,t) =

0 are used for the numerical solution, as they are used in the analytical solution.

The analytical solution (Eq. 4.21) found using the Caputo definition is applicable for 0 < a < 1,
while the numerical solution obtained for this definition is applicable for 0 < a < 1. The term
‘—12 sin(mx)’ is added to the right-hand side of Eq. 4.7 as a forcing function when comparing
with the analytical solution (Eq. 4.22) of the modified equation in the case of « = 0. MATLAB
code was written to evaluate the numerical and analytical solutions. The solutions are shown and
compared in Figs. 4.2, 4.3,4.4, and 4.5 for « = 0,0.25, 0.50 and 0.75 respectively. The numerical
solutions match very well with the analytical solutions. For @ # 0, the solution does not depend
on time, hence only one curve is found for both analytical and numerical solutions. The fact that
the solution derived using the Caputo definition is independent of time did not result from the
choice of initial condition p(x,0) = sin(mx). It is shown in Appendix that the solution of Eq.
(4.2) for C; = C, = 1isindependent of a and t for any initial condition when the Caputo definition

1s used.
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4.5.2 Comparison among the Solutions for the Riemann-Liouville, Caputo and Griinwald-

Letnikov Definitions

The solutions found from the Caputo, Griinwald-Letnikov, and Riemann-Liouville definitions of
the fractional-order derivative for T, = 0.0005 are compared in Figs. 4.6, 4.7, and 4.8 for a =
0,0.25, and 0.50, respectively. Fig. 4.6 shows that, for @ = 0, all three definitions for the
fractional-order derivative give same result. However, Fig. 4.7 and Fig. 4.8 show that, for 0 < a <
1, the Caputo definition gives the largest value (equal to the initial condition), the Riemann-
Liouville definition gives the lowest value and the values given by the Griinwald-Letnikov
definition lie in between. From the figures, it is also found that the differences among the three

solutions increase with increase in the value of «.

Figs. 4.9, and 4.10 depicts the solutions found from the Caputo, Griinwald-Letnikov, and Riemann-
Liouville definitions of the fractional-order derivative using @ = 0.25 for T = 0.005, and 0.05
respectively. It is found from Figs. 4.7, 4.9, and 4.10 that the differences among the three solutions

increase as the time at which the solutions are obtained increases.

The reason behind the differences among the three solutions and the increment of the differences
with @ and time can be understood looking at the three different definitions of fractional-order
derivatives. Eq. (24), (25), and (26) are the Griinwald-Letnikov, the Riemann-Liouville, and the

Caputo definitions respectively.

0%u(x,t) _ . & )_ N—1T(G—-a) .t

ote Nem{r( 5 270 T(am W t =i} (23)
0%u(x, t) g-a—1 _

atr TI'(g- a)atqf (t T) u(x; T)dT (q I1<a< Q) (24)
0%u(x, t) _ 1 t —q—1 9%ulx, 1)

e =ty ot DT g dr (@-1<a<q) (25)
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Riemann-Liouville definition takes the gth-order derivative of the integral of the product of
(t —1)27%"1 and u, whereas Caputo definition takes the integral of the product of (¢t — 7)97%"1
and qth-order derivative of u. Grilnwald-Letnikov definition is also different from the other two
definitions. The three definitions are not unique, and it is not possible to reach one definition from
the other. Therefore, the differences among the solutions found from the Caputo, Griinwald-
Letnikov, and Riemann-Liouville definitions of the fractional-order derivative increases with the

increase of a and time.

1 T — 7 T I
a=0 B —— Intial Pressure
L=1 —— Analytical Solution
0.8 — Nx=100 ———Numerical Solution |
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06T .
A 04 —
o
0.2 Y —
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.2 Comparison between analytical and numerical solution for « = 0 in Caputo case.
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Figure 4.4 Comparison between analytical and numerical solution for @ = 0.50 in Caputo case.

75



p(x, 0

Figure 4.5 Comparison between analytical and numerical solution for « = 0.75 in Caputo case.
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Figure 4.9 Comparison among three solutions for @« = 0.25,L = 1,N, = 100, N, = 1, Tr =
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4.6 Conclusions

Numerical models are developed to solve a time-fractional diffusion equation applying the Caputo,
and Griinwald-Letnikov definitions for the fractional-order derivative. Uniform mesh grading in
both space and time has been used. The numerical model developed using the Caputo definition is
validated by comparing with the analytical solution. Numerical solutions found from the Caputo
and Griinwald-Letnikov definitions are compared with the solutions found from the use of the
Riemann-Liouville definition. It is found that Caputo definition gives the largest pressure values,
and the Riemann-Liouville definition gives the lowest values. The pressure values found using the
Griinwald-Letnikov definition lie between those found from the application of the Caputo and

Riemann-Liouville definitions.
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Appendix

Analytical Solution for Caputo Definition

To find the analytical solution, we consider C; = C, = 1 in Eq. (4.2) giving

o [ 0% rap\] _ ap
E;wa(a)]—az’ (A4.D)
with boundary conditions p(0) = p(1) =0.

We write the solution in series form as

p(x,t) = Xpre1 T (O)sin(knx) , (A4.2)
noting that

P (x,8) = B2y To(D) sin(kmx) = — Lz, k2n? %sin(knx) =2 . aat )] (A43)
To be a solution, we require that

T(e) = —km? ) (A 44)

and T}, (0) = By , (A 4.5)

where S comes from the sine series expansion of the initial data, p(x, 0) = Y3~ Bx sin(kmx).

Taking Laplace transforms, we have

L[T ()] = sTye(s) = Brc - (A 4.0)
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For the Caputo definition of the fractional-order derivative,

Caa N
£ [0 = 5T (s) = 5 B

Therefore,
sTi(s) — B = —k?*m?(s%Ti (s) — s*By)
or, (s + k?m?s%) T, (s) = Br(1 + k?m?s%71)

(A+k?m?s* ) Bk

or, Tk(s) = Bk (s+k2m2s®) s
We get
T (t) = Br ,

giving p(x,t) = p(x,0) .

(A 4.7)

(A 4.8)

(A 4.9)

(A 4.10)

(A4.11)

(A 4.12)

Eq. (A 4.12) is the general analytical solution of Eq. (A 4.1) for any initial condition while using

the Caputo definition of fractional order derivative. The analytical solution found in this case is

independent of a and t.
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Numerical Approximation of a Time-Fractional Diffusion Equation Using the

Riemann-Liouville Definition of the Fractional Derivative and Graded Meshes
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5.1 Abstract

A time-fractional non-linear diffusion equation is numerically solved by applying the finite-
difference method. The Riemann-Liouville definition for the fractional-order derivative has been
used. A graded mesh in time is adapted to the problem and the L1 algorithm is derived for graded
meshes. The fractional diffusion equation is discretized using a uniform mesh in space and a graded
mesh in time. To validate the numerical model, numerical solutions are compared to analytical
solutions in the linear case and compared to manufactured solutions in non-linear cases.
Comparisons are made for different boundary conditions, and errors are analyzed. The error results
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affirm that the discretization method used in the numerical model is consistent, second-order
accurate in space, and first-order accurate in time. The developed numerical solutions can be used
to investigate the effects of memory on fluid flow through porous media. The developed numerical

model, and the written code are initial steps to develop a memory-based reservoir simulator.

Keywords: Memory, Numerical Modeling, Fractional diffusion equation, Riemann-Liouville

definition, Graded mesh.
5.2 Introduction

Numerous models have been developed over more than the past fifty years for simulations of
porous media flow that are crucial to overcoming the challenges associated with petroleum
production. The continuum approach, the simplest among the common approaches, is based on
semi-empirical equations such as Darcy’s law, the Blake-Kozeny-Carman, or Ergun equations
(Sochi, 2010). Several continuum models are also based in their derivation on the capillary bundle
concept. Another approach is pore-scale network modeling that is a compromise between the two
extremes of continuum and numerical approaches (Sochi, 2010). This approach takes the
microscopic description of the pore geometry with affordable computational resources into
consideration. However, these approaches do not consider the effects of history of the rock, fluid,

and flow on fluid flow phenomena.

The effects of history are incorporated in fluid flow models by the inclusion of ‘memory’. The
parameter ‘memory’ represents the effects of history of both the rock and fluid. According to
Zhang (2003), memory is a function of time and space, where forward time events depend on
previous time events. The ‘memory’ idea is relatively new and growing in petroleum engineering.
Hossain et al. (2006) considered the memory of the fluid as the most important and most neglected
feature in fluid flow models. In this direction, Hossain et al. (2008) proposed the following

diffusivity equation

2o 2] = 2 51
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where p(x, t) is the pressure, p(x, t) the fluid density, ¢(x, t) the porosity of the fluid medium,
k(x, t) the permeability of the medium, u(x, t) the dynamic viscosity of the fluid, c;(x, t) the total

compressibility of the system, a the fractional order of differentiation and T the characteristic time.

Memory is incorporated in the mathematical model with the aid of fractional-order derivatives.
Derivation of numerical solutions to fractional-order differential equation is challenging because
of their non-local behaviour. However, a number of studies on the numerical approaches to
fractional diffusion equations have recently appeared in the literature. Different numerical methods
have been applied to solve fractional differential equations (Gorenflo et al. (2002), Lynch et al.
(2003), Meerschaert et al. (2004), Yuste et al. (2005), Yuste (2006), Sun ef al. (2006), Chen et al.
(2007), Podlubny et al. (2009), Cui (2009), Brunner et al. (2010), Skovranek et al. (2010),
Mustapha et al. (2011)). Finite difference methods are convenient among these methods. However,

constant time steps are used in almost all cases. Very few cases use variable time steps.

Instead of treating the fractional-order derivative by its definition and discretizing the term that
contains the fractional-order derivative, Hossain ef al. (2008) considered the term as a parameter
and then solved the Eq. (5.1) numerically in the way that an integer-order partial differential
equation would be solved. Hence, their numerical solution is not accurate in the mathematical
sense. The solution of a fractional-order diffusivity equation is important, because it shows the

way to solve other fractional order diffusivity equations.

Zaman et al. (2017) solved Eq. (5.1) numerically using uniform meshes. However, Stynes ef al.
(2017) defined a graded mesh for a time-fractional diffusion equation and showed that the graded
mesh gives better performance for time-fractional equations. Their definition of a graded mesh has

been adapted for the time derivative in this work.

In this paper, the fractional order diffusivity equation (Eq. (5.1)) is solved numerically using the
Riemann-Liouville definition for the fractional-order derivative. The L1 algorithm for graded
meshes using the Riemann-Liouville definition for fractional-order derivatives is derived and

applied to discretize the diffusivity equation.
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Eq. (5.1) is discretized using a uniform mesh in space and graded meshes in time. For some positive
numbers X, and T, and positive integers N,., and N;, the grid sizes in space and time are defined
by Ax = X/N, and At,, = t, — t,,_; respectively. The grid points in the space interval [0, X] are
the numbers x; = iAx,i = 0,1, 2, ..., N, and the grid points in the time interval [0, T] are labeled
t,=T(n/N)*,n=0,1,2, ..., N, where the constant mesh grading w > 1 is adapted from Stynes
et al. (2017). For our case, w = (1 + a)/(1 — ) relate to Stynes et al. (2017). The values of a
function p at the grid points are denoted by p]* = p(x;, t,).

5.3 L1 Algorithm for Non-Uniform Mesh Grading

The L1 algorithm is derived for non-uniform mesh grading using the Riemann-Liouville definition

for fractional-order derivatives.

From its definition, the Riemann-Liouville fractional derivative for &« = 0 is given by

S S 0 T S T2 [ 652)
R-L

d(x—a)“]R_L = ax@ la(x-a)an = ax" [r(n-a) Ja (x—y)a-n+1

Applying the Leibniz rule for differentiating integrals, Eq. (5.2) is identical to

a%f _ vn-1@-a)* % ®(a) 1 x fME)dy

[d(x—a)“]R_L - Zk:o I(k—a+1) T'(n-a) fa (x—y)a—n+1’ n>a. (5-3)
Now, setting a = 0 and n = 1, restricting 0 < a < 1 yields

a*f _ x”%f(0) 1 xdf(y) dy

dx® ~ T'(l-a) + r(l-a) fO dy (x-y)*’ (5.4)
Eq. (5.4) can be written as

af — 1 fO)  yN-1 (X A O)_ dy

dx® ~ T'(l-a) [ x@ + 2]=0 ij dy (x—y)“] : (55)
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The L1 algorithm utilizes the approximations

ij+1 ar(y) dy _ f(xj41)=f(x)) fx1+1 dy 1 —f(x”l) r(x)) [( xj)l_a

xj dy (x—y)“_ Xjy1=Xj xj o (x=y)* T 1- Xj1—Xj

~( =) (5.6)

Substitution of Eq. (5.6) into Eq. (5.5) gives

(S = iy B4 2 S ()™ — (x—) 1 5)

dxel Ll ri—-a) [ x@ 1-«a Xjy1—Xj

Eq. (5.7) can be written as

def 1 (1-a)f(0) N— 1f(x iv1)—f(x;) 1-a 1-a
[ral = o e T 2= ,]Cjﬂ_x] : [( —x) = (= %511) ]] . (5.9

Eq. (5.8) is the L1 algorithm for non-uniform mesh spacing for the Riemann-Liouville definition

of the fractional-order derivative.

5.4 Numerical Solution for Riemann-Liouville Definition

Writing C; (x,t) = ’L—kT“ and C,(x,t) = p¢c; in Eq. (5.1) gives

26 Gt 22 (B)] = Catr e 2L (59)

Discretizing this using implicit Euler in time and staggered finite differences in space with Fl_:l_l =
-2
% (dp
[Cl ot (6x)] 1 glves

n-—1

Ax(Fl’i Fi’;) C,(x;, £) PEPE (5.10)
2

th—th-1
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Using the L1 algorithm derived in Eq. (5.8), Firj,l and Fﬁl can be written as
2 2

n _ 1 (1—6{) 0 0
Fi+% T AXT(2-a) G (xi%’ tn) [(tn)“ Pis1 — i)
+(tn = th-1) Pl — P — (tn — th-1)” a(P1+1 Pin_l)

[(tn t]) —(tn—tj+1)1_a]( j+1 j+1
(tj+1—tj)

+X756 pl —plT = vl +0)I.

n _ 1 (1-a) _
Fi—% © AXT(2-a) G (xi—i’ t”) [(t ) (v = Pi1)
+(t, — tn—l)_a(pin - pin—l) = (tp — tn—l)_a(pin_l - pin—_11)

[(tn t]) —(tn—tj+1)1_a]( j+1 j+1

+ 302 T p!" —piZ, -] +p D]

Substitution of Egs. (5.11) and (5.12) into Eq. (5.10), rearranging terms,

- (xl._%, tn> pit, + [Cl (xi_%, tn) +C; (xi%, tn> + C,(x;, t))AX’T(2 — a) (b, —

)P = (280 ) PRt = € G BRI @ = @)t = b0 ) PP +

(1-a)
Gy (xi_%r tn) (tn — tn—l)an1 - (xl._%, tn) (tn — tn—l)aHin +Cy (XH%, tn)ﬁ(tn

(1-a)
tn-1)* (1 = P1) + Gy (xl-_; tn) 92 (6 — ta ) (0 — PL),

where

Gln = _(t tn- 1) a(pl+1 _pl 1)

2[(tn t]) _(tn_tj+1) - ] j+1 j+1 j j
+ Zn (tj+1—t)) ( Piv1 —D; —Ditq + Pi) 5

H'=—(t, - tn—1)_a(Pin_1 - pin—_ll)
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I [ R (2 e 7 720 N S YO R YO R
+Z]=0 ot (pi —Dbi_q4 —D; t+ pi—l)‘ (5.15)
J+1 %)

Fig. 5.1 shows the computational algorithm to solve the numerical model. Eq. (5.13) is written for
each grid-point and, then, the system of equations is solved. Note, however, that the equation is
nonlinear: the pressures depend on the density, permeability, viscosity, porosity, and
compressibility which, themselves, depend on these pressures. Thus, an iterative scheme is used
to update the density, permeability, viscosity, porosity, and compressibility. The approach is

illustrated qualitatively by
A(p, k, [1, d): Ct)n,z pn,z+1 — RHSn’Z.

For each time step, and each iteration level, the pressure, density, permeability, viscosity, porosity,
and compressibility data are assumed known from the most recent computational value. At the
start of a new time step, the most recent value is that from the previous time step, while during a
given time step it is that from the last iteration. The coefficients are updated using the new values
of pressure as the pressures are solved and this process is continued. The iteration process
terminates when the convergence criterion is satisfied. A MATLAB program has been written

based on Eq. (5.13) to numerically solve Eq. (5.1).
5.5 Analytical Solution for Linear Case

To find the analytical solution, C; = C, =1 is considered in Eq. (5.9). For ¢; = C, =1 the
equation becomes linear. The initial condition is taken to be p(x, 0) = x(1 — x) and the boundary
conditions are taken as p(0,t) = p(1,t) = 0. The Riemann-Liouville definition for fractional-

order derivative is utilized. The analytical solution is found to be (details shown in Appendix, Eq.

A 531)

p(x,t) = Xy == [1 — (~D)X]E;_o (—k2m?t' ") sin(knx) , (5.16)

k3m3

where E;_,(s) is the Mittag-Leffler function, and is defined for (1 — a) > 0 as
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Figure 5.1 Computational algorithm to solve the numerical model.

91



sk

El—a(s) = Zkzom. (517)
5.6 Manufactured Solution for Non-Linear Case

Eq. (5.9) becomes non-linear when C; and/or C, are not constant. To find a manufactured solution,
non-linearity in the equation is included considering just one among p, ¢, ¢, or y as variable at a
time, while others are kept constant. The variable is expressed in terms of pressure. The true
expressions of p,¢,u are simplified, and non-linearity is introduced into the equation by
considering the simplified terms. For each non-linear term, a manufactured solution is obtained by

adding a forcing function to Eq. (5.1).
5.6.1 Inclusion of Density, p

5.6.1.1 Casea =0

Taking p = 50 + ﬁ — (1;%)2, unit values for ¢, ¢, u, and k, and a = 0, Eq. (5.1) becomes
a [ op]_ op
=P =P o (5.18)

The initial condition, and boundary conditions are taken to be p(x,0) = sin(mx) and p(0,t) =
p(1,t) = 0, respectively. The solution is then taken to be p(x, t) = e ™ tsin(mx), and Eq. (5.18)
is modified to the following (details shown in Appendix)

9[9_17]= 5P+L 2 —2m?t 3

2 2 2 -
— — mee cos“(mx) ——m“e
0x at 103 ( ) 106

— Tt sin(mx) cos? (mx). (5.19)

5.6.1.2 Casea # 0

In this case, considering unit values for ¢,c, u, k,and T, @ # 0, and p = 50 + ﬁ - (ﬁ)z,

Eq. (5.1) becomes
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2=t 520

Taking the initial condition, p(x,0) = sin(mx) and boundary conditions, p(0,t) = p(1,t) = 0,
the solution is fixed to be p(x,t) = e ™ sin(mx). The following modified equation gives this

solution (details shown in Appendix)

3} 0% (op ap _ 1 _
e [,Dm (E)] = pa + mt aEl’l_a(—n't) [Ene mt COSZ(T[X) —

li()Gne‘Z”t sin(mx) cos?(mx) — 507 sin(mx) — %ne‘"t sin?(mx) + #ne‘z’”sin?’ (nx)] +

27t gin2(mx) — — me 3"t sin3 (mx) . (5.21)

b 1
50me " sin(mx) + —me 3

103
5.6.2 Inclusion of Porosity, ¢

5.6.2.1 Casea =0

Taking ¢ = 0.25 + 10~ °p, unit values for p, c;, p, k, and @ = 0, Eq. (5.1) becomes

9? a
S=b (5.22)

-2t

Eq. (5.22) is modified to provide the solution p(x,t) =e sin(mx) for initial condition

p(x,0) = sin(mx) and boundary conditions p(0,t) = p(1,t) = 0, giving (details shown in
Appendix)

2
9 _ ¢g—f — 0.75m2e ™t sin(mx) + 101227t sin?(mx) . (5.23)

dx2

5.6.2.2 Casea # 0

Considering unit values for p,c; i, k,and T, a # 0 and ¢ = 0.25 + 10p, Eq. (5.1) becomes
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el Gl = 050 (5:24)

For initial condition p(x,0) = sin(mx) and boundary conditions p(0,t) = p(1,t) = 0, the

following equation gives the solution p(x, t) = e ™ sin(mx) (details shown in Appendix)

9 [9% a_P)] _ 400 2 —a _
6x[6t“(6x _¢6t e sin(mx) t™Ey ;o (—mt)

+[me ™ sin(mx)][0.25 + 10~ %e " sin(mx)] . (5.25)
5.6.3 Inclusion of viscosity, u

5.6.3.1 Casea =0

Taking k = 1077, u = (10*p)1° P, unit values for p, ¢, ¢, and a = 0, Eq. (5.1) becomes

0 [ 1077 ap] _ ap
ax Lao—+py103pax] — at -

(5.26)
Taking initial and boundary conditions to be p(x,0) = sin(nx) and p(0,t) =p(1,t) =0

respectively, the equation that gives the solution p(x,t) = e‘”ztsin(nx) is (details shown in

Appendix)

0 [ 1077 ap] _ op
ax L(ro—4+p)103vaxl ~ ot

2 2, . a2
107 3me~ ™"t cos(mrx) ln(lO“‘e‘" tsm(nx))+10 3ge ™"t cos(mx)

_ o2
- 2
10" 7me™ ™"t cos(mx -
5, . 10~ 3e~ Tt sin(mx)

(10—4e—” tsm(nx))

—10""m2e ™"t sin(mx) : + m2e ™t sin(mx). (5.27)

> 10_3e_7"-'2tsin(71:x)
(10‘4@"T t sin(nx))

5.6.3.2 Casea # 0
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Considering unit values for p,$,c,,T and a # 0, with k = 1077, u = (10™*p)1°°?, Eq. (5.1)

becomes
5] 1077 8% (9p\] _ ap
ox [(10—410)10_310 ata (6x)] T o (5-28)

For Initial condition p(x,0) = sin(wx) and boundary conditions p(0,t) = p(1,t) =0, the
solution is taken to be p(x,t) = e ™ sin(mx). The following equation gives this as its solution

(details shown in Appendix)

a[ 8% (o ) _ 0 . ot
pw [77 Py (i)] = a—’; + mt™YE; 1o (—mt) [cos(nx) % — m sin(mx) 77] + me ™ sin(mx), (5.29)

where

7= 1077 a
(10-4p)107°P

(5.30)

5.7 Analytical Solution and Numerical Approximation for Linear Case in Cylindrical Co-

ordinates

For @ = 0, Eq. (5.1) becomes (d/0x)[pk(0p/0x)/u] = ppc:(dp/dt), which in cylindrical co-

ordinate system converts to

10

pk dp\ _ ap
:E(Tja_r) = ppc. L. (5.31)

For initial condition p(r,0) = p,,0 < r < oo, and boundary conditions p(r,t) =p, as r -

oo,t = 0,and r(dp/dr) = Qu/(2mkh) as r — 0,t > 0, the analytical solution can be written as

_ QU . ducer?
p(r,t) =p, + o El( ST ), t>0, (5.32)
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A
A

Figure 5.2 Discretization in space.

where Ei(s) is the exponential integral, and is defined as
. e~V
Ei(s) = [ —dw . (5.33)

Fig. 5.2 shows the space discretization for Eq. (5.31) where the pressure is calculated at the center
of each grid cell. Time is non-uniformly discretized according to the definition of adapted graded

mesh above. Discretization of Eq. (5.31) gives

At . At . .
_W(l — 1)C1 (T'i_%, tn) pf_l + W [(l — 1)61 (T'l._%, tn) + lCl <T'l.+§, tn) +

(e

At

At . —
Co(ry, tn)l pi' — chl (TH%, tn> Pi1 = Gy ta)pi . (5.34)
2

5.8 Results and Discussion

It is necessary to validate the numerical model before using it to find the solutions. In this section,
the validation of the developed numerical model has been checked. In addition, the order of

temporal and spatial accuracies of the developed model have been investigated.

5.8.1 Validation of the Model

To validate the numerical model, numerical solutions are compared with analytical solutions for
the linear case. Eq. (5.17) gives the analytical solution for initial condition p(x,0) = x(1 — x) and

boundary conditions p(0,t) = p(1,t) = 0. Errors are calculated for different numbers of steps in
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space and time, and different a values. Figure 5.3 shows the variation of error with number of time
steps for ¢ = 0,0.1,0.25 and 0.50, where the one-dimensional space is divided into 50, and 100
grid-points. As the number of time steps is increased, the error decreases linearly at first. However,
for higher numbers of time steps, the rate of change in error decreases and, at some point, the error
values reach a plateau before spatial discretization error starts to dominate. The change in error
with the number of time steps implies that the numerical model is consistent. The figure shows
that the numerical model gives the least error for « = 0. With increases in «, the model gives

larger errors.

Figure 5.3 also shows that the error decreases with increase in the number of grid-points. At very
small numbers of time steps, the differences between error found from 50 and 100 grid-points is
insignificant. However, at large number of time steps, the differences are substantial indicating the

plateau behaviour is due to the spatial discretization error.

Table 5.1 shows the order of temporal accuracies computed for different values of fractional order,
a. It is found that the numerical model is first-order accurate in time. Order of spatial accuracies
calculated for different values of fractional order, a, and number of time steps, N;, are tabulated
in Table 5.2. Here, the order of spatial accuracies for N; = 12800, and 25600 are calculated using
the error values for N, = 10, 20, and 40. Table 5.2 shows that the order of spatial accuracy of the
discretization method approaches ‘two’, when large value of number of time steps, N; is used.
Therefore, it can be concluded that the numerical model developed using graded meshes is second-

order accurate in space.

Error values found using different numbers of grid-points in space and different a values are
presented in Table 5.3. It is observed that increases in the number of grid-points in space reduces
the error, but that the rate of decrease in the error is not the same as with increasing the number of
time steps. The tabulated values also show that the deviation of the numerical solution from the

analytical solution increases with the increase in the value of a.
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- % -0=0,N =50
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log (Number of time steps)

Figure 5.3 Error for different a and N,.

Table 5.1: Order of temporal accuracy.

Value of fractional Order of temporal accuracy
order, N, =50 N,=100 | N, =200
0 0.9946 1.0256 1.0337
0.10 0.9273 0.9524 0.9589
0.25 0.9274 0.9465 0.9515
0.50 0.9555 0.9683 0.9716

Table 5.2: Order of spatial accuracy.

N, Order of spatial accuracy
a=0 a=0.10 | a=0.25 | a=0.50
12800 1.8581 1.7712 1.7071 1.5971
25600 1.9441 1.8770 1.8389 1.7722
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Table 5.3: Error values for different number of grid-points in space for 200 time steps.

Total length of space = 1, Total time = 1, Number of time steps = 200

No. of grid-

points in space

Absolute Error

a=0

a=0.25

a=0.50

50 3.601062e-06 | 3.198723e-04 | 8.245439¢-04
100 3.561788e-06 | 3.177042¢-04 | 8.210083e-04
200 3.551982e-06 | 3.171656e-04 | 8.201315e-04
400 3.549531e-06 | 3.171175e-04 | 8.200890e-04
800 3.548915e-06 | 3.189707e-04 | 8.238759¢-04
1600 3.548733e-06 | 2.889448e-04 | 7.631701e-04
3200 3.548448e-06 | 2.889438e-04 | 7.631672e-04
6400 3.546670e-06 | 2.889509e-04 | 7.631698e-04

Numerical solutions of the modified equations are compared with the manufactured solutions for
different numbers of space and time steps, and varying a values to validate the numerical model.
Code for the numerical solution is modified to include the expression for the pressure-dependent
parameters and the source term arising when the equation is modified to obtain that solution.
Tables 5.4, 5.5, and 5.6 shows the error found incorporating p, ¢ and k/u in terms of pressure in

Eq. (5.1). Numerical values of the errors in these tables give the same conclusions that were made

from the linear case.

Table 5.4: Error values incorporating p = 50 + £__

(2-)2, and N,, = 50.

1000 ‘1000
p=50+—20— ()% N, =50
N, Absolute Error
a=0 0=0.25 a=0.50 a=0.75 0=0.90
200 1.3953x10° | 4.7073x10* 1.0435x10° | 5.2555x107 | 2.7103x107?
400 6.7659x10° | 2.3965x10* | 4.7512x10* | 2.2868x102 | 1.2867x107?
800 3.3952x10° | 1.2804x10* | 2.2341x10* | 9.7888x10% | 6.0437x1073
1600 1.7639x10° | 7.3516x107 1.1020x10% | 4.0512x10* | 2.8057x107
3200 9.6166x107 | 4.6701x10° | 5.8808x107 1.5552x10* | 1.2780x1073
6400 5.6383x107 | 3.3463x107 | 3.5473x10° | 6.2953x107 | 5.6052x10™
12800 3.6574x107 | 2.6915x10° | 2.4999x10” | 5.5179x107 | 2.2607x10*
25600 2.6690x107 | 2.3676x107° | 2.0436x107
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Table 5.5: Error values incorporating ¢ = 0.25 + 10~ p, and N,. = 50.

¢=0.25+10""p, N, =50
N, Absolute Error
a=0 0=0.25 a=0.50 a=0.75 a=0.90
200 4.5922x107 | 1.4289x10* | 5.4423x10* | 4.5573x10° | 2.6355x10
400 2.3824x107 | 7.4488x10° | 2.3158x10* | 1.9675x10° | 1.2538x102
800 1.2980x107 | 4.3647x10° | 1.0624x10* | 8.5457x10* | 5.9554x10°
1600 7.6082x10% | 2.9244x10° | 5.4672x10° | 3.7673x10™* | 2.8512x107
3200 4.9348x10® | 2.2351x10° | 3.2845x10° | 1.7140x10* | 1.3938x1073
6400 3.6011x10% | 1.8997x10° | 2.3340x10° | 8.2905x10° | 7.1017x10*
12800 2.9351x10% | 1.7348x10° | 1.9087x10° | 4.4677x10° | 3.9022x10™
25600 2.6022x10° | 1.6532x10° | 1.7138x10° | 2.8094x10° | 2.3997x10*
51200 2.4359x10% | 1.6127x10° | 1.6227x10° | 2.0866x10° | 1.6991x10™
. .k 1077
Table 5.6: Error values incorporating = Goip)io and N, = 50.
k 1077
k= ooy Ve = 50
N, Absolute Error
o=0 0=0.25 0=0.50 0=0.75 0=0.90

200 2.4470x102 | 6.7009x10 | 8.6624x10° | 1.6384x10% | 4.0056x10>
400 1.2286x102 | 3.3550x10° | 4.3401x103 | 8.2286x107° | 2.0266x107
800 6.1555x107 | 1.6786x10° | 2.1722x10° | 4.1234x10° | 1.0193x107?
1600 3.0809x107 | 8.3949x10* | 1.0865x10° | 2.0639x10 | 5.1115x107
3200 1.5413x103 | 4.1975x10* | 5.4328x10* | 1.0323x107 | 2.5594x1073
6400 7.7082x10* | 2.0982x10* | 2.7154x10* | 5.1615x10* | 1.2805x107
12800 3.8546x10* | 1.0484x10* | 1.3565x10* | 2.5795x10* | 6.4032x10*
25600 1.9274x10* | 5.2356x10° | 6.7699x10° | 1.2882x10* | 3.2006x10™*
51200 9.6375x10° | 2.6109x10° | 3.3721x10° | 6.4251x10° | 1.5988x10*

The numerical model for the memory-based radial diffusivity equation is developed following the
way that the model is developed for the linear case. The memory-based radial diffusivity equation
converts to the standard radial diffusivity equation for « = 0. The numerical solution for ¢ = 0 is
compared to the analytical solution of the radial diffusivity equation for initial condition p(r, 0) =
Po,0 <1 < oo, and boundary conditions p(r,t) =p, as r - oo, t =0, and r(dp/or) =
Qu/(2mkh) as r — 0,t > 0. The parameters used in the calculation are shown in Table 5.7.

Analytical and numerical solutions at distances of 7;, and 7, are tabulated in Tables 5.8 and 5.9,
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respectively. From these tables, it is seen that the numerical solution is very close to the analytical
solution. The difference between analytical and numerical solution is about 0.18 at r = 7;,,. The
differences between analytical and numerical solutions are negligible at the distance of 7, from the
center of wellbore. Pressure profiles generated from the numerical simulation for this case is shown

in Fig. 5.4.

Table 5.7: Parameters for a reservoir.

Item Description Value
In British unit system | In Darcy Unit System
Q, Oil production rate 300 STB/D 552.04 cm?®/sec
U Oil viscosity 1.06 cp 1.06 cp
k Permeability 300 md 0.3 darcy
H Thickness 100 ft 3048 cm
Co Oil compressibility 0.00001 psi’! 1.46959x10* atm™!
CR Rock compressibility 0.000004 psi’! 5.87838x107 atm!
C Total compressibility, (¢, + cg) 0.000014 psi’! 2.05743x10* atm™!
o) Porosity 0.2 (fraction) 0.2 (fraction)
Do Initial pressure 3600 psia 244.9656 atm
Pp Bubble point pressure 2000 psia 136.092 atm
B,y Oil formation volume factor at p,, 1.063 (fraction) 1.063 (fraction)
Ty Radius of wellbore 0.1875 ft 5.715 cm
T An arbitrary distance from center of 28.0176 ft 853.98 cm
wellbore
L Length in the x-direction 8100 ft 246888 cm
Table 5.8: The pressure comparison at v = 7;,,.
Time Time p (analytical pn (numerical ph—p
(days) (Seconds) solution) (psia) solution) (psia) (psia)
0.1 8640 3588.08 3588.26 0.18
0.2 17280 3587.54 3587.72 0.18
0.3 25920 3587.22 3587.40 0.18
0.4 34560 3587.00 3587.18 0.18
0.5 43200 3586.82 3587.00 0.18
0.6 51840 3586.68 3586.86 0.18
0.7 60480 3586.56 3586.74 0.18
0.8 69120 3586.45 3586.64 0.19
0.9 77760 3586.36 3586.54 0.18
1.0 86400 3586.28 3586.46 0.18
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Table 5.9: The pressure comparison at r = 15,.

Time Time p (analytical ph (numerical ph—p

(days) (Seconds) solution) (psia) solution) (psia) (psia)
0.1 8640 3595.9205103 3595.9196454 | -0.0008649
0.2 17280 3595.3779089 3595.3781949 0.0002860
0.3 25920 3595.0605074 3595.0611771 0.0006697
0.4 34560 3594.8353075 3594.8361691 0.0008616
0.5 43200 3594.6606288 3594.6616056 0.0009768
0.6 51840 3594.5179060 3594.5189595 0.0010535
0.7 60480 3594.3972355 3594.3983439 0.0011084
0.8 69120 3594.2927060 3594.2938555 0.0011495
0.9 77760 3594.2005045 3594.2016859 0.0011814
1.0 86400 3594.1180274 3594.1192344 0.0012070

2445 -

Pressure (atm)

244.4 —

2443 -

244.2

244.1

—after 2.4 hrs
——after 4.8 hrs
after 7.2 hrs
——after 9.6 hrs
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after 14.4 hrs
—after 16.8 hrs
—after 19.2 hrs
——after 21.6 hrs
after 24 hrs

— — —Initial Pressure

244

0.5

1.5

Distance from wellbore (cm)

25

%x10°

Figure 5.4 Pressure profile from numerical simulation for the radial case.

5.8.2 Significance of the Model and Sensitivity Analysis

Finding analytical solutions of the time-fractional diffusion equation is not always convenient.

This model can be helpful to numerically solve the equation for any initial and boundary

conditions. In addition, the model can be used to observe the effects of the fractional order on the
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solutions. The solutions of Eq. (5.1) for different a« values are shown in Fig. 5.5. Here,
(pk/wW)T* = 1,and ppc; = 1 has been considered. The initial condition is taken as p(x,0) =
x(1 — x) and boundary condition is taken as p(0,t) = p(1,t) = 0. The numerical values of the
solutions get higher as the value of fractional order increases within 0 < a < 1. The equation can
give different numerical solutions based on its fractional order while keeping the other parameters
constant. Field data can be used to determine the value of the fractional order that will accurately
represent true flow phenomenon. The fractional order value provides information about the

dependence of the fluid flow phenomenon through that porous media on its history.

0.025 ‘

0.02

0.015

=0.5)

p(xt

0.01

0.005

Figure 5.5 Solutions of the time fractional diffusion equation for different a values.

5.9 Conclusions

A numerical model is developed to solve a time-fractional non-linear diffusion equation applying
the Riemann-Liouville definition for the fractional-order derivative. The L1 algorithm is derived
for an adapted graded mesh. The numerical model is validated, comparing with analytical solutions
in the linear case and with manufactured solutions in the non-linear cases of the equation. From

the error analysis, it can be concluded that the numerical model is consistent, second-order accurate
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in space, and first-order accurate in time. The model can be used to investigate the effect of

memory on fluid flow through porous media.
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Appendix
Analytical Solution for Linear Case

To find the analytical solution, we consider C; = C, = 1 in Eq. (5.9) giving

d [9% (dp\] _ op
=GOl =% (AS.1)
with boundary conditions p(0) = p(1) =0.

We write the solution in series form as

p(x, t) = Zlio=1 Tk (t)sin(kﬂx) > (A 52)
noting that

o 0%

P (x,1) = By Ti(t) sin(knx) = — ¥y k2m? 8D sin(kemx) = = [2 (3B)] . (A 5.3)

ot%

To be a solution, we require that

Ti(t) = —kn? 210, (A 5.4)

and Tk(O) = ﬁk , (A 55)
where S comes from the sine series expansion of the initial data, p(x, 0) = Y.;-; Bx sin(kmx).

Taking Laplace transforms, we have

LT (®)] = 5T (s) — B - (A5.6)
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For the Riemann-Liouville definition of the fractional-order derivative,

£ [F58] = s°T(s) = [D* Tie(Demo (A5.7)
Therefore,

sTe(s) — B = —k*m?(s*Ty(s) — ;) where ¢, = [D¥ 2T (t)] =0 (A 5.8)

or, (s + k*m?sY) T, (s) = By + k?m%cy (A5.9)

or, Ty(s) = Bl o - etlom s ® (A 5.10)
This gives

T (t) = (Bx + k?m2c))Eq_o(—k2m2ti%) | (A5.11)
where E;_,(v) is the Mittag-Leffler function, and is defined for (1 — @) > 0 as

‘Uk

E1-a(W) = Ekmo oy (A 5.12)

since L[E;_,(—k?m?t1~%)] = ﬁ . (A5.13)

Now,

,Bk+k w2 Ck

D (By + k*m? e ) Eq_ o (—k*m?t'~%)] = (Ey—o(—k?m2t17%) — 1), (A 5.14)

which forces D* [T (t)];=0 =0 as E;_,(0) =1, (A 5.15)
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giving ¢ = 0, Ty (£) = BiEr—o(—k*m?t1™7)

and p(x, t) = Yo, BrE1—o(—k?m%t1~%) sin(knx) .

Eq. (A 5.17) is the general analytical solution of Eq. (A 5.1) for any initial condition.

Now, taking the initial condition considered above,
Po(x) =x(1—x),
We write this as
po(x)sin(mnx) = Y;°-1 By sin(knx) sin(mnx) ,
or, | 01 po(x)sin(max)dx = | 01 Yireq Pr sin(kmx) sin(mmx) dx .

Interchanging summation and integration and expanding, we get,

(A 5.16)

(A 5.17)

(A 5.18)

(A 5.19)

(A 5.20)

fol Do (x)sin(mmx)dx = fol By sin(mx) sin(mmnx) dx + fol B, sin(2mx) sin(mmx) dx +

et fol By sin(kmx) sin(mmx) dx + -+
Ifk #m,

fol B sin(kmx) sin(mnx) dx =0,
while, if k = m,

) 01 By sin(kmx) sin(mmx) dx # 0 .
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So, we get, fol po(X)sin(kmx)dx = fol B sin?(kmx) dx .
Solving for S} gives

_ f01 po(x)sin(kmx)dx
B = fol sin?(knx)dx

Now,

fol x(1 —x) sin(knx) dx = [— é (x — x?) cos (kmx)

1 2

+ = (1= 2x) sin(knx) — 5— cos(kmx)]}
1 . 2 2 2 2
= — o sin(kn) — Zcostkm) + S5 = 55— 5 (—D*,

and

1 . 1,1 1
Jy sin?(kmx) dx = Efo {1 - cos(2kmx)}dx = 7.

Hence,
2 2 k
— k371'3_k3ﬂ'3(_1)
ﬂk - 1 s

o7, i = 2z — s (~ DM = o [1 - (-1

This gives

p(x,t) = Ty s [1 — (~DXEy_o(—k2m2t1™%) sin(kmx) .
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(A 5.26)

(A 5.27)

(A 5.28)

(A 5.29)

(A 5.30)

(A 5.31)



Manufactured Solutions for the Nonlinear case
Inclusion of Density, p

Casea=0

_ P N2
Taking p = 50 + — 1000 (1000)

6ax [P ap] pat )

Let the analytical solution of the equation
7] ap
P3| =P+ F D)

be p(x,t) = e ™ Lsin(mx), giving

52
p =50 + — e ™ tsin(mx) ——e 2met
1000 106

sin?(mx) .

unit values for ¢, ¢, u, and k, and a = 0, Eq. (5.1) becomes

(A 5.32)

(A 5.33)

(A 5.34)

(A 5.35)

Note p(x, t) as given satisfies the initial condition p(x, 0) = sin(mx), and the boundary conditions

p(0,t) =p(1,t) =0.
Now,

) ( 6p) __dpap 9%p
a ox) T axox " Paxz

d ap) _ 2t 2
gives - (p ) = [103 e cos(mx) SoTe

+[50 + Ee‘"zt sin(mx) — #e"znztsmz(ﬂx)][—ﬂz
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—2m?t sin (T[X) COS(T[-X)] [7‘[8

(A 5.36)

—nt cos(mx)]

(A5.37)



9 a_P)_L 2 -2m2t 2 _ 2 2 -3m%t : 2 _
or,— (p ) =1 e cos*(mx) eTe sin(mx) cos*(mx)

50m2e~""t sin(mx) — — L 12727t gin? (x) +1—(1)67rze‘3” tsin3(mx). (A5.38)

From direct calculation,

p zt [50 + Ee ~T* sin(mx) — I—:ﬁe‘znztsinz(nx)] [-n2e "¢ sin(mx)], (A 5.39)
op _ 2 -m2t 1 -21 2 1 —37m2t o:,.3
or,p—- = 50m“e sin(mx) 10371 e tsin?(mx) + 10671 e sin°(mx) . (A 5.40)
Therefore, defining
_0(,9\_ 9
flxt) = ax (p 6x) Pt (A5.41)
gives f(x,t) = 1—(1)3nze_2”2t cos?(mx) — %nze%nzt sin(mx) cos?(mx) . (A 5.42)

Casea+ 0

Consider unit values for ¢,c; p, k,andT,a # 0O and p = 50 + — For these values,

2
1000 (1000) ’

Eq. (5.1) becomes

d 8% (dp ap

ox [P ora (ax)] Pac: (A 5.43)
Let the analytical solution of the equation

0 0% 6p ap

a[/’ ata (6x)] P tfD) (A 5.44)

be p(x,t) = e ™sin(mx). With this, (A 5.45)
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p =50 + — e "sin(mx) — i6e‘2”tsin2 (mx) . (A 5.46)

103 10

Note that p(x, t) satisfies the initial condition p(x,0) = sin(mx), and the boundary conditions

p(0,t) = p(1,t) = 0.

Now,

% [pﬁ (6_p)] = i[ — (me ™t cos(nx))] . (A 5.47)

at* \ox dx at«

. . . .. : o a®
Using the Riemann-Liouville definition of the fractional order derivative, W(BM) =

t™%E; 1_q(—mt), we get

o[ a% (d
. [p pre (62)] [pn cos(mx) t™*Ey 1o (— nt)] (A 5.48)
o[ 0% (d _ a .
or,— pm(ﬁ)] =mt™YE; 1_o(—mt) [cos(nx)ﬁ + p(—nsm(rrx))] . (A 5.49)
% (@ - 1
Thus, — o pm(i)] = mt™YE; 1_o(—mt) [cos(rrx) {ﬁrre Tt cos(mx) —
: . 1 g .

Fne —27t gin(mx) cos(rtx)} — 1 sin(mx) {50 +e 7t sin(mx) —

e tsin?(mx)}| . (A5.50)

" ox [p ata (_p)] = mt™"Ey1-q(—7t) [%037'[8_7” cos?(mx) —

2 me~?"t sin(mx) cos?(mx) — 507 sin(mx) — #ne‘”t sin?(mx) + #ne‘zmsin3 (nx)].

106
(A 5.51)
Furthermore,
pZ =[50 + e sin(mx) — e 2 sin® ()| [-mwe ™ sin(nx)] (A552)
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or, pz—f = [—SOne_"t sin(mx) — #ne‘z”t sin?(mx) + #ne‘3"tsin3 (Trx)] . (A5.53)

Thus, defining

0 =35z (5D)] - p 5 (A 5.54)

ate \ox at

gives f(x,t) = mt~%E;,_q(—mt) [1—(1)3 me ™ cos?(mx) — %ne‘z’” sin(mx) cos?(mx) —
507 sin(mx) — 1—;3ne_”t sin?(mx) + %ne‘z’”sin3 (Trx)] + 50me ™ sin(mx) +

2

mt sin?(mx) — — me =3t sin3 (1x) . (A 5.55)

1 e~
106

103
Inclusion of Porosity, ¢
Casea=0

Taking ¢ = 0.25 + 10~°p, unit values for p, ¢, u, and k, and @ = 0, Eq. (5.1) becomes

2
SP=pL. (A 5.56)

0x2

Let the analytical solution of the equation

K 0

L= oo+ f(x 1) (A 5.57)
be p(x,t) = e ™ tsin(mx), giving (A 5.58)

¢ = 0.25 + 10 %" tsin(nx) . (A 5.59)

Note p(x, t) as given satisfies the initial condition p(x, 0) = sin(mx), and the boundary conditions

p(0,t) = p(1,t) = 0.
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Now,
%p _ 2 -m?t:
oz = e tsin(mx) .
From direct calculation,
¢ = (025 + 10°p)[—n2e ™ Lsin(mx)] ,
or, ¢Z—Z = [0.25 + 10 %"t sin(nx)|[-n2e ™ sin(nx)] ,
or, ¢Z—Z = —0.25m2e ™t sin(mx) — 10922 sin? (1rx) .

Therefore, defining

_%p_ ,9p
f(x’t)_ax2 at

gives f(x,t) = —0.75m2e ™t sin(mx) + 1097227t sin?(nx) .

Casea+#0

(A 5.60)

(A 5.61)

(A 5.62)

(A 5.63)

(A 5.64)

(A 5.65)

Consider unit values for p,c; p, k,and T, @ # 0 and ¢ = 0.25 4+ 10~ °p. For these values, Eq.

(5.1) becomes

230 ()] -y 20
ax lote \ax/1 — T ot -
Let the analytical solution of the equation

il (G2)] = #5610
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(A 5.66)

(A 5.67)



be p(x,t) = e ™sin(mx). With this, (A 5.68)

¢ = 0.25 + 10 % sin(mx) . (A 5.69)

Note that p(x,t) satisfies the initial condition p(x,0) = sin(mx), and the boundary conditions

p(0,t) = p(1,t) = 0.

Now,
rl
o [5ee ()] = 3 [gz (e cos ()] (A 5.70)
2 [0% (2 l
glvesa—[m(aZ)] — — [ cos(mx) t™*Ey1_o(—mt)], (A 5.71)
d [0% (0 , _
or, 2|22 ()] = —n? sin(mx) 7By 1o (~1t) . (A5.72)
Furthermore,
Zi [0.25 + 107 %e "™ sin(nx)][—me "tsin(nx)] . (A 5.73)

Thus, defining

Flot) =2 5(3—2)] — ¢ (A 5.74)

gives f(x,t) = —m? sin(nx) t"*E; 1_o(—mt) + [me ™ sin(nx)][0.25 +
107%™ sin(mx)] . (A 5.75)

Inclusion of u

Casea=0
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Taking k = 1077, u = (10™*p)1°°P, unit values for p, ¢, ¢, and a = 0, Eq. (5.1) becomes

0 1077 ap] _dp
a[(10—4p)10‘3pa oot (A5.76)

Let the analytical solution of the equation

0 1077 op| _ op
ax [(10‘410)10‘3175 =T/ (A& 3.77)

be p(x,t) = e " Lsin(mx) . (A 5.78)

Note p(x, t) as given satisfies the initial condition p(x, 0) = sin(mx), and the boundary conditions

r(0,t) =p(1,t) = 0.

Now, defining

Flt) = 2 [0 _op] o (A 5.79)

ox Lao-+py103vaxl ot

gives f(x,t) =

7 _n2t 10‘3ﬂe‘”2tcos(ﬂx) ln(lO“‘e‘”ztsin(nx))+10‘3ne‘”2tcos(nx)
—10""me cos(mx) —

)
10~ 3e~ Tt sin(mx)
(10—46—”2 t sin(nx))

e sin(m) (A 5.80)

107 7n2e ™"t sin(mx)
(10‘49‘”2t5in(nx))

Casea#0

Consider unit values for p, ¢, ¢, T and @ # 0, k = 1077, u = (10~*p)1°°P, and n = (k/W)T*.

For these values, Eq. (5.1) becomes
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0 % (adp op

ax [77 ata (6x)] ac (A 5.81)
Let the analytical solution of the equation

a [ 0% (dp

519 Go)| =50+ £ G 0) (A 5.82)
be p(x,t) = e ™sin(mx) . (A 5.83)

Note that p(x,t) satisfies the initial condition p(x,0) = sin(mx), and the boundary conditions
p(0,t) =p(1,t) = 0.

Now,

2 122 (2)] = Z[n 2 (me™ cos(x)) | (A 5.84)

gives = [n ;T (38)] = == [ cos(x) t=4Ey 4o (~nt)] | (A 5.85)

ro 0o (3] = mt=Ey 1o (—t) [cos(mx) 22 + n(—msin(mx))] . (A 5.86)

[n 2 (2)] = mt=Ey y—a(—7t) |cos(mx) S — msin(mx)n| . (A 5.87)
Furthermore,

% = —me~™ sin(mx) . (A 5.88)

Thus, defining

fat) =< (32)] -2 (A 5.89)

M 5ea \ox at
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gives f(x,t) = mt %Ey 1_4(—mt) [cos(nx) Z—Z — 1 sin(mx) 77] + me ™ sin(mx), (A 5.90)

where
d _ 107 3me ™ cos(mx) In(10"*e ™t sin(mx))+10"3we "™t cos(mx)
e = TLOT T - (A5.91)
ox (10~*e~t sin(mx))10~ 3 ¢ sin(rx)
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6.1 Abstract

Two different numerical models developed for a memory-based radial diffusivity equation
utilizing uniform and graded meshes have been studied and compared. Numerical solutions
obtained from these numerical models are compared with analytical solutions for Dirichlet
boundary conditions and two different initial conditions to calculate and compare errors. It is found
that the numerical model developed using graded meshes gives smaller error than that using

uniform meshes. Experimental data regarding one-dimensional flow measurements through a
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porous layer with constant pressure gradient are collected from the literature. The value of the
fractional order in the diffusivity equation in this paper is computed to fit the experimental data by
the mathematical model. A reasonable value of the fractional order is found to be 0.05. Optimal
numbers of time steps in unit time for this value of fractional order and for different numbers of
grid-points in unit length are found by error analysis, where the optimal number of steps in unit
time is required to minimize the temporal discretization error. The comparison between uniform
and graded meshes shows that utilization of graded meshes to develop the numerical model for the

time-fractional diffusion equation is advantageous compared to the utilization of uniform meshes.

Keywords: Memory, Numerical Modeling, Fractional diffusion equation, Riemann-Liouville

definition, Uniform mesh, Graded mesh.

6.2 Introduction

Reservoir modeling is a critical component in the development, planning, and production
management of oil and gas fields. The ultimate goal of reservoir modeling is to aid in the decision-
making process throughout all stages of field life. Numerous mathematical models have been
developed for different types of reservoirs and fluids over more than the past fifty years modelling
various flow regimes and properties. In recent years, researchers have started to investigate the
effects of the history of the rock, fluid, and flow, that is also known as memory, on flow through
porous media. The recent literature on the mathematical modeling of rock/fluid interactions in
porous media shows that many researchers are developing models with memory (Caputo, 1998;

Caputo, 2000; Hossain et al., 2012a; Hossain et al., 2012b; Hossain et al., 2015).

Several definitions of memory are found in the literature. Zhang (2003) defined memory as a
function of time and space, where forward time events depend on previous time events.
Christensen (2003) defined memory to be when the history of the deformation and fractures of a
solid under stress is used to determine the propagation of a fracture within a solid. Zavala-Sanchez
et al. (2009) showed that the system “remembers” its initial state, which was defined as memory

effects for the effective transport coefficients. Hossain et al. (2012a) defined memory as the effect
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of past events on the present and future course of developments. In this direction, Hossain et al.

(2008) proposed the following diffusivity equation

d [pk 0% (op\] _ dp
75T 5 (5] = et ©6.1)
where p(x, t) is the pressure, p(x, t) the fluid density, ¢(x,t) the porosity of the fluid medium,
k(x, t) the permeability of the medium, u(x, t) the dynamic viscosity of the fluid, c;(x, t) the total

compressibility of the system, a the fractional order of differentiation and T the characteristic time.

The fractional-order derivative is required to be included in the diffusion equation in order to
incorporate memory. However, inclusion of the fractional-order derivative makes the diffusion
equation difficult to solve analytically and numerically. The non-local behavior of the fractional-
order differential equation makes the equation challenging to solve numerically. However,
numerous studies on numerical approaches to fractional diffusion equations are found in the
literature. Various powerful methods have been proposed for numerical solution of fractional
differential equations. Many authors have applied finite-difference methods (Abu-Saman, 2007;
Chen et al., 2007; Chen et al., 2009; Chen et al., 2010; Cui et al., 2009; Du et al., 2010; Gao et
al.,2011; Langlands et al., 2005; Liu et al., 2006; Liu et al., 2011; Lynch et al., 2003; Meerschaert
et al., 2004; Murillo et al., 2009; Sun et al., 2006; Tadjeran et al., 2006; Wang et al., 2011; Yuste
et al., 2005; Zhuang et al., 2006; Zhuang et al., 2008), while others have applied finite-element
methods (Deng, 2008; Roop, 2006). Gorenflo et al. (2002) used random walk approaches, and Li
et al. (2009, 2010) used a spectral method. A decomposition method was applied by El-Sayed et
al. (2010), and Odibat (2006). Momani et al. (2007), and Yildirim (2010) utilized a homotopy
perturbation method; Kumar et al. (2006) used an integral equation method; Jiang et al. (2010)
applied a reproducing kernel method; and a variational iteration method was applied by Odibat et
al. (2009) to solve a fractional differential equation. Zhuang et al. (2006) introduced a difference
scheme that is based on the L1 approximation for Caputo time-fractional derivatives. Murillo et
al. (2011) developed an explicit finite difference schemes. These authors also showed stability
conditions by means of fractional von-Neumann analysis techniques. An implicit finite difference

scheme using the L1 formula was constructed by Sun et al. (2006).
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Zaman et al. (2017a) developed a numerical model for Eq. (6.1) using uniform meshes in both
space and time, and the Riemann-Liouville definition of the fractional-order derivative. However,
Stynes et al. (2017) defined a graded mesh and theoretically showed that their graded mesh gives
better performance for the time-fractional equation. Zaman et al. (2017b) adapted their definition
of graded mesh for Eq. (6.1) and solved the equation utilizing this definition of a graded mesh in
time. In this paper, the numerical models developed by Zaman et al. (2017a, 2017b) for Eq. (6.1)
utilizing uniform and graded meshes are studied and compared. The value of fractional order, a
has been calculated for different experimental data collected from literature. The relationship
between the optimal number of steps in unit time and number of grid-points in unit length is found

for different values of «.

The mathematical model (Eq. (6.1)) is discretized using a finite-difference method. For some
positive value X, and integer N, the grid size in space is defined by Ax = X/N,.. The grid points
in the space interval [0, X] are given by x; = iAx,i = 0,1,2, ..., N,. In case of uniform mesh in
time, for some positive value T, and integer N;, the grid size is defined by At = T /N,. The grid
points in the time interval [0, T] are labeled t,, = nAt,n = 0, 1, 2, ..., N;. For the graded mesh, the
local grid size is defined by At,, = t,, — t,,_;. The grid points in the time interval [0, T] are labeled
t,=T(n/N)®,n=0,1,2,..., N where the constant mesh grading w = 1 is adapted from Stynes
et al. (2017). In the notation of Eq. (6.1), w = (1 + a)/(1 — @) matches that recommended in
Stynes et al. (2017). The values of a function p at the grid points are denoted by p;* = p(x;, t,)

for both uniform and graded meshes.

6.3 Numerical Model for Uniform Mesh in Time

Zaman et al. (2017a) developed the following numerical model for Eq. (6.1) using uniform meshes

in both space and time.
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n CZ(xi!tn)sz n
_Cl (xl._%, tn> Di=1 + [Cl (xi_%l tn) + Cl (xi+%' tn> + oantAt ] i

. 2
Ci(x; 1 tn) Piv1 = %Piﬂ_l + ¢ (be tn) G —C (xi_l' tn) H* +
2 a,At 2 2
—a. 0 0 1-a - o 0
&} (le. tn) — i —p) -G (Xi_l» tn) — 7 —pim1), (6.2)
2 2
where
Gl = —pl + o + E o 0l o - el T L. (6.3)
HY = —pF +pPa + 2 o o] = p = e T L (64)
and C, (x, t) = ’L—kT“ , (6.5)
Cz - p(,’th . (66)

6.4 Numerical Model for Graded Mesh in Time

The following numerical model is developed by Zaman et al. (2017b) for Eq. (6.1) using a uniform

mesh in space and graded mesh in time,

- <xi_%, tn) piti+ [C1 (xi_%, tn) +C; (xi%, tn> + Co(x;, t))AX’T(2 — a) (t, —

tn—l)a_l] pl?1L - Cl (xi+%' tn) pln+1 = CZ (xi' tn)AXZF(Z - a)(tn - tn—l)a_lp?_l +

(1-a)
G (xH_l' tn) (tn — tn—l)aGin - (xi_lf tn) (tn — tn—l)aHzn +Cy (xi_l_l' tn) (t )0; (tn —
2 2 2 n
(1-a)
tn-1)* (Pl =P + G (xi_; tn) e (= ta-) (7 = PL-0). (6.7)
where
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Gin = —(tp — th-1)"~ a(pl+1 _pl )

(tn=t;))" " =(tn—tjs1)"~ ; . ,
t2j=0 gl (tj41-t)) = ](pi]:11 ™ =l + ), (6.8)

HLTL = _(tn - tn—l)_a(p'n_l - pin—_ll)

(tn=t;) “=(tn-tjr) "] , ,
vyl (tm_t,.)m L™ =l o 4010, 6.9)

and C; and C, are defined by Eq. (6.5) and (6.6), respectively.

6.5 Analytical Solution

To find the analytical solution, Zaman et al. (2017a, 2017b) made Eq. (6.1) linear, by considering
C; = (pk/u)T* =1, and C, = p¢pc; = 1. The Riemann-Liouville definition for the fractional-

order derivative is utilized.

For the initial condition p(x,0) = sin(mx), and boundary conditions p(0,t) = p(1,t) = 0, the
analytical solution of Eq. (6.1) is found as

p(x,t) = E;_ (-2t sin(mx) . (6.10)

For the initial condition p(x,0) = x(1 — x), and boundary conditions p(0,t) = p(1,t) = 0, the

analytical solution of Eq. (6.1) becomes

PO, t) = Tiea s [1 = (DX By o (—k?m2t1) sin(kx) . (6.11)
6.6 Comparison of Errors found from Uniform and Graded Meshes
Figures 6.1 through 6.6 compare the errors found using uniform and graded meshes for different

values of fractional order, a, and for different number of grid-points in space for the linear model

problem presented above. Figs. 6.1 to 6.3 are for initial condition, p(x,0) = sin(mx), and Figs.
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6.4 to 6.6 are for initial condition, p(x, 0) = x(1 — x). It is found that in all cases, the graded mesh
gives smaller errors than the uniform mesh, except when @ = 0, where the errors for the uniform
and graded meshes are identical, since in this case, the graded mesh coincides with the uniform
mesh. We note that, in the Figures 6.1 through 6.6, the shape of the error lines found for &« = 0.75
and a graded mesh are different from the other error lines, depicting that the error reaches a
minimum value at N, = 6400, and then starts to increase. It seems roundoff error starts to
dominate beyond N, = 6400. The size of the first-time step falls to about 1072¢ for N, = 6400.
However, Fig. 6.7 shows that for « = 0.75 in graded meshes, the size of the first-time step is
smaller than 107® for N, = 200. With a time-step that small, any numerical accuracy in the
solution for @ = 0.75 should not be expected. This is true for that a and N;, for which the size of

the first-time step is smaller than 10716,

Tables 6.1, and 6.2 compare order of accuracies of the numerical models developed using uniform
and graded meshes. The Tables show that the numerical model developed using uniform meshes
is (1 — a)th-order accurate in time, and that developed using graded meshes is second-order

accurate in space, and first-order accurate in time.
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Figure 6.1 Comparison of the error values for uniform and graded meshes for initial condition

p(x,0) = sin(mx) (N, = 50).
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Figure 6.3 Comparison of the error values for uniform and graded meshes for initial condition
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Figure 6.5 Comparison of the error values for uniform and graded meshes for initial condition

p(x,0) = x(1 — x) (N, = 100).
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Table 6.1 Comparison of order of temporal accuracies for uniform and graded meshes for initial
condition, p(x, 0) = sin(mx).

Value of fractional Order of temporal accuracy
order, a N, =50 N, =100
Uniform mesh | Graded mesh | Uniform mesh | Graded mesh

0 0.9946 0.9946 1.0256 1.0256
0.10 0.8889 0.9270 0.9042 0.9522
0.25 0.7496 0.9269 0.7535 0.9462
0.50 0.5006 0.9551 0.5009 0.9681
0.75 0.2501 1.0629 0.2502 1.0705

Table 6.2 Comparison of order of temporal accuracies for uniform and graded meshes for initial
condition, p(x, 0) = x(1 — x).

Value of Order of temporal accuracy
fractional N, =50 N, =100 N, =200
order, @ | Uniform | Graded | Uniform | Graded | Uniform | Graded
mesh mesh mesh mesh mesh mesh
0 1.0195 0.9946 1.0256 1.0256 1.0337 1.0337
0.10 0.8890 0.9273 0.9044 0.9524 0.9083 0.9589
0.25 0.7497 0.9274 0.7536 0.9465 0.7546 0.9515
0.50 0.5006 0.9555 0.5009 0.9683 0.5010 0.9716
0.75 0.2501 1.0464 0.2502 1.0535 0.2502 1.0552

6.7 Determination of the Values of a@ and T from Experimental Data

Iaffaldano et al. (2005) designed an experiment to measure volumetric flux through a porous layer
while keeping the pressure difference constant between the boundary surfaces. Fig. 6.8 shows the
experimental device used in their study. Water-saturated sand is used in the cell for the medium.
A cylinder-shaped metal box of height 11.6 cm with surface’s inner diameter of 10.1 cm was used
to keep the sand in. Dry sand and water were slowly and alternately filled in the empty cell to
obtain the condition of saturation. The initial pressure value for water inside the cell is attained by
keeping water-taps R and R; switched on and R}; switched off, until the height of the water column,
H, is obtained. After attaining the same pressure as the initial pressure through the medium, water-
tap Ry is opened. This results in atmospheric pressure on the right boundary plane. Since the
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pressure on the left boundary plane is atmospheric pressure plus the pressure due to the water
column of height H, the pressure difference is the pressure due to the water column of height H,
and water starts to flow through the porous medium and runs out from R;;. The height of the water
column is always H because the surplus water from the water-tap R flows out from the output gate,
U. Water flow at the right boundary surface was measured by storing water in a small container of

known volume, and measuring the relative time interval.

Five different samples of sand were used as the porous layer. The authors presented their
experimental results by plotting volumetric flux as a function of elapsed time. The plots that they
presented in their article are redrawn here in Figs. 6.9 to 6.13. Their experimental results support
that permeability may decrease due to rearrangement of the grains and consequent compaction,

which was qualitatively shown by Elias and Hajash (1992).
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Figure 6.8 Experimental device used in experiment of laffaldano et al. (from Iaffaldano et al.

(2005))
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Figure 6.9 Flux results from first experiment. (Redrawn from laffaldano et al. (2005))
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Figure 6.10 Flux results from second experiment. (Redrawn from laffaldano et al. (2005))
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Figure 6.11 Flux results from third experiment. (Redrawn from Iaffaldano et al. (2005))
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Figure 6.12 Flux results from fourth experiment. (Redrawn from Iaffaldano et al. (2005))
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Figure 6.13 Flux results from the fifth experiment. (Redrawn from Iaffaldano et al. (2005))

Iaffaldano et al. (2005) used the empirical Fair and Hatch law (1993) to calculate the permeability,
k (Bear, 1972), and found k=26 darcy. They used water of 19°C as the fluid in all of their
experiments. The density and viscosity of water at 19°C are 0.998408 g/cc and 1.0266 cp,
respectively. A pressure difference was maintained by exerting an additional pressure equivalent
to 212 cm height of water column (0.20485 atm) at one end. The mass of dry sand used in each
experiment was around 1550 g. The density of sand used was 2.4 gcm™. From this information,

the porosity in the sand medium within the cylinder-shaped metal box can be calculated as 30.51%.

Hossain et al.’s (2008) diffusivity equation (Eq. 6.1) is based on the following equation that relates

volumetric flux to pressure gradient,

_ _kmapd® op
u= =T G- (6.12)

Using the Riemann-Liouville definition of the fractional-order derivative, Eq. (6.12) can be written

as
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1 -a)3t=0)

_ _koq
u=— T e e
n-1 g_z(t=tf+1)_g_z(t=t1') 1-a 1-a
+2750 — =) = — 1) 3. (6.13)
Lj+1=tj

Since the pressure gradient is kept constant in the experiment, Eq. (6.13) can be written as

_ _kG-o 1% op. _
= O 7 o (t=0). (6.14)

Substitution of the permeability, viscosity, and pressure gradient with their numerical values in

Eq. (6.14) gives

(1-a) T

u = (0.44726) EOEYTRTE (6.15)

Taking the logarithm of both sides of Eq. (6.15), we obtain
(1-a)

log(w) = log (0.44726F(2—_"‘00T“) — alog(ty) (6.16)
Eq. (6.16) can be written as,

log(u) =log(Z) — alog(t,), (6.17)
where

— (1-a) na
Z = 0447267~ T* (6.18)

We calculate the values of a and Z with least-squares regression analysis using the data obtained

from the experiments. Using the formula of least-square regression analysis, we get
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_ NI (logw)+log(tn))j-Xj5, log); TN log (tn);

B NI, (log (tn) )P~ [T, log (tx); 12 ’ (6.19)
where N is the number of data points,
and Z = 107, (6.20)
where

2L 1log) [T 1 log(tn) 12 —X ), log(tn) ; X )= (log(w)+log(tn)) ;
N NI (og(tn) )2~ 2, log(tn); 12 ' (6.21)

Eq. (6.18) gives,

T = [M](i) ) (6.22)

0.44726(1—a)

Calculation for @ and T gives the following values tabulated in Table 6.3. The average values of
a and T are found to be around 0.05 and 730 seconds, respectively. laffaldano et al. (2005)
calculated the value of fractional order in their model to be 0.53. The Caputo fractional derivative
was used in their article, whereas we used the Riemann-Liouville fractional derivative. In addition,
the mathematical models used in Iaffaldano et al.’s (2005) article and in this research work are not
identical. Hence, the value of fractional order calculated in Iaffaldano et al.’s (2005) work is

different from that calculated in this article.

Table 6.3 Computed values of & and T

Experiment No. | Fractional order, @ | Relaxation time, T (seconds)
1 0.050348217 2020.30
2 0.023771495 0.40
3 0.038373096 55.10
4 0.034639443 14.50
5 0.075865421 1559.60

137



6.8 Simulated and Experimental Flux Values

Figs. 6.14 through 6.18 show the simulated flux values for @ = 0.05 and T = 730 seconds. The
pressure values in each grid cell in each time step, that are required to calculate flux values, are
computed using the numerical model that was developed using graded meshes. The length of grid
cell was taken to be 0.02 cm. The length of n-th time step is calculated as, At,, = t,, — t,,_;, where
t,=T(n/N)*,n=0,12,...,N;,andw = (1 + a) /(1 — ). Figs. 6.14 through 6.18 compare the
simulated flux values with those obtained from the experiments. It is found that the simulated
values are very close to experimental values. The figures also present the flux calculated from
Darcy’s law without the fractional derivative terms, showing the improved physical accuracy

gained by including the memory term.
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Figure 6.14 Flux values from the first experiment, simulation, and Darcy’s law for @ = 0.05.
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—@— Flux from second experiment —@— Flux from simulation (¢=0.05) —®—Flux from Darcy's law
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Figure 6.15 Flux values from the second experiment, simulation, and Darcy’s law for ¢ = 0.05.
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Figure 6.16 Flux values from the third experiment, simulation, and Darcy’s law for & = 0.05.
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—@— Flux from fourth experiment —®— Flux from simulation (¢=0.05) —®— Flux from Darcy's law
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Figure 6.17 Flux values from the fourth experiment, simulation, and Darcy’s law for & = 0.05.
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Figure 6.18 Flux values from the fifth experiment, simulation, and Darcy’s law for @ = 0.05.
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6.9 Optimum Number of Time Steps

The value of the fractional order, @ = 0.05, has been found in the previous section. In section 6.6,
the closest value of a that we calculated error for is 0.10. Tables 6.4 and 6.5 show the error values
computed using graded meshes for the initial conditions p(x,0) = sin(mx) and p(x,0) = x(1 —
x), respectively. The discretization method used in the numerical model is second-order accurate
in space, and first-order accurate in time. Hence, the relationship between number of grid-points
in space and number of steps in time should be written as N, = SN2Z. The best value of S, the

proportionality constant between N, and N2, can be found looking at the computed error values.

For N, = 50, the rate of change in error becomes insignificant beyond N; = 6400. The optimal
number of time steps in this case can be taken in the range of 3200-6400. Hence, the optimal value
of B for N, = 50 lies in the range of 1 to 3. Similarly, the optimal range of number of time steps
in unit time for N, = 100 is 6400-25600. Therefore, the ideal value of f for N, = 100 is in the
range of 1 to 3.

Table 6.4 Error values found using graded meshes for initial condition p(x, 0) = sin(mx).

Total length of space = 1, Total time =1, « = 0.10
No. of time steps N, =50 N, =100 N, =200
200 4.604229¢-04 4.563393e-04 4.553187e-04
400 2.392911e-04 2.352417e-04 2.342296e-04
800 1.255623e-04 1.215300e-04 1.205222¢-04
1600 6.703984e-05 6.301615e-05 6.201050e-05
3200 3.695421e-05 3.293490e-05 3.193034e-05
6400 2.151257e-05 1.749547e-05 1.649146e-05
12800 1.360172e-05 9.585728e-06 8.582000e-06
25600 9.556525e-06 5.541100e-06
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Table 6.5 Error values found using graded meshes for initial condition p(x,0) = x(1 — x).

Total length of space = 1, Total time =1, « = 0.10
No. of time steps N, =50 N, =100 N, =200

200 1.167251e-04 1.156942¢-04 1.154378e-04
400 6.065559¢-05 5.963321e-05 5.937896e-05
800 3.182051e-05 3.080240e-05 3.054921e-05
1600 1.698451e-05 1.596855e-05 1.571590e-05
3200 9.358771e-06 8.343898e-06 8.091521e-06
6400 5.445493e-06 4.431169¢-06 4.178929¢-06
12800 3.441040e-06 2.426993e-06 2.174823e-06

25600 2.416238e-06 1.402331e-06 1.150195e-06
51200 1.893230e-06 8.793942¢-07

102400 1.626758e-06 6.129576¢ -07

6.10 Conclusions

Error values calculated for two numerical models developed using uniform and graded meshes for
a memory-based diffusivity equation have been compared. It has been found that the numerical
model developed using graded meshes gives smaller errors compared to that using uniform
meshes. The value of fractional order used in the mathematical model has been computed using
experimental data collected from literature. The value of fractional order and relaxation time are
found to be around 0.05 and 730 seconds respectively. Optimal number of time steps in unit time
for this value of fractional order and for different number of grid-points in unit length has been
estimated by error analysis. The range of the optimal number of steps in unit time is found to be
3200-6400 for N, = 50 and 6400-25600 for N,, = 100. The study recommends utilizing graded

meshes instead of uniform meshes for better accuracy.
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7.1 Abstract

Modeling and simulation of porous media flow is crucial to overcome the technological challenges
associated with petroleum production. Numerous models have been developed over more than the
past fifty years. Continuum models are the simplest among all the models that are based on Darcy’s
law, relating the pressure gradient in the direction of flow to the volumetric flux of fluid, through
the medium permeability and fluid viscosity. Another approach is pore-scale modeling, which
takes the microscopic description of the pore geometry into consideration. These models cannot
accurately represent the characteristics of fluid flow, however, as they do not consider the effects
of history of the rock and fluid, though fluid flow depends on this history. This limitation can be
148



addressed by the inclusion of ‘memory’ in the fluid-flow model. The parameter ‘memory’ stands
for the effects of history of the rock and fluid. This idea is relatively new and growing in petroleum
engineering. Several models that incorporate memory have been developed for different purposes,
but there is no general mathematical model developed yet that will represent fluid flow for all type
of rocks, fluids and flow phenomena. In this paper, such a general mathematical model is proposed.
The model is generalized and valid in the sense that all other established memory-based models
can be derived from this model. Another strength of this model is its consideration of both time
and space memory. The model can be used to develop a small-scale memory-based reservoir

simulator.

Keywords: Porous medium, memory, mathematical modeling, numerical modelling, Riemann-

Liouville definition, Caputo definition.

7.2 Introduction

Fluid flow through porous media is studied in many branches of science, e.g., petroleum
engineering, chemical engineering, and hydrogeology. It is important because it is associated with
some of the most important technological challenges such as groundwater management, reduction

of concentration of greenhouse gases in the atmosphere, and petroleum production.

Terzaghi (1923 and 1936) developed the basic equations for fluid diffusion in porous media in
addition to significant contributions from other researchers (Biot, 1941, 1956, 1956, and 1973;
Biot et al., 1957; Boley et al., 1962; Nowacki, 1964; McNamee ef al., 1960; Booker, 1974; Rice
etal.,1976; Bell et al., 1978; and Roeloffs, 1988). These authors formulated equations to represent
the flow of fluid through elastic porous media and obtained solutions for the equations in many

casces.

Generally, the empirical Darcy law is used to study diffusion problems in porous media. The law
states that the fluid flux is proportional to the pressure gradient. Many authors extended Darcy’s
law in different ways to accurately represent the fluid flow through porous media and obtained

solutions in many interesting cases.
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Different authors have modified Darcy’s law by incorporating the memory concept (Caputo, 1999,
2000, and 2003; Caputo et al., 2004; Hossain et al., 2008). In this paper, we review the Caputo
(1999, 2000, 2003), Caputo et al. (2004), and Hossain et al. (2008) models for fluid flow, modify
Darcy law, and propose a general diffusivity equation. The modified Darcy law presented in this

paper is more general than those existing in the literature.
7.2.1 Darcy Equation

Darcy (1856) presented his experimental results by the equation
Q=uA=kL—A(H+L—HO), (7.1)

where u is the superficial fluid velocity, k is defined as the hydraulic conductivity, L is the height
of the sand layer, A is the cross-sectional area of the sand layer, and H and H,, are the height of

liquid in manometer from the top and bottom of the sand layer, respectively.

The hydraulic conductivity, k, is, in fact, fluid dependent besides being affected by the solid matrix
of the porous medium. The effects of fluid viscosity are not considered in Darcy’s law. Darcy’s
law is said to be valid for incompressible and isothermal creeping flow of a Newtonian fluid

through a relatively long, uniform, and isotropic porous medium of low hydraulic conductivity.
7.2.2 The Hazen-Darcy Equation

Hazen (1893) was the first to include the effect of viscosity indirectly in the Darcy equation. In his
experiment, he altered the temperature of the water prior to entering the filter and observed the
influence of water temperature on the hydraulic conductivity in the Darcy equation. The
experiment was otherwise performed under isothermal conditions. He modified the Darcy equation

in the form

u= () ko (1.2
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where T is the water temperature in degrees Fahrenheit, ks is the reference hydraulic conductivity
value measured with water flowing isothermally through the permeable medium at a temperature
equal to 50°F, and AP is the pressure difference. Here, the change in hydraulic conductivity with

temperature actually mimics the hydraulic conductivity dependence on viscosity.

Fluid viscosity was incorporated directly as an individual component in the Darcy equation in 1918

by Kriiger, in 1920 by Zunker, and in 1927 by Kozeny.

Ingham et al. (1998) refer to the equation

u=(3)Z, (7.3)

T

as the Hazen-Darcy equation to differentiate it from the original equation (Eq. (7.1)) proposed by

Darcy. In this equation, K represents the permeability and u is the dynamic fluid viscosity.

There is a lack of experimental work validating the Hazen-Darcy equation for non-isothermal flow,

which is typical in a porous medium (Ingham ef al., 1998).
7.3 Memory- Based Modified Darcy’s Laws

Permeability is considered constant with time in the classical form of Darcy’s law. However, due
to rock and fluid interaction during fluid flow, both rock and fluid properties change with time.
Consideration of this variation is necessary to accurately represent fluid flow through the porous
medium. Caputo (1999) modified Darcy’s law by introducing a memory formalism to simulate the
effect of a decrease of the permeability in time. He proposed the following equation for volumetric

flux,

Caa g
U= NP oo (7.4)
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Cad

with 0 < a < 1. Here, p represents pressure, and denotes the Caputo fractional derivative

Cota

with respect to time t of order a and it is defined by

n

Co%pxt) _ 1t g1 d™D(s)
e = o) J,@—9) ——ds, n—1<a<n, (7.5)

where " is the gamma function (Kilbas ef al., 2006, pp. 91, Eq. 2.4.1). n is defined in this model

as the ratio of the pseudopermeability of the medium with memory to the fluid viscosity.

2% ap . . . . .
The term ﬁﬁ in the above equation includes the pressure gradient at the current time as well as

all the pressure gradients of the previous time steps. Here, fluid flux does not depend only on the
present pressure gradient, but on the history of the pressure gradient as well. This term arises in
the equation to represent permeability variation with time depending on the previous pressure
gradients. This equation uses two parameters, namely a and 7, to describe the flow of the fluid,
instead of the single parameter ‘permeability’ as in Hazen-Darcy equation. Eq. (7.4) infers that ‘K’

in Eq. (7.3) is not constant but varies with time.

Caputo (2000) introduced a memory formalism that operates on both of flow and pressure gradient
to modify Darcy’s law. He proposes that permeability changes with time depending on the
previous pressure gradient and flow. To simulate the memory formalism, he proposed the

following equation to substitute for the classical Darcy’s law,

Coma Canz \ ap
<y+€m)u—<C+dm)a, (76)
Comip(x,t) Canz . ..
where 0 <n; <1,0<n,<1,and —¢ P and - Py denote the Caputo fractional derivative

with respect to time t of order n; and n,, respectively, defined by Eq. (7.5).

Caputo (2000) also took into account the change in physical properties of the fluid due to its

temperature variations and physical or chemical interactions with the matrix. He represented the
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relation between the variation of the mass of fluid per unit volume, relative to its value in the
undisturbed condition, and the pressure in the following form, to consider that the fluid and the

matrix may be subject to changes in their physical properties,

Caml

Camz
(a+ brmme)p = (a+ Beoems) o (1.7

where p, is the variation of the mass of fluid per unit volume in the porous medium from the

undisturbed condition, 0 < m; < 1,and 0 < m, < 1.

These memory formalisms imply the wuse of twelve free parameters, namely,
ab,cd, apB,y, & my,myn, and n,. A very large number of different models can be selected to
describe diffusion with memory by assigning different values in these free parameters. Eq. (7.6)
considers the history of the pressure gradient and fluid flux. Eq. (7.7) considers the history of
pressure and the variation of the mass of fluid per unit volume, relative to its value in the
undisturbed condition. Assigning appropriate values to twelve free parameters, one can consider

or neglect the effect of any of these histories.

Hossain et al. (2008) proposed the following relationship between the fluid velocity and pressure

gradient

Caa

o (7.8)

U= "NCsaox’

with 0 < a < 1. They defined 71 as

n:ﬁT“. (7.9)

The model proposed by Caputo (1999) and Hossain ef al. (2008) look identical, but the models are

different due to the dissimilar definitions of 7 used in them.
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The above models consider only time memory, and do not incorporate space memory. To consider
the observed deviations of the flow from those implied by the classic diffusion equation, Caputo

(2003) introduced a space memory formalism in the classical Darcy’s law as

_ a b Conp ap
¢=-(:=)J, Am)pdn - B2, (7.10)

with 0 < n < 1. A(n) represents the weight of the fractional derivative of order n in the range

[a, b].

Here, the memory mechanism operates directly on the pressure rather than on the pressure gradient.
This equation considers the pressure over all the space that the fluid has passed through. Space
memory can be used flexibly to represent local phenomena, while time memory is more flexible

to represent variations in space (Caputo, 2003).

laffaldano et al.’s (2005) experiment, in which they measured fluid flux through a porous layer
with constant hydraulic pressure difference between the boundary surfaces, shows that fluid flux
decreases over time, and that the volume of sand is decreased as well. Their experiment implies
that mechanical compaction occurring during diffusion causes flux variations, and that mechanical

compaction is caused by the permeability changes.

Giuseppe et al. (2010) conducted experiments to determine the flow rate through a uniformly
packed column of porous media. They designed the experimental setup on purpose to determine
the memory parameters appearing within Eqs. (7.6) and (7.7). They conclude that memory largely
influences the experiment. Experimental data also show that mechanical compaction decreases
permeability and, consequently, flux.

7.4 Memory- Based Modified Diffusion Equations

The mathematical model-
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Cavpxt)  92p(xt) A
T T oz = g(x,t) (7.11)

where §(x, t) is a given source term, is known as a subdiffusion wave equation when 0 <y < 1

and as a diffusion wave equation when 1 <y < 2.

The dynamics of physical processes involving anomalous transport mechanisms can be
represented by this model (Jin ef al, 2016). The subdiffusion equation can describe thermal
diffusion in media with fractal geometry (Nigmatulin, 1986), and highly heterogeneous aquifers
(Adams et al., 1992, and Hatano ef al., 1998). The diffusion equation can model the propagation

of mechanical waves in viscoelastic media (Mainardi, 1996).

Applying conservation of mass, we have

) d .
5 (PP) +—(pw) = q, (7.12)

where p is the density of the fluid, ¢ is porosity of the porous medium, and g is the strength of the

source.
Writing
9 - %
2 (pg) = pc. 2L, (7.13)

where c; is the total compressibility, yields

a a Caa rp -
p¢cta—’t’ - ;(pn Tora (ﬁ)) =q. (7.14)

Incorporation of Caputo’s (1999) model (Eq. (7.4)) into Eq. (7.12) also gives the same diffusion
Eq. (7.14) with a different definition of 1.
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7.5 Generalized Darcy’s Law and Diffusion Equation

Caputo (1999, 2000, 2003), Caputo et al. (2004), and Hossain et al.’s (2008) models give the idea
that permeability and fluid properties might depend on the history of flux, pressure gradient, and
space memory. To account for the observed deviations of the flow from those implied by the
classic diffusion equation, we propose the following equation to substitute for the classical Darcy’s

law
Cor—1 RLga\ 5 RLyp
<e+fcat]/ 1)u:_<a+bRLata)£_<C+dW>pa (715)
with0<a<1,0<f<land0<y<2.

RLgap(x,t) J RL3E  ap(x,t)
RLgra Al RLatp(

Here, ) denote the Riemann-Liouville fractional derivatives with

respect to time t of order @ and S, respectively, defined by (Kilbas et al., 2006, pp. 70, Eq. 2.1.5)

RLB“p(x,t)
RLyta F(n a) dtnf (t

S p(s)ds, n—1<a<n, (7.16)

Cor—1y(xt)

oy denotes the Caputo fractional derivative with respect to time t of order (y — 1) and it

is defined by Eq. (7.5).

Here, we have introduced the memory formalism on the fluid flux and pressure gradient. We have

also incorporated space memory, operating on the pressure.

The Riemann-Liouville definition has been used for two fractional-order derivatives, and the
Caputo definition has been used for another fractional-order derivative in Eq. (7.15). The
definitions are selected based on the solutions allowed by the model for the fractional-order
derivatives. Solutions of models having only one fractional derivative term and not mixed with the

spatial derivatives can be derived via separation of variables and the Laplace transform. If the
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Riemann-Liouville derivative is used there, the only solutions found are constant in time. If, on
the other hand, the Caputo derivative is used, the solutions are found in terms of the Mittag-Leffler
functions, and we get solutions for different time. The opposite happens when the model contains
a first derivative in time and the fractional derivative mixed within the spatial derivatives. In this
case, the Caputo derivative supports only a constant-in-time solution, while the Riemann-Liouville

derivative gives solution in terms of the Mittag-Leffler functions.

To consider the relation between the variation of the mass of fluid per unit volume, relative to its

value in the undisturbed condition, and the pressure, we take the equation from Caputo (2000),
. CaS Ca{
(9 +J _Cata) p= (l + m_Catg) P, (7.17)
with0<4§6§<1,0<50<1.

This memory formalism implies the use of fifteen free parameters, namely,
a,b,cdef,g,j,,Lma/p,v, 6 and (. These parameters will allow a very large number of
different models to selectively describe diffusion with memory by assigning different values in
these free parameters. Eqs. (7.12), (7.15), and (7.17) must be solved collectively to find the
pressure at different grid-points at different times. However, an analytical solution procedure

would be very difficult.

To numerically solve Eq. (7.15), we simplify the equation considering e = 0 and f = 1 and we

get

Cay—1 RL;a RLAB
M=—(a+b a)a—p—<c+d a)p. (7.18)

Cotr—1 RLyta | ox RLyxB

Rearranging Eq. (7.18) gives

Cal—y

_ RLaa ap RLaB
u——m[aﬁ‘bw aﬁ' C+dw p] (719)



Also, we consider Eq. (7.13), (and not Eq. (7.17)) and take p to be a constant. Substitution of Eq.
(7.13) and (7.19) in Eq. (7.12) yields

ap 9 Cal—Y(u) RLaa ap RLaﬂ N
p(ﬁCtE - a(p [opyE— [(Cl + b RLata)E + (C + dw> p]) =q. (720)

Eq. (7.20) can be written as

Corp(x,t) @ RLaa\ ap RLak _
Cotr | ox ( + RLata) % + (C +d RLaxg) P] =49, (7.21)

Cor-1(a)
Cotr-1°

where w = ¢¢;, and G =

Ifa=c=d=0, a=0,w=1, andb =1, then this gives the time-fractional diffusion or
subdiffusion equation. For y = 1,anda = ¢ = d = 0, this equation is converted to Caputo’s

(1999) and Hossain et al.’s (2008) diffusion Eq. (7.14).

Again, for ¢ = d = 0, the generalized Darcy’s law (Eq. (7.15)) converts to Eq. (7.6). For y =

1,and a = 0, Eq. (7.15) considers only space memory.

7.6 Conclusions

Models are generally developed for specific flow phenomenon. Developing a general equation
instead of developing mathematical equation for each specific case is worthy, particularly when
the general equation can be simplified easily for different cases. However, it is a bigger challenge
to develop a general mathematical model that will represent fluid flow for all types of rocks, fluids,
and flow phenomena. In this paper, an attempt has been made to meet this great challenge. A
general memory-based mathematical model for flow through porous media is proposed. A small-
scale memory-based reservoir simulator, that is called an ‘emulator’ by Islam et al. (2016), might
be developed based on this generalized model. Numerical experiments using that emulator would

give the value of different parameters used in the model for different types of rocks, fluids and
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flow phenomenon. Though simulation based on this memory approach is at an initial stage,
research is on going to overcome the challenges and to develop a small-scale emulator. This small-

scale emulator will be the basis for a future complete emulator.
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Chapter 8

A Generalized Model and Dimensionless Number for Fluid Flow in Packed

Beds and Porous Media
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8.1 Abstract

A generalized semi-empirical equation is proposed that portrays the flow of fluid in packed beds
and porous media. The new model is based on the fact that flow regimes in porous media are not
simply laminar and turbulent. In fact, the characteristic flow regime for porous media lies in-
between. The proposed model calculates total pressure loss from viscous energy loss, local loss,
and loss due to turbulence following the technique of compact model development from
asymptotic solutions. It links the pressure drop along a porous medium to the superficial velocity.
The non-spherical particle diameter is redefined to more accurately represent the wall surface area
within the pore space. The model gives a new expression for the modified Reynolds number for
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fluid flow through porous media. The generalized model is reduced for each flow regime. The
most significant new finding is that the proposed model portrays all the flow regimes that occur in
porous media. The viscous term is dominant at very low flow rates, turbulence and inertial loss
occur at very high flow rates, while the viscous and inertial loss occur in-between, which is the
central flow regime for porous media. The ratio of pressure gradient to superficial fluid velocity
varies linearly with superficial fluid velocity in both cases of characteristic and turbulent flows,
but the slopes in the two cases are different. This new equation is also used for modeling the
physical properties of random porous media. The model provides an innovative way to calculate
tortuosity of a porous media, the diameter of equivalent volume sphere, and the head-loss
coefficient. The novelty of the new model is in the ability to describe any flow phenomenon for

any type of fluid through packed beds and porous media.

Keywords: Packed beds, porous medium, superficial velocity, pressure drop, flow regime,

tortuosity.

8.2 Introduction

Theoretical analysis and experimental investigation have been carried out for many years to study
the pressure loss accompanying the flow of fluids through columns packed with granular material
and underground porous media. Numerous factors come into consideration to determine the
pressure drop in porous media; however, the effects of some factors are very difficult to quantify.
Different authors have proposed different models making simplifying assumptions to correlate the
factors. Some of the models are applicable only at low fluid flow rates, while others are useful at
high fluid flow rates. There are also models that are proposed for both low and high fluid flow

rates.

Pressure drop through a granular bed is known to be proportional to the velocity of fluid at low
flow rates and to the square of the velocity at high flow rates. Osborne Reynolds (1900) first
expressed the pressure gradient as sum of two terms. He expressed the terms as proportional to the
first power of the fluid velocity and to the product of the density of the fluid with second power of

its velocity, respectively, which is written as
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ATp = au + bpu? . (8.1

Blake (1922) first successfully established the dependency of the pressure drop on porosity. He
obtained two dimensionless groups, which are [{Ap ge dy (1)3} /{pu’L (1 —¢)}] and
[{dppu}/ fu(1 - d))}] Burke and Plummer (1928) found the viscous energy loss to be
proportional to [(1 — ¢)/$?] and kinetic loss to[(1 — ¢)/$3]. However, they did not combine

these two losses to calculate the total pressure drop. Kozeny (1927) found the pressure loss to be
proportional to [(1 — ¢)?/¢3] which is different by a fraction of [(1 — ¢)/¢] from the factor
derived by Burke and Plummer (1928) for viscous flow. Leva et al. (1947) noted the pressure drop
to be proportional to [(1 — ¢)?/¢3] at lower flow rates. They also pointed out that the pressure
drop is proportional to [(1 — ¢)/¢$3] at higher flow rates. Carman (1937) showed that the method
of Blake (1922) leads to the Kozeny (1927) equation at low fluid-flow rates and, due to this reason,
the Kozeny (1927) equation is also referred to as the Blake-Kozeny equation or as the Kozeny-
Carman equation. In addition, Carman (1937) showed that the method of Blake (1922) leads to the
Burke and Plummer (1928) equation for turbulent flows. Hence, the Kozeny (1927) model serves
the same purpose for porous media as the Hagen-Poiseuille equation does for circular pipes.
Similarly, the Burke-Plummer (1928) model is used for turbulent flows in porous media, such as
the Darcy-Weisbach equation for turbulent flow through a circular pipe. Models used for laminar

and turbulent flows through circular pipes and porous media are tabulated in Table 8.1.

Ergun et al. (1949) first realized that both viscous and kinetic energy losses would contribute to
total energy losses. They treated the total pressure losses as a sum of viscous and kinetic energy
losses, where viscous energy losses are proportional to [(1 — ¢p)?/¢3] and kinetic energy losses
are proportional to [(1 — ¢)/¢3]. In the same direction, Ergun (1952) proposed an equation
applicable for both laminar and turbulent flow, in which he added the Kozeny (1927) and Burke-
Plummer (1928) equations to calculate the pressure drop. The Ergun (1952) equation is widely

used by chemical engineers.
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Table 8.1 Models used for different types of flow through different medium.

Author Model Equation Parameters Type of flow | Type of Medium
Kozeny 150uu(1 — ¢)>L wo,dy, L Laminar flow | Porous medium
(1927) Ap = P
Burke- 1.75pu?(1 — @)L P, ¢, dy, L Turbulent Porous medium
Plummer p= d g3 flow
(1928) P
Hagen- Ap = 32uLu w,D,L Laminar flow Hollow
Poiseuille P="p2 cylindrical pipe
Darcy- 4 ff pLu? ff, p,D,L Turbulent Hollow
Weisbach Ap = “op flow cylindrical pipe
Ergun 150uu(1 — ¢)>L P, ¢, dpy, L Both laminar | Porous medium
(1952) Ap = 293 + and turbulent

1.75pu%(1 — ¢)L flow
d,p3

The Kozeny (1927) and Burke-Plummer (1928) models are two asymptotic solutions for pressure
drop in case of porous media flow at low and high superficial fluid velocities respectively. The
development of the Ergun (1952) model, by adding the Kozeny (1927) and Burke-Plummer (1928)
terms together and Osborne Reynolds’ (1900) way to express the pressure gradient infer that the
fluid flow system in porous media exhibits a smooth transition between the two asymptotic
solutions. There are no discontinuities and no sudden changes in slope within the transition region.
Yovanovich (2003) presented rules to develop a compact model combining such asymptotic
solutions. Development of a compact model simply by adding the asymptotic solutions, as Ergun
(1952) did to develop his model, is not the right way. Instead, the behaviour of the asymptotic
solutions must be examined and, based on their behaviour, proper rules should be followed to
combine the solutions to develop a compact model. For example, consider the parameter, 1, to
have two asymptotes corresponding to very small and very large values of the independent
parameter, y; Y = Yy = Coy™asy = 0,and Y = P, = Coox™asy » wory = 1. If Py > Yo,
the solution, 1, is concave upwards as y — 0, and the asymptotes are combined as P =

[l,l)é + ¢g;]1/ J, where j is a fitting parameter. If ), < ., the solution, 1, is concave downwards

as y — 0, and the asymptotes are combined as, 1/y = [(1/10)’ + (1/¥) 1M/,
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In packed beds, ‘local’ loss occurs between laminar and turbulent flow (Niven, 2002), which is
not considered in Ergun (1952) model. The ‘local’ loss occurs due to expansions, contractions, and
changes in flow direction within the packed bed (Niven, 2002). This loss can also be the result of
flow separation behind each solid particle. Deviation from laminar flow occurs from local losses,

rather than the onset of turbulence (Niven, 2002).

In this paper, local losses besides viscous and kinetic energy losses are considered and combined
following the asymptotic behaviour of total pressure loss with the superficial fluid velocity. The
proposed model is general, in the sense that the Ergun model can be derived from the model for
special cases. New parameters arise in the model. However, a novel way to find the parameters is
devised. Finally, a new dimensionless number for fluid flow through porous media has been

derived that is analogous to the Reynolds number for fluid flow through hollow media.
8.3 Theoretical Development of the Model

As the velocity approaches zero as a limit, the pressure gradient can be written as (Ergun, 1952)
lim—=au. (8.2)

When the velocity is large enough to achieve completely turbulent flow, where kinetic energy
losses constitute the whole resistance, the relationship between the pressure gradient and velocity

can be expressed as (Ergun, 1952)

lim ATp = bpu?. (8.3)

uU—oo

Equations (8.2) and (8.3) can be written together as

Ap _
w_ | Eo=awu-o 0

L Apy  _ 2
(Too—bpu,u—>oo
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Here, (Ap/L)o > (Ap/L)o as u — 0 and the solution (Ap/L) is concave upwards. Hence the
correct way of combining the asymptotes, (Ap/L), and (Ap/L), would not be the direct addition
of these terms that was done in Ergun et al. (1949), and Ergun (1952). Instead, the following
manner (Churchill ez al., 1972; Kraus et al., 1983; Churchill, 1988; and Yovanovich, 2003) is used

to combine the asymptotes

B p(22)” 4 (L)

L—[(L)O+ ) s (8.5)
where the parameter, w, is a fitting parameter.

The Hagen-Poiseuille equation is applicable for laminar flow through hollow cylindrical pipes. To
make the equation fit for porous media at lower velocities, its parameters should be replaced by
expressions to retain the insight of the original equation. To this purpose, the superficial fluid
velocity or volumetric flux, u, in the Hagen-Poiseuille equation is replaced by the mean tortuous
velocity, u;, which is defined as Tu/¢. The pipe length, AL, is replaced by the actual flow length
through a porous bed, TL, and the pipe diameter, D, is expressed in terms of the hydraulic radius,
ry. The diameter of a particle of arbitrary shape and the diameter of the equivalent-volume sphere
are redefined incorporating a fitting parameter, A. The hydraulic radius is expressed in terms of the
diameter of the equivalent-volume sphere. Replacement of the parameters in the Hagen-Poiseuille

equation yields

Apy 72ut?u(1—¢)?
(L 0o — ¢3d5 s (8'6)

which represents the viscous pressure loss during the fluid flow through porous media.

Similarly, the parameters in the Darcy-Weisbach equation are replaced with analogous porous
media parameters to calculate the pressure drop due to turbulence in packed beds and porous
media. Substitution with the analogous porous media parameters in the Darcy-Weisbach equation

gives Eq. (8.7), representing the pressure loss due to turbulence,
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_ 3fpTiulL(1-¢)

(Ap)e = = 5o (8.7)
Furthermore, local loss in porous media can be expressed as
T2u?
(P2 = PKL 55 (8.8)

Both local and turbulent losses are proportional to u? when all the other parameters are kept
constant. Hence, the local losses are additive with the turbulent losses. The total pressure drop due

to local and turbulent losses can be written as

Apy  _ 3fppTul(1-9) | pKTPu?
(Do == 25a 2971 (8.9)
Substitution of Egs. (8.6) and (8.9) into Eq. (8.5) yields
Ap 72ut?u(1—¢)? 3fppru?(1-¢) | pKpt?u?
T g )t 7o) 1Y (8.10)

Eq. (8.10) represents the generalized equation for total pressure drop during flow through porous

media. The equation can be written as
(ATp)W =e"u" + ({ +mWu, (8.11)

where

_ 72ut*(1-¢)*

peroaal (8.12)

_ 3fppT3(1-9)
ged3de ’

¢ (8.13)
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_ pkpriu?

=g (8.14)

8.4 Significance of the Proposed Generalized Model

The proposed generalized model combines viscous and turbulence pressure losses using the proper
way of developing compact models, instead of simply adding the pressure losses. In addition, the
new model incorporates local losses that occur due to expansions, contractions, changes in flow
direction within the packed bed, and flow separation behind each solid particle. For these reasons,
the new model is more theoretically sound than the widely used Ergun (1952) model. The new
model also has the flexibility to represent different flow phenomena through porous media, due to

the large number of possible values of the fitting parameter, w.
8.5 Flow Regimes for Porous Media

We divide the flow regimes for porous media into three regions. One is the laminar flow region,

the second is the intermediate flow region, and the third is the turbulent flow region.

The laminar flow region is defined as the region in which pressure loss is proportional to the

superficial velocity. For this flow region, Eq. (8.11) becomes

A
—=eu. (8.15)
The intermediate flow regime begins when local losses start to arise. In this flow regime, pressure
drop deviates from being proportional to the superficial velocity. Here, the pressure loss occurs

due to both viscous and local loss. For this flow regime, Eq. (8.11) becomes
AD\w w,,w w, 2w
(T) = e"u" +nWu". (8.16)

Local losses and turbulent loss occur in the turbulent flow region, but viscous loss is negligible

here, giving
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ATp = ({ +nu?. (8.17)
8.6 Calculation of Different Parameters from the Pressure Loss and Superficial Velocity

The fitting parameter, w, can be determined by experiment, making fluid flow through a porous
bed and measuring the volumetric fluid flux and pressure drop for different flow regimes. Flow
regimes will be identified roughly by plotting Ap/L vs. u and drawing asymptotes through the low
velocity and high velocity portions. Experimental data at low velocity (or the laminar flow regime)
can be taken and, again, Ap/L vs. u can be plotted. This will yield a straight line through the origin

with slope €.

Then, data for high velocity (or the turbulent flow region) can be used to plot Ap/Lu vs. u. This
will also yield a straight line that goes through the origin with slope ({ + 7).

Data for the intermediate flow region can be used to calculate the values of ¢ and 1. The best way
to interpret Eq. (8.16) would be to plot (Ap/L)¥ /u?” as a function of u™". The resulting plot
would be a straight line passing through the point (0,n") with slope €". From the intercept, ",
the value of 7 can be determined. From (¢ + 1) and 7, { can be calculated. 7, d, and K; can then

be determined from €, { and 1. Once d,, is known, then A can be determined by d,.
8.7 Development of an Expression for Modified Reynolds Number

At the onset of turbulent flow, the viscous pressure drop and turbulent pressure drop are equal for
flow through a circular pipe. Therefore, an expression for the Reynolds number can be developed
by equating the Hagen-Poiseuille and Darcy-Weisbach equations. The intermediate flow regime
lies between the laminar and turbulent flow regimes in case of flow through a porous bed. Though
the viscous pressure drop cannot be equated to the turbulent pressure drop in this case, we can use
the same method to find an appropriate group for the modified Reynolds number. It would be
useful to determine such an expression for the modified Reynolds number rather than using the

conventional expression for the Reynolds number since the expressions of viscous and turbulent
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pressure drops for flow through porous media are different than for flow through circular pipes.

Therefore, to develop the new expression for the Reynolds number, we write

72ut’(1-¢)?u _ 3frpr’(1-@)u?

P3dg gep3de (8.18)
Rearranging Eq. (8.18) yields
fr ~ —m— (8.19)
n1-¢)gc
We thus define the modified Reynolds number for porous media as
Re,, = % (8.20)

8.8 Validation of the Model

The proposed model is a more generalized form of the Ergun model. The model can be reduced to
that of Ergun (1952) in the case of not considering local losses, tortuosity, a fitting parameter to
define particle shape, and taking a unit value for the fitting parameter, w. Derivation of the Ergun
equation from the proposed model (Eq. 8.11) is shown in the Appendix. Though the model is found
to be valid theoretically, experimental data is needed to validate the model and the derivation of
the expression for modified Reynolds number. In addition, value of the modified Reynolds number

for transition from laminar to turbulent flow in porous media can be found from experimental data.

8.9 Conclusions

Viscous, local, and turbulent losses are combined, applying asymptotic analysis to derive a general
and more accurate equation for calculating total pressure drop. It is general in the sense that it gives
a similar equation to that given by Ergun (1952) if w = 1. The intermediate flow regime between

laminar and turbulent flows is discussed. The new general equation is reduced for each flow
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regime. The diameter of the equivalent volume sphere is redefined. A new way is devised to
calculate tortuosity, the diameter of the equivalent volume sphere, and the head-loss coefficient.
A new expression is developed for a modified Reynolds number. Determination of the value of
this modified Reynolds number at the onset of the intermediate flow regime and turbulent flow

regime is a topic for future research.
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Appendix

As the velocity approaches zero as a limit, the pressure gradient can be written as (Ergun, 1952)
. Ap
lim—=au. (A 8.1)

When the velocity is large enough to yield completely turbulent flow, where kinetic energy losses
constitute the whole resistance, the relationship between the pressure gradient and velocity can be

expressed as (Ergun, 1952)

lim 22 = bpu? . (A 8.2)

u—->00

The pressure loss in Eq. (A 8.1) is due to viscous energy losses, while that in Eq. (A 8.2) is due to

kinetic energy losses.

Eq. (A 8.1) and (A 8.2) can be written together as

Ap (ATP)O =au, u—-0
~ 7 ap , (A 8.3)
(T w = bpu®, u - ©

A A . bp . L A
Here, (Tp)o > (Tp)OO as u — 0, so the solution, Tp, is concave upwards. The combination of (Tp)o

and (AL—p)OO using asymptotic analysis yields

be _ [(A—”): + (A—”):]l/w , (A 8.4)

where the parameter, w, is a fitting parameter. The Hagen-Poiseuille equation for laminar flow

through a pipe is
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__ 32uvAL

(Ap)o =5~ (A 8.5)

Replace the fluid velocity, v, by the mean tortuous velocity, u;, defined as (Bear, 1972; Churchill,
1988)

(A 8.6)

where u/¢ is also called as the mean interstitial velocity. The pipe length, AL, is replaced by the
actual flow length through the porous bed, 7L, and the pipe diameter, D, is expressed by the
hydraulic radius, the ratio of the volume of voids to their surface area (Leva, 1959; Bird et al.,
1960; and Churchill, 1988). Considering a unit bulk volume as the basis, the hydraulic radius can

be expressed as
ry =2 (A 8.7)

Defining a,, as the surface area per unit grain volume, Eq. (A 8.7) can be written as

_ ¢
= g (A 8.8)

The sphericity is defined as the ratio of the surface area of the equivalent-volume sphere to that of
the particle (Leva, 1959). Leva (1959) defined the diameter of a particle of arbitrary shape in terms
of sphericity by

6V 6V
P appp  Asp’

(A 8.9)

where

|4

» = volume of a single (non-spherical) particle,
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Agp = surface area of the equivalent-volume sphere.

Redefine the diameter of a particle of arbitrary shape by incorporating a fitting parameter A4 in Eq.
(A 8.9)

_ %
Apppi

(A 8.10)

pm

The value of 4 can be determined through experiment where better accuracy is required and can

be considered as 1 where simplicity is needed. Rearranging Eq. (A 8.10) yields

dpm(ppl=%=i. (A8.11)

ay
Vp

The term d,, @A is the newly defined diameter of the equivalent-volume sphere. This definition

differs slightly from that given by Leva (1959). Representation of this term by d, gives

a, = —. (A 8.12)

Substitution of a,, = di into Eq. (A 8.8) gives

$de
=— A 8.1
aers (A 8.13)
Replacement of v, AL, and D by T %, tL, and 41y in Eq. (A 8.5) then yields
_ 32pt?ul
(Ap)o = el (A 8.14)

Substituting Eq. (A 8.13) into Eq. (A 8.14) yields
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_ 72ut?u(1-¢)?

Ap
(o = pEpy (A 8.15)

This expression represents the viscous pressure loss during fluid flow through a porous media. The

Darcy-Weisbach equation for pressure loss in a circular pipe during turbulent flow is

_ 2fppv?AL
(Bpy)eo = L2 (A8.16)

Again, replacing v, AL, and D by u;, 7L and 41y, respectively, gives

2f epT3UPL
(Ap)e =1 (A 8.17)

Substituting Eq. (A 8.13) into Eq. (A 8.17) yields

_ 3fpprulL(1-9)

(Ap1)e = — - (A 8.18)

This pressure loss is due to turbulence. The head loss through a pipe can be expressed as

2

hy =K, (A 8.19)
where K; is the head loss coefficient. Local loss in porous media can be expressed as

(Ap2)e = pghy . (A 8.20)
Substitution of Eq. (A 8.19) into Eq. (A 8.20) and replacing v with T% gives

T2u
2¢2 7

(Ap2)e = PK, (A 8.21)
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The total pressure drop due to local and turbulent losses can be written as

(Ap)oo = (AP1) oo + (AP2) oo (A 8.22)

giving
_ 3ffprPulL(1-¢) T2u?

(Ap)oo = W + ,DKL 292 (A 823)
Dividing both sides by L gives

Ap,  _ 3frpTul(1-9) | pKi7T?u?

(Do == 50 207l (A 8.24)
Substitution of Eq. (A 8.15) and (A 8.24) into Eq. (A 8.4) gives

Ap _ r72ut’u(1-¢)? 3fppTul(1-¢) | pKT?u?

T = e )t 2o ) 1Y (A 8.25)

Eq. (A 8.25) represents the generalized equation for total pressure drop during flow through a

porous media. The equation can be written as

(D = ™u¥ + (¢ +m)WuP” (A 8.26)
where

e = % , (A 8.27)

¢ = M per Aod) (A 8.28)

ged3de ’
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_ pkpriu?

n= 2¢2L
Derivation of Ergun equation from Eq. (A 8.26)

Considering the fitting parameter A = 1 in Eq. (A 8.10) yields

_ W
ApPp

dpm

From Eq. (A 8.9) and (A 8.30),

From the definition of the diameter of the equivalent-volume sphere,

de = dpm@p .

Replacing A and dy,,,, by 1 and d,,, respectively, in Eq. (A 8.32) gives

de = dpop .

Substituting Eq. (A 8.33) and T = 1 into Eq. (A 8.27) yields

_ 72p(1-¢)*
p3dZ 3

Substituting t = 1, g. = 1, and Eq. (A 8.33) into Eq. (A 8.28) yields

_ 3frp(1-9)
(dep¢3 )

¢

181

(A 8.29)

(A 8.30)

(A 8.31)

(A 8.32)

(A 8.33)

(A 8.34)

(A 8.35)



Considering K; = 0 in Eq. (A 8.29) gives

n=0. (A 8.36)
Taking w = 1 in Eq. (A 8.26) gives
L= eu+ (+mu?. (A 8.37)

Substitution of Eq. (A 8.34), (A 8.35), and (A 8.36) into Eq. (A 8.37) yields

Ap  72u(1-¢)? 3/rp(1-¢)
o u? . A 8.38
L Ppdpd’ Ppdpd? ( )

There is no difference between Eq. (A 8.38) and the Ergun (1952) model, except the numerical
coefficients. However, the numerical coefficients in the Ergun (1952) model are not rigid.
Different numerical values are found in the literature, such as 150 and 1.75 (Ergun, 1952), 200 and

1.75 (Leva, 1959), and 180 and the range 1.8-4.0 (Macdonald ef al., 1979).
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Chapter 9

Conclusions and Future Recommendations

9.1 Conclusions

The model of Hossain et al. (2008) is solved numerically using the Caputo, Riemann-Liouville,
and Griinwald-Letnikov definitions for the fractional-order derivative. The model is first solved
for uniform meshes. Analytical solutions of the model are obtained for the Caputo, Riemann-
Liouville, and Griinwald-Letnikov definition of fractional order derivative, and the numerical
solutions are validated by comparing with the analytical solution of the model. Error results are
analyzed. The error analysis show that the discretization method used in the numerical model is
consistent, and (1 — a)th-order accurate in time. Error values increase with the increase of the
fractional order. The numerical solutions found from different definitions of the fractional-order
derivative are compared. It is found that the Caputo definition gives the largest value of pressure,
and that the Riemann-Liouville definition gives lower values compared to the numerical values
found using other definitions. Pressure values from the Griinwald-Letnikov definition lie in
between. It is also found that the differences among the solutions increase with the fractional order,

a.

The model of Hossain et al. (2008) is also solved numerically using non-uniform meshes. In this
case, only the Riemann-Liouville definition for the fractional-order derivative has been used. The
L1 algorithm for non-uniform mesh grading is derived. Numerical solutions are obtained for both
linear and non-linear cases of the model. Numerical solutions are compared with analytical
solutions, and the numerical model is found to be valid. Numerical solutions attained using non-
uniform meshes are found to be closer to the analytical solutions than the numerical values found
using uniform meshes. A new small-scale reservoir simulator has been developed to capture the
memory effect. The simulator is validated comparing the pressure values found as output of the

simulator with analytical solutions for different values of fractional order in the linear case and to
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manufactured solutions in the non-linear cases. The simulator can be used to investigate the effects

of memory on fluid flow through porous media.

A general memory-based mathematical model for flow through porous media is proposed.
Memory-based models found in the literature can be derived from this generalized model. The
fractional-order differential equation is approximated numerically using uniform meshes in space
and non-uniform meshes in time. A small-scale memory-based reservoir simulator, that is called

an ‘emulator’ by Islam et al. (2016), might be developed based on this generalized model.

A new general and more accurate equation for calculating total pressure drop through packed beds
and porous media is established. Viscous, local, and turbulent losses are combined applying
asymptotic analysis to develop the model. The intermediate flow regime between laminar and
turbulent flow is discussed. For each flow regime, the model is reduced. The diameter of the
equivalent volume sphere is redefined. Here, a new way is proposed to calculate tortuosity,
diameter of the equivalent volume sphere, and the head loss coefficient. The study gives a new

expression for a modified Reynolds number.

9.2 Future Recommendations

The simulator developed in this study is of very small scale. This research initiates a first step
towards development of a large-scale memory-based reservoir simulator. A lot of research work
is still required to develop a complete memory-based reservoir simulator. This simulator would be

general and could act as a conventional simulator, as well as incorporating the effects of memory.

Code to solve a generalized memory-based reservoir simulator is not written and validated. A
general code for the generalized model can be written and solution for different memory-based

equation can be found using such a general code for different cases.

Values of the modified Reynolds number at the onset of the intermediate flow regime and the

turbulent flow regime are not determined. Experimental studies are required to determine the
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values. Determination of the value of this modified Reynolds number at the onset of the

intermediate flow and turbulent flow regimes might be a good topic for future research.
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