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Abstract 

 

Petroleum production is one of the most important technological challenges in the current world. 

Modeling and simulation of porous media flow is crucial to overcome this challenge. Recent years 

have seen interest in investigation of the effects of history of rock, fluid, and flow properties on 

flow through porous media. This study concentrates on the development of numerical models 

using a ‘memory’ based diffusivity equation to investigate the effects of history on porous media 

flow. In addition, this study focusses on developing a generalized model for fluid flow in packed 

beds and porous media. 

 

The first part of the thesis solves a memory-based fractional diffusion equation numerically using 

the Caputo, Riemann-Liouville (RL), and Grünwald-Letnikov (GL) definitions for fractional-order 

derivatives on uniform meshes in both space and time. To validate the numerical models, the 

equation is solved analytically using the Caputo, and Riemann-Liouville definitions, for Dirichlet 

boundary conditions and a given initial condition. Numerical and analytical solutions are 

compared, and it is found that the discretization method used in the numerical model is consistent, 

but less than first order accurate in time. The effect of the fractional order on the resulting error is 

significant. Numerical solutions found using the Caputo, Riemann-Liouville, and Grünwald-

Letnikov definitions are compared in the second part. It is found that the largest pressure values 

are found from Caputo definition and the lowest from Riemann-Liouville definition. It is also 

found that differences among the solutions increase with increasing fractional order, 𝛼. 

 

In the third part of the thesis, the memory-based fractional diffusion equation is solved using 

graded meshes in time and uniform meshes in space. The computational procedure of the simulator 

is sequential and iterative over each time step. The Riemann-Liouville definition for the fractional-

order derivative has been used, and the L1 algorithm for discretization on a non-uniform mesh is 

derived. A second-order finite difference method is used to solve the fractional diffusion equation. 

The solution scheme is analogous to Implicit Pressure and Explicit Saturation Method (IMPES). 

Numerical solutions are compared to analytical solutions for different values of the fractional order 

in the linear case and compared to manufactured solutions in non-linear cases. Comparisons are 
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made for different initial, boundary, and flow conditions. The error results affirm that the 

discretization method used in the numerical model is consistent, second-order accurate in space, 

and first-order accurate in time.  

 

The fourth part of the thesis compares the numerical models developed using uniform and graded 

meshes. It is found that the non-uniform mesh grading in time used in this study provides more 

accurate numerical solutions compared to uniform mesh grading. In this part, the value of the 

fractional order in the mathematical model used in this paper is computed to fit different 

experimental data for one-dimensional flow measurements through a porous layer with constant 

pressure gradient. These data were collected from the literature. The value of the fractional order 

and the relaxation time are found to be 0.05 and 730 seconds, respectively. From the error analysis, 

the optimum number of time steps in unit time for this value of fractional order and for different 

number of grids in unit length is determined. The optimum number of steps in unit time is required 

to minimize the discretization and truncation error. The model can be used to investigate the effect 

of memory on fluid flow through porous media. 

 

Different models developed for different purposes incorporating memory are found in the 

literature. In the fifth part of this theses, a general mathematical model has been proposed that can 

be simplified to derive all these models. The model considers both time and space memory. The 

model is generalized in the sense that all other established memory-based models can be derived 

from this model. The model can be used to develop a small-scale single-phase memory-based 

reservoir simulator. 

 

In the last part of the thesis, a generalized semi-empirical equation is proposed that portrays the 

flow of fluid in packed beds and porous media. The new model calculates total pressure loss from 

viscous energy loss, local loss, and loss due to turbulence following the way of compact model 

development from asymptotic solutions. Non-spherical particle diameter is redefined to more 

accurately represent the wall surface area within the pore space. The model gives a new expression 

for a modified Reynolds number for fluid flow through porous media. The most significant new 

finding is that it portrays all the flow regimes that occur in porous media. The viscous term is 

dominant at very low flow rates, and turbulence and inertial loss occur at very high flow rates 



iv 

 

while the viscous and inertial loss occur in-between, which is the central flow regime for porous 

media. This new equation can also be used for modeling the physical properties of random porous 

media. The model provides an innovative way to calculate tortuosity of porous media, diameter of 

equivalent volume spheres, and the head-loss coefficient. 
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2 

 Γ   Gamma function 

 𝜆   Fitting parameter to define the diameter of a particle of arbitrary shape 

 𝜇   Fluid dynamic viscosity, 𝑐𝑝 

 𝜌   Fluid density, 𝑔𝑐𝑚−3  
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Chapter 1 

 

Introduction 

 

 

1.1 General 

 

Reservoir modeling is a critical component in the development, planning, and production 

management of oil and gas fields. The ultimate goal of reservoir modeling is to aid the decision-

making process throughout all stages of field life. Few models in the literature combine Darcy and 

non-Darcy flow, and none use transitions between various flow regimes within porous media and 

fracture networks. The models in the literature that combine Darcy and non-Darcy flow do not 

combine them following the way of compact model development.  

 

In conventional reservoir models, the effect of history of rock, fluid, and flow properties on flow 

phenomena are not considered. However, in recent literature, some mathematical models are found 

that are based on the fact that fluid flow phenomena through porous media depend on their past 

(Caputo, 2000; Hossain et al., 2008; Iaffaldano et al., 2005). When a complex fluid flows through 

porous media, there is a change in both rock and fluid properties due to chemical reactions, mineral 

precipitation, etc., and, therefore, permeability and viscosity change over time.  The phenomenon 

that rock and fluid properties change over time is represented by the term ‘memory’. To quantify 

the effect of history, ‘memory’ is incorporated in the mathematical model. Two types of memory, 

time memory and space memory, are found in literature. Space memory considers the previous 

space that the fluids have passed through (Caputo, 2003). 

 

Memory is incorporated in mathematical reservoir models using fractional-order derivatives in the 

model. The definition of fractional-order derivatives provides a natural way to include history. 

History of pressure, pressure gradients, or any other parameters can be taken into consideration 

using fractional-order derivatives of that parameter. To consider time memory, fractional-order 
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derivatives in time are used, and to consider space memory, fractional-order derivatives in space 

are used. 

 

Once fractional-order derivatives come into the model to incorporate memory, the equation 

becomes complicated and highly non-linear. The equation becomes very difficult to even 

numerically solve. Unlike integer-order derivatives, fractional-order derivatives do not have a 

single definition. Different definitions produce different equations for same model. It is also 

difficult to discretize the model applying suitable finite-difference approximations. Developing 

new schemes and algorithms to handle the fractional-order diffusivity equation is a great challenge.  

 

Conventional mathematical models of fluid flow through porous media do not consider the effect 

of memory. Currently, all reservoir simulators are based on conventional modelling. Development 

of memory-based reservoir simulators is necessary to investigate the effects of memory. 

Incorporation of memory in terms of fractional-order derivatives considering all the previous data, 

in calculation of data at the current step. This increases the computational load by many folds. 

Though memory-based models are assumed to increase accuracy, they will not be attractive if the 

computational load is too high. Therefore, it is a great challenge to reduce the computational load. 

The greatest challenge is to develop a reservoir simulator based on the memory-based approach. 

 

1.2 Knowledge Gap 

 

Hossain et al. (2008) developed a new porous media diffusivity equation through inclusion of 

fractional order derivative to account for the rock and fluid memories, but the numerical solution 

of the equation is not available yet. Also, other fractional-order diffusion equations developed to 

model fluid flow through porous media are not solved, using the Caputo, Riemann-Liouville, and 

Grünwald-Letnikov definitions for the fractional-order derivatives. In addition, the value of the 

fractional order for the Hossain et al. (2008) model has not been computed yet.  

 

Currently, no reservoir simulator uses a fractional-order diffusion equation to consider memory. It 

is important to have a simulator based on this new approach to improve accuracy. Such a simulator, 
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if it can be developed, would answer many questions regarding memory, and take away the 

confusion of the research community. 

 

Fluid flow models are generally developed for specific flow phenomenon. Developing a general 

equation instead of developing separate mathematical equations for each specific case is 

worthwhile. The general equation can be simplified easily for different cases, but it is a bigger 

challenge to develop a general mathematical model that will represent fluid flow for all type of 

rocks, fluids and flow phenomena. There are few models that consider all the flow regimes relevant 

to porous media flow. In addition, many models don’t consider all types of pressure losses that 

occur during fluid flow. 

 

1.3 Objectives 

 

The main objectives of this study are: 

 

i) To develop a numerical model to solve a memory-based diffusion equation using finite-

difference approximations, uniform meshes, and utilizing Caputo, Riemann-Liouville, and 

Grünwald-Letnikov definitions for the fractional-order derivative. 

ii) To compare the numerical solutions found from the application of Caputo, Riemann-Liouville, 

and Grünwald-Letnikov definitions for the fractional-order derivative. 

iii) To develop an efficient numerical model to solve a memory-based diffusion equation using 

finite-differences approximation, non-uniform meshes in time, uniform meshes in space, and 

utilizing the Riemann-Liouville definition for the fractional-order derivative. 

iv) To develop a small-scale memory-based reservoir simulator so that the effects of memory can 

be investigated. 

v) To develop a generalized memory-based mathematical model from which other memory-

based models can be derived. 

vi) To develop a generalized semi-empirical equation that portrays the flow of fluid in packed 

beds and porous media. 
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1.4 Organization of the Thesis 

 

This thesis consists of nine chapters and is written in “manuscript” format. The rest of the thesis 

is organized as follows: 

 

Chapter 2 presents a literature review on modeling of fluid flow through porous media with 

specific focus on memory and fractional-order derivatives.  

 

A numerical model has been developed using uniform meshes and the Riemann-Liouville 

definition for the fractional-order derivative to solve the model of Hossain et al. (2008) in Chapter 

3. The model is validated comparing with an analytical solution for a specific case of the model. 

This chapter is written to submit as a journal article. 

 

Numerical models have been developed using uniform meshes and the Caputo, and the Grünwald-

Letnikov definitions for the fractional-order derivative to solve the model of Hossain et al. (2008) 

in Chapter 4. These models are compared with the model developed in Chapter 3. This chapter is 

written for submission as a journal article. 

 

In Chapter 5, the model of Hossain et al. (2008) is solved numerically using graded meshes in time 

and the Riemann-Liouville definition for the fractional-order derivative. The L1 algorithm is 

derived for the applied graded meshes. The numerical model is validated. This chapter has also 

been prepared for submission as a journal article. 

 

Chapter 6 compares the numerical models developed using uniform and graded meshes. In 

addition, experimental data is collected from the literature and the value of the fractional order and 

the relaxation time have been computed from the data. Optimal spatial and time steps in unit space 

and time have been computed for this value of fractional order by analyzing the error in an 

analytical solution. This chapter is written to submit as a journal article. 

 

A generalized memory-based mathematical model has been proposed in Chapter 7. Different 

fractional-order diffusion equations can be derived from this model. 
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Chapter 8 proposes a generalized conventional model and dimensionless number for fluid flow in 

packed beds and porous media. A generalized semi-empirical equation is proposed that portrays 

the flow of fluid in packed beds and porous media. A new expression for the modified Reynolds 

number has been derived from the model. Novel ways to calculate tortuosity of the porous media, 

the diameter of the equivalent volume sphere and the head-loss coefficient are proposed. This 

chapter is written to submit as a journal article. 

 

Chapter 9 summarizes the outcomes of the present study and presents some recommendations for 

future studies. 
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Chapter 2 

 

Literature Review 

 

 

2.1 Introduction 

 

Much theoretical, numerical and observational work has been published focused on fluid flow 

through porous media. This research has placed memory and fractional derivatives in a central role 

for accurate modeling of fluid flow through porous media. Models that do not consider the effects 

of the history of the rock and fluid cannot accurately represent the characteristics of fluid flow. 

Properties of both the rock and fluid change with time while fluid flows through porous media. 

Pores of the medium might be enlarged, due to chemical reactions between the medium and the 

fluid, or can be diminished or even closed, due to deposition of solid particles carried by the fluid 

or by the precipitation of minerals from the fluid. Consideration of both space and time memory 

is required to capture this continuous alteration of rock and fluid properties. Some models consider 

only time memory, a few consider space memory, and classical models consider neither of these 

memories. However, for accurate mathematical representation of flow, both types of memory 

should be considered. Inclusion of time and space memory would give a path to formulate a 

generalized mathematical model. The generalized model could represent almost all types of flow 

phenomena that occur in porous media. Histories of the pressure and its gradient, as well as space 

memory, can be included in mathematical models using fractional-order derivatives. Use of 

fractional-order derivatives in modeling makes the model able to capture history but causes higher 

computational loads. Fractional diffusion models should be used where consideration of the effect 

of history is needed to justify the computational load. 

 

The idea of including memory in subsurface flow modeling is comparatively new. In this 

perspective, all materials are assumed to have memory, so the history of the rock and fluid is 

considered to affect their present and future characteristics. Incorporation of memory includes this 

natural phenomenon in the governing equations and improves the prediction accuracy. Memory 
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incorporation makes the governing equations intricate and solving the equations becomes more 

challenging. This paper reviews different existing subsurface flow models and addresses the 

necessity of memory incorporation, problems that arise due to including memory, and the impact 

of considering memory in subsurface flow modeling.  

 

2.2 Conventional Modeling Approach in Porous Media Flow  

 

The principles of conservation of mass, energy, and linear and angular momentum, along with the 

equation of state and constitutive equation, describe the flow of fluids.  Equations of state relate 

pressure, volume, and temperature (Landel et al., 1986). Velocity and stress fields of the flows can 

be predicted by solving the conservation laws together with the constitutive model and equations 

of state using a suitable method (Carreau et al., 1997; Keunings, 2003, and 2004; Hulsen, 1990). 

 

Different constitutive models and equations of state are used depending on the type of fluid and 

flow. No constitutive equation can be used for all purposes. There is also no constitutive equation 

that can completely describe the behavior of complex fluids in general flow situations (Owens et 

al., 2002; Larson, 1988). Modeling of flows of complex fluids is difficult, so several assumptions, 

such as laminar, incompressible, steady-state, and isothermal flow, are usually made to make the 

representation easier. 

 

There are three different types of modeling depending on the scale of interest to represent the 

physics of fluid flow in porous media. The first is called continuum modeling. It is based on the 

continuum description of the porous medium that is associated with macroscopic semi-empirical 

equations such as the Ergun Equation, Darcy’s law, or the Carman-Kozeny equation (Balhoff et 

al., 2004). The second is pore-scale modeling or microscale modeling, which is based on the 

microscopic description of the pore geometry and on the physical laws of flow and transport within 

the pores. The third is multiple continua or hybrid modeling, which combines pore-scale and 

continuum-scale behavior. 

 

The continuum approach is simple, with apparently no computational cost and does not account 

for the detailed physics at the pore level. Time-dependent transient effects cannot be modelled 
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with this approach. On the other hand, a detailed understanding of the physical processes occurring 

at the pore scale and a complete description of the morphology of the pore space are required for 

pore scale modeling. This is very complex and requires a lot of computation. 

 

Different statistical (Adler et al., 1990; Roberts, 1997; Yeong et al., 1998) and process-based 

(Bakke et al., 1997; Øren et al., 1998, and 2002) techniques have been developed to describe the 

geometry of the pore space. Pore space can also be imaged directly using micro CT tomography 

(Dunsmuir et al., 1991; Spanne et al., 1994). Two approaches can be applied to model flow at the 

pore scale. Flow can be simulated directly in a three-dimensional pore-space image by solving the 

Navier-Stokes equations or by using the Lattice-Boltzman techniques (Gunstensen et al., 1991, 

and 1993; Grunau et al., 1993; Ferreol et al., 1995; Van Katz et al., 1999; Pan et al., 2004) or by 

the smoothed particle hydrodynamics (SPH) method (Tartakovsky et al., 2005). This is called 

direct modeling. Direct modeling becomes cumbersome and computationally expensive for 

capillary controlled flow with multiple phases. The Lattice-Boltzman and smoothed particle 

hydrodynamics methods are Lagrangian, particle-based approaches. Another approach is to 

describe the pore space as a network of pores connected by throats with some idealized geometry 

(Øren et al., 2002; Delerue et al., 2002). Then a series of flow steps in each pore or throat are 

combined to simulate flow in the medium. This is called pore-network modeling and has been the 

most common pore-scale modeling method. 

 

2.2.1 Continuum Modeling 

 

This approach treats the porous medium as a continuum and does not consider the intricacies and 

fine details of the microscopic pore structure. Darcy’s law, the Blake-Kozeny-Carman and Ergun 

Equations are some examples of continuum modeling techniques. The commonly used equations 

of these three continuum models are given in Table 2.1. 

 

The simplest model to describe the flow in porous media is Darcy’s law that relates the pressure 

gradient in the direction of flow to the volumetric flux of fluid through the medium, permeability, 

and fluid viscosity. It is an empirical relation, yet it can be derived from the capillary bundle model 

using the Navier-Stokes Equations. Since Darcy’s law contains only a viscous term and no inertial 
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Table 2.1: Commonly used equations for continuum model. 
 

Model Equation 

Darcy ∆𝑃

𝐿
=
𝜇𝑢

𝐾
 

Blake-Kozeny-Carman ∆𝑃

𝐿
=
72𝐶′𝜇𝑢(1 − 𝜙)2

𝐷𝑝2𝜙3
 

Ergun ∆𝑃

𝐿
=
150𝜇𝑢

𝐷𝑝2
(1 − 𝜙)2

𝜙3
+
1.75𝜌𝑢2

𝐷𝑝

(1 − 𝜙)

𝜙3
 

 

 

term, it is applicable only to laminar flow at low Reynolds numbers. The law cannot be applied 

when the flow becomes slow due to interaction between the fluid and the pore walls. The Darcy 

model only considers viscous Newtonian effects and does not consider boundary effects and heat 

transfer. Hence, Darcy’s law is applicable to only isothermal, laminar, purely viscous, and 

incompressible Newtonian flow. Darcy’s law has been modified and various generalizations to 

include nonlinearities have been made to represent more complex phenomena, such as non-

Newtonian and multiphase flow (Shenoy, 1993; Schowalter et al., 1978). 

 

The Blake-Kozeny-Carman (BKC) model is one of the most popular models to represent flow 

through porous media. This model incorporates a number of equations that are developed under 

various conditions and assumptions. These equations associate the pressure drop across a granular 

packed bed to the volumetric flux of fluid through the fluid viscosity, the bed porosity, and the 

granule diameter. Macroscopic properties of random porous media, such as permeability, can be 

modelled from this family of equations. These relations are based on the capillary bundle concept 

with various level of sophistication. The BKC model is applicable to laminar flow through packed 

beds at low Reynolds numbers. The model has been extended to incorporate transitional and 

turbulent flow conditions (Kozicki et al., 1988; Chapuis et al., 2003). 

 

The Ergun Equation is a widely used semi-empirical relation to model flow through porous 

medium. It correlates the pressure drop along a packed bed to the volumetric flux. Unlike the Darcy 

and Blake-Kozeny-Carman models, the Ergun Equation contains both viscous and inertial terms. 
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At low flow rates, the viscous term becomes dominant, while at high flow rates the inertial term 

becomes dominant. Therefore, the Ergun model can represent larger range of flow regimes 

compared to the Darcy or BKC models (Jones et al., 1976; Plessis et al., 1994; Stevenson, 2003). 

 

The continuum approach can describe the complex characteristics of flow through porous media 

using a few simple averaging terms, and the computational cost of simulating continuum models 

is very low. Nonetheless, this approach ignores the physics of flow at pore level. Most of these 

continuum models have been modified to describe non-Newtonian behavior. To apply continuum 

models for non-Newtonian fluid, an effective viscosity, which will have the dimensions and 

physical significance of Newtonian viscosity, is defined so that the model can represent the non-

Newtonian fluid flow (Pearson et al., 2002). However, continuum models have had limited success 

in predicting the flow of complex fluids in porous media. Non-Newtonian continuum models fail 

to incorporate time-dependent effects and to model yield-stress.  

 

2.2.2 Pore-Scale Modeling 

 

Research on pore-scale modeling started its journey with the classical papers of Irvin Fatt on pore-

network modeling in the 1950s (Fatt, 1956a; Fatt, 1956b; Fatt, 1956c). Pore-scale modeling is 

important to understand the physics of flow through porous media. It helps to predict the 

petrophysical properties and, thus, supplement and replace laboratory experiments. Pore-scale 

modeling has become popular due to advances in image resolution and computational power. 

 

Pore-scale modeling has significant advantages, yet there are also limitations. Different pore-scale 

models that are used for same physical problem should be consistent. Many industrial processes 

involve multiple physical processes on which pore-scale models do not focus. Upscaling the pore-

scale results is crucial to improve field-scale models. The question of how the available data from 

image resolution, and detailed and complicated physics based models can be employed to calculate 

simple and static properties is yet to be answered (Joekar-Niasar et al., 2012).  

 

2.2.2.1 Direct Modeling 
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The most prevalent approach to model fluid flow directly in porous media is the lattice Boltzmann 

method (Dunsmuir et al., 1991; Chen and Doolen, 1998; Kang et al., 2006; Manwart et al., 2002; 

Porter et al., 2009; Schaap et al., 2007; Pan et al., 2004; Hao and Cheng, 2010; Boek and Venturoli, 

2010). It is a particle-based technique that is used for computational modeling of single and 

multiphase fluid flows in complex geometries. The method is based upon the Boltzmann equation, 

which considers the fluid to be composed of particles, and simulates the motion and collision of 

particles. The rules governing the motion and collision are established such that the averaged 

motion of a particle can be shown to be consistent with the governing Navier–Stokes Equations. 

Writing code for the lattice Boltzmann method is relatively easy. However, the method is not 

naturally computationally efficient, even with the use of parallel computing. Capillary controlled 

displacement on large samples is very difficult to capture accurately. Hence, relative permeability 

cannot be predicted reliably by this method. However, recent studies show that relative 

permeability can be computed using pore-space images with advanced computer technologies (Pan 

et al., 2004; Hao and Cheng, 2010; Boek and Venturoli, 2010; Ramstad et al., 2011). The method 

is suitable to compute permeability, dispersion coefficients, and effective reaction rates for single 

phase flow. 

 

Another direct modeling technique is the level-set method that is developed to study capillary-

controlled displacement. In this method, it is easy to follow changing topology. Hence, the method 

can handle complex boundaries very easily. Computational load is also high for this method. 

However, it gives insights into imbibition processes and fracture-matrix interactions (Sussman et 

al., 1994; Prodanovic et al., 2010). 

 

General models for fluid flow can be developed for different physical phenomena, non-Newtonian 

rheology, and thermal effects by applying density-functional modelling techniques (Demianov et 

al., 2011). These techniques have been successfully applied in the case of simple geometries. 

However, for complicated geometries, such as realistic porous media, the method has not been 

effective.  

 

2.2.2.2 Pore-Scale Network Modeling 
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Quantitative description of the geometry of pore structure and solution of the governing equations 

of motion are required to quantify the macroscopic transport properties of pore space from their 

microscopic properties. Pore-scale network modeling follows these two steps. It combines 

computational resources with the physics of flow and pore-space structure.  

 

In this modeling, the porous space is characterised by a network of flow channels. Larger voids 

are represented by pores that are interconnected by narrower regions called throats. The process to 

construct a completely realistic pore network is very complicated. There are two types of methods 

to generate pore-scale networks (Al-Raoush et al., 2003). In the first type, an equivalent network 

is formed using pore- and throat-size distributions, coordination number, and size correlation 

between adjacent pores. The model is tuned to match experimental data by adjusting the 

coordination number, and pore- and throat- size distributions. The solution is not unique in this 

case. In another approach, pore space is constructed with the help of measured porosity and 

correlation functions (eg. Vogel and Roth, 1997; Bakke and Øren, 1997; Liang et al., 1999; Okabe 

and Blunt, 2003), or by non-destructive three-dimensional imaging using microtomography or 

magnetic resonance (eg. Baldwin et al., 1996; Rintoul et al., 1996). 

 

Two main types of pore network models are generally used to study fluid flow in porous media. 

One type is quasi-static displacement models, and another is dynamic displacement models. In the 

quasi-static models, the capillary force dominates. The static position of all fluid-fluid interfaces 

is determined using capillary pressure on the network. The dynamic aspects of pressure 

propagation and interface dynamics are ignored. The pores and throats change their configuration 

one at a time. Quasi-static models are extensions of percolation models. These models do not work 

in case of fracture flows, near-wellbore flows, and flows involving polymers, gels, and foams. 

However, the effects of viscous forces are modelled in addition to the capillary effect in dynamic 

displacement models. In dynamic models, a specified inflow rate for one of the fluids is imposed 

and the subsequent transient pressure response and the associated interface positions are 

calculated. In these models, a given volume of invading fluid is injected during a time step and 

Poiseuille flow is assumed in the throats. At each time step, the element pressures are computed 

and the displacement decisions are taken based on pressure difference rules. 
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2.2.3 High Velocity Fluid Flow Modeling  

 

Darcy’s model describes the fluid flow through porous media where the flow rate is low. At low 

flow rates, viscous force is dominant. With the increase of flow rate, inertial forces become 

significant. Darcy’s law can no longer model the fluid flow in the case of high velocity. At high 

flow rates, the relationship between pressure gradient and superficial fluid velocity becomes non-

linear. Forchheimer (1901) corrected the Darcy equation adding a second order of the velocity 

term to represent the microscopic inertial effect. In addition, Darcy’s law does not consider the 

shearing effect between the fluid and the pore walls. In this regard, Brinkman (1947) modified the 

Darcy’s equation adding the second-order derivatives of the velocity. Darcy (1856), Forchheimer 

(1901), and Brinkman (1947) equations and their assumptions are tabulated in Table 2.2. 

 

Table 2.2: High velocity fluid flow models. 
 

Author Model Equation Assumptions 

Darcy (1856) ∆𝑃

𝐿
=
𝜇𝑢

𝐾
 

• the solid is rigid, deformation of the solid is 

negligible 

• steady flow 

• negligible viscous effects within the fluid 

Forchheimer 

(1901) 
−
𝜕𝑝

𝜕𝑥
=
𝜇𝑢

𝑘
+ 𝛽𝜌𝑢2 

• the solid is rigid, deformation of the solid is 

negligible 

• significant inertial forces 

• negligible viscous effects within the fluid 

Brinkman 

(1947) −
𝜕𝑝

𝜕𝑥
=
𝜇𝑢

𝑘
− 𝜇(

𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) 

 

• the solid is rigid, deformation of the solid is 

negligible 

• steady flow 

• viscous effects within the fluid are not 

negligible 

 

 

2.3 Inclusion of Memory in Porous Media Flow Modeling 

 

It is difficult to determine the pore-size distribution, the surface areas, and the tortuosity of a porous 

media. Through CT scanning, images have been used to determine the distribution of pore sizes 

(Xu et al., 1999; Kamath et al., 1998) and residual saturation (Hilpert et al., 2000), but this is very 

costly. It is also not possible to scan a complete reservoir or rock samples taken from every part of 
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a reservoir. There are many ways to describe the pore spaces (Øren et al., 1998; Patzek, 2001; 

Dixit et al., 1998, 1999, and 2000; Blunt et al., 1990, and 1991), but, in all cases, the geometric 

parameters are tuned to match available experimental data. So, these models do not represent the 

exact structure that exists in a reservoir. They are developed in such a way so that their predictions 

match given experimental results. It is even more difficult to observe the detailed processes that 

occur during fluid flow at the pore level in complex heterogeneous porous media through 

experiment. 

 

Since each model, even at the pore level, is developed to match experimental data, it is rather good 

to infer the detailed structure and flow processes at pore level from macro level observation and 

from data obtained in idealized model experiments. Here, memory can be used to tune the 

continuum model to represent the medium and flow more accurately. 

 

2.3.1 Fundamentals of Memory 

  

Different authors have defined memory in different ways. According to Zhang, memory is a 

function of time and space, and forward time events depend on previous time events (Zhang, 2003). 

Zavala-Sanchez et al. showed that the system ‘remembers’ its initial state, which is defined as 

memory effects for the effective transport coefficients (Zavala-Sanchez et al., 2009). Hossain and 

Abu-Khamsin (2012) defined memory as the effect of past events on the present and future course 

of developments. We define memory in the following comprehensive way.  

 

When all affecting parameters (pressure, temperature etc.) excluding time remain unchanged, rock, 

fluid, and flow characteristics are conventionally assumed to remain constant. However, we think 

that they are changed, since time is not constant here. They depend on time and are changed with 

time. So, rock, fluid, and flow properties at the present depend on their past, and the past must be 

considered to determine the present behaviour. Future behaviour can also be predicted from the 

past. Here, past is one of our keys to modelling the present and future. 

 

Conventional continuum approaches model only the physical processes of flow and consider only 

pressure and temperature to affect rock, fluid, and flow characteristics. Chemical and biological 
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processes that occur in the reservoir and change the rock, fluid, and flow behavior are not 

considered. However, these processes occur even in the simplest to model reservoirs. 

 

Reactive transport modeling considers chemical microenvironments, mineral–fluid reaction rates, 

thermal– mechanical–chemical processes, and change in rock, fluid, and flow characteristics with 

the processes (Steefel et al., 2005), but is very difficult to model, very complex, and has very high 

computational costs. 

 

Different models are developed to represent different types of reservoir, fluid, and different flow 

characteristics. It would be nice if there were a general model that would act as a platform to 

represent all cases and, yet, had low computational cost. The general model that we are thinking 

about will follow the continuum approach and catch conventional physical processes explicitly. 

Chemical and biological processes, effects of time, reservoir heterogeneity, and all the other 

properties that may affect the flow phenomenon, will be included implicitly by using a memory 

function.  

 

Here, we are defining memory as a function that will describe how the present depends on past; 

that will be used to evaluate the present and predict the future characteristics of an object from its 

past, and/or to tune the model so that the model can represent all the processes that were not 

considered explicitly in the model and can characterize the rock, fluid, and flow accurately and 

completely as well.  

 

2.3.2 Modeling with Memory 

 

Memory has been implicitly or explicitly included in various models of porous media flow. 

Memory comes into the model to serve different purposes, e.g. for better representation of flow in 

disordered or fractal media, to incorporate the effects of history or rock, fluid, and flow, etc.  

 

Giona and Roman (1992a, and 1992b) derived a fractional diffusion equation containing an 

explicit reference to the history of the diffusion process by using fractional calculus. They did not 
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include memory directly in their model. Memory is implicitly included in their equation, since a 

fractional derivative has been used. 

 

Metzler et al. (1994, and 1997) obtained a more general fractional model equation in which they 

used Fox's H -function. Giona and Roman (1992a, and 1992b) and Metzler et al. (1994) 

constructed an integrodifferential equation to express the memory effect via the integral term. 

Their work gives good results for homogeneous fractal media, where conductivity is identical in 

every diffusion path. They, however, failed to predict precisely the motion of a particle in 

inhomogeneous fractal media. 

 

Park et al. (1998) set up a governing equation describing the diffusion phenomena in disordered 

media addressing a memory effect and non-locality, in which they formulated permeability as a 

function of space and time. Tian and Tong (2006) incorporated memory in their flow models of 

fluids by applying fractional derivatives. 

 

Hossain and Islam (2006) described the memory of fluid as one of the most important and most 

neglected feature in fluid-flow models. They reviewed fluid-flow models with memory, addressed 

the intangible problems of memory, and identified the effects of considering memory. 

 

Hossain et al. (2007) introduced a stress-strain model incorporating memory with viscous stresses. 

They obtained the variation of shear stress as a function of strain rate for a fluid in a sample oil 

reservoir to identify the effects of fluid memory. They showed the memory effects in space with 

pressure gradient change. Their computation indicates that the effect of memory causes a nonlinear 

and chaotic behavior for stress-strain relation. They claim that the model can be used in reservoir 

simulation and rheological study, well test analysis, and surfactant and foam selection for enhanced 

oil recovery. In a subsequent study (2009), they solved the model numerically. 

 

Hossain et al. (2008) introduced a new model for fluid flow incorporating fluid and rock memory. 

The model was derived by introducing the Caputo fractional derivative to the classic Darcy law to 

account for the variation of fluid and formation properties with time. They modelled variable 

permeability and viscosity over time using fractional order derivative. They claim that their model 
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can be used in any crude oil flow through porous media. Furthermore, they proposed an explicit 

finite- difference scheme to solve the resulting nonlinear integro-differential equation. 

 

Hossain and Islam (2009) developed a comprehensive material balance equation (MBE) including 

continuous variation of rock and fluid properties with time, due to changes of pressure and 

temperature. Memory effects of fluids and rock in terms of continuous time functions are included 

in their formulation. The developed MBE is highly non-linear, with a number of coefficients that 

are inherently non-linear. They solved the developed MBE numerically with a newly developed 

non-linear solver. The authors claim that the proposed MBE can be applied to fractured formations 

with dynamic features. Furthermore, an improvement of 5% in oil recovery was observed from the 

new MBE over the conventional MBE. However, the proposed MBE requires accurate rock and 

fluid compressibility data obtained from laboratory measurements or from reliable correlations. 

 

Kolomietz (2014) applied kinetic theory to a nuclear Fermi liquid treating the nuclear collective 

dynamics in terms of the particle density, current density, pressure, etc. He studied the influence 

of Fermi-surface distortion, relaxation processes, and memory effects on the nuclear dynamics. He 

concluded that the memory kernel depends on the relaxation time and provided a connection 

between both limiting cases of the classical liquid dynamics (short relaxation time limit) and the 

quantum Fermi-liquid dynamics (long relaxation time limit). The research showed that memory 

effects lead to an important consequence of hindrance of the collective motion and, in particular, 

to nuclear fission. 

 

Hristov (2015) applied the integral-balance method to diffusion models with fading memories with 

weakly singular kernels. They expressed the memory as Volterra integrals and time-fractional 

Riemann-Liouville derivatives. 

 

Hassan et al. (2015a) investigated the effect of reservoir heterogeneity on the pressure distribution 

using a memory-based diffusivity equation. They claim that the memory-based diffusivity 

equation can be used to model the flow of fluid through heterogeneous reservoirs. 

 



19 

 

Hassan et al. (2015b) introduced memory to model variable rock and fluid properties with time. 

They used fractional derivatives as a memory formalism to account for the non-local aspects of 

fluid flow behavior through porous media. They investigated the effects of different parameters 

such as composite pseudopermeability, fluid velocity, and viscosity on the pressure response of 

the reservoir. They showed that there is an effect of memory on reservoir rock and fluid parameters 

and that it ultimately affects the pressure response of the reservoir. They concluded that the pseudo-

permeability, fluid velocity, and memory decreases with distance, up to a certain extent of the 

reservoir, and then becomes constant toward the boundary of the reservoir. It was also concluded 

that the effects of these parameters increase with time around the wellbore and decrease toward 

the outer boundary. They solved the Integro-differential equation numerically in time and space 

domains for different dependent rock and fluid properties. 

 

Rammay et al. (2015a) conducted a study to compare the variations of PVT properties using Darcy 

and memory-based diffusivity equations. Variable compressibility, formation volume factors, and 

viscosity of oil were obtained by solving both equations numerically using MATLAB. They 

obtained different variations of compressibility, formation volume factor, and viscosity of oil from 

the Darcy and memory-based diffusivity equations. They consider that memory has an effect on 

these PVT data and that the memory-based diffusivity equation is more rigorous than the Darcy 

diffusivity equation, due to the incorporation of the memory formalism term as a fractional order 

in the diffusivity equation. They conclude that viscosity and compressibility changes are more 

sensitive to pore pressure as compared to formation volume factor. They suggest using memory-

based models in order to accurately predict the PVT properties for more rigorous and 

representative convergence in reservoir simulators. 

 

Rammay et al. (2015b) found different porosity and permeability variations from Darcy and 

memory-based diffusivity equations. They observed that memory has an effect on porosity and 

permeability. They concluded that permeability change is more sensitive to pressure as compared 

to porosity change. They found differences between these two models, and they believe this 

difference can be significant enough during the convergence process in reservoir simulators. They 

also think that to accurately predict the rock properties for more rigorous and representative 

convergence in reservoir simulators, memory-based diffusivity equations should be used. 
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2.3.3 Experimental Investigation to Capture Memory 

 

Many researchers believe that flow history has an effect on fluid flow through porous media. For 

example, when a complex fluid flows through porous media, there is a change in permeability due 

to chemical reactions, mineral precipitation, etc. and, therefore, permeability diminishes over time. 

This phenomenon shows that the effect of fluid pressure at the boundary on the flow of fluid 

through the medium is delayed, and the flow occurs as if the medium has a memory (Caputo, 

2000). Experiments are conducted to justify this.  

 

Memory phenomena have already been shown qualitatively by Elias and Hajash (1992) for 

diffusion of fluids in porous media, revealing a good fit with the flux rate observed in five 

laboratory experiments on diffusion of water in sand. Caputo (2000) validated his generalized 

memory-based theory, accounting for the non-local aspects of fluid transport. Iaffaldano et al. 

(2005) carried out an experimental study to capture the memory effect in the diffusion process of 

water in a porous media and proved that permeability of sand layers could decrease due to 

rearrangement of grains and subsequent compaction. De Espi´ındola et al. (2005) used the 

fractional derivative model (i.e., a measure of memory) to identify the dynamic properties of 

viscoelastic materials and experimentally validated their findings. Cloot and Botha (2006) used 

the generalized classical Darcy law, and a non-integer order derivative of the piezometric head for 

groundwater flow. Numerical solutions of their equation for various fractional orders of the 

derivatives were compared with experimental data to observe the behavior of fractional derivatives 

in a modified Darcy’s law. Di Giuseppe et al. (2010) modified the constitutive equations by 

introducing a memory formalism operating on both the pressure gradient–flux and the pressure–

density variations and used fractional-order derivatives to represent the memory formalism. 

Supported by laboratory experiments, a good agreement has been shown between the theoretical 

and observed flows over time.  

 

2.3.4 Memory and Fractional Derivatives 

 

Rock, fluid and flow properties depend on their history, and memory functions describe how they 

do depend on their history. So, the present condition of rock, fluid, and flow can be conveyed as 
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the convolution of the memory function and their history. To accomplish this, fractional 

derivatives can help better than conventional derivatives since fractional derivatives of a function 

can be expressed via a convolution of two functions. Moreover, it acts as conventional derivative 

when the order of derivative is a non-negative integer. Therefore, fractional derivatives can be 

used to describe natural phenomena like conventional derivatives and, in addition, to represent the 

effects of history.  

 

Convolution systems are linear, causal, and time-invariant. Since the fractional derivatives of a 

function is a convolution of two functions, to describe a system using fractional derivatives, the 

system is required to be linear, causal, and time-invariant. Here, the question arises: are the systems 

demonstrating flow through porous media, representing change in rock and flow behavior with 

time linear, causal, and time-invariant? This is a subject of research, whether the systems are 

actually convolution systems, but when fractional derivatives are used to mathematically describe 

a system, the assumption comes implicitly that the system is linear, causal, and time-invariant. 

Here, the system of flow through porous media, changes in rock and flow behavior with time are 

assumed to be linear, causal, and time-invariant. 

 

2.4 Fractional Calculus 

 

In classical calculus, powers of the differentiation operator are integers. Differentiation and 

integration do not have similar definitions. In fractional calculus, powers of the differentiation 

operator can be real or complex numbers. Here, differentiation and integration are not treated in 

different ways, rather, they are generalized. 

 

2.4.1 History of Fractional Calculus 

 

Calculus was built from infinitesimal analysis, first by Isaac Newton during the 17th century (Boyer 

et al., 1970). Gottfried Wilhelm von Leibniz again, independently, made the same discovery during 

the period 1673-1676. Leibniz first introduced the idea of a symbolic method and used the symbol 

𝑑𝑛𝑦 𝑑𝑥𝑛⁄ = 𝐷𝑛𝑦 for the n-th derivative, where n is a non-negative integer (Boyer et al., 1970).  
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Leibniz asked Guillaume François Antoine, Marquis de l'Hôpital in a letter, ‘Can the meaning of 

derivatives with integer order be generalized to derivatives with non-integer orders?’ L'Hôpital 

replied by another question to Leibnitz, ‘What if the order will be ½?’. On September 30, 1695 

Leibnitz replied in a letter, ‘You can see by that, sir, that one can express by an infinite series a 

quantity such as 𝑑1 2⁄ 𝑥̅𝑦̅ or 𝑑1:2𝑥̅𝑦̅. Although infinite series and geometry are distant relations, 

infinite series admits only the use of exponents which are positive and negative integers, and does 

not, as yet, know the use of fractional exponents.’ Later, in this letter, he continues prophetically, 

‘Thus it follows that 𝑑1 2⁄ 𝑥 will be equal to 𝑥√𝑑𝑥: 𝑥. This is an apparent paradox from which, one 

day, useful consequences will be drawn.’ This date, September 30, 1695, can be said to be the 

exact birthday of fractional calculus (Machado et al., 2010; Leibniz et al., 1965; Ross, 1977). 

Leibniz mentions derivatives of ‘general order’ in a letter to Johann Bernoulli in the same year 

(Leibniz, 1695; Ross, 1977).  

 

In 1697, in a letter to John Wallis (1616-1703), Leibniz discusses Wallis’s infinite product for 𝜋/2 

and states that differential calculus might have been used to achieve this result. He uses the notation 

𝑑1 2⁄ 𝑦 to denote the derivative of order 1/2 (Leibniz, 1697; Ross, 1977).  

 

In 1730 Leonhard Euler wrote, “When n is a positive integer, and if p should be a function of⁡x, 

the ratio dnp to dxn can always be expressed algebraically, so that if n⁡ = ⁡2 and p⁡ = ⁡ x3, then 

d2(x3) to d(x2) is 6x to 1. Now it is asked what kind of ratio can then be made if n be a fraction. 

The difficulty in this case can easily be understood. For if n is a positive integer dn can be found 

by continued differentiation. Such a way, however, is not evident if n is a fraction. But yet with 

the help of interpolation which I have already explained in this dissertation, one may be able to 

expedite the matter.” (Euler, 1738; Ross, 1977). Fractional calculus attracted Euler’s attention, and 

according to him, the result of the evaluation of dny dxn⁄  of the power function xm has a meaning 

for non-integer m.  

 

In 1772, Joseph-Louis Lagrange developed the law of exponents (indices) for differential operators 

of integer order. The law is that 
𝑑𝑚

𝑑𝑥𝑚
.
𝑑𝑛

𝑑𝑥𝑛
𝑦 =

𝑑𝑚+𝑛

𝑑𝑥𝑚+𝑛 𝑦. This is an indirect contribution to fractional 

calculus. Mathematicians were interested in finding an analogous rule that would hold true for 

https://en.wikipedia.org/wiki/Marquis
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arbitrary 𝑚 and 𝑛 (Ross, 1977). Pierre-Simon Laplace (1820) defined fractional derivatives by 

means of an integral.  

 

In 1819, Sylvestre François Lacroix first mentioned a derivative of arbitrary order in a text of 700 

pages in which he devoted less than two pages to this topic. Writing the n-th derivative of 𝑦 = 𝑥𝑚 

as 𝑑𝑛𝑦/𝑑𝑥𝑛 = (𝑚!/(𝑚 − 𝑛)!)𝑥𝑚−𝑛, where 𝑛 is a positive integer and 𝑚 ≥ 𝑛, he generalized the 

factorial using the gamma function and got 𝑑𝑛𝑦/𝑑𝑥𝑛 = (Γ(𝑚 + 1)/Γ(𝑚 − 𝑛 + 1))𝑥𝑚−𝑛, where 

𝑚 and 𝑛 may be fractional numbers. In particular, he calculated the derivative of order 1/2 of 𝑥 

by putting 𝑦 = 𝑥 and 𝑛 = 1/2 and found (𝑑
1

2𝑦/𝑑𝑥
1

2) = (Γ(2)/Γ(3/2))𝑥1/2 = 2√𝑥/√𝜋. 

Lacroix’s method did not give any information about the application of a derivative of arbitrary 

order (Ross, 1977; Lacroix, 1819).  

 

After Lacroix, Jean-Baptiste Joseph Fourier made mention of derivatives of arbitrary order. He 

obtained the integral representation for 𝑓(𝑥) as, 𝑓(𝑥) =
1

2𝜋
∫ 𝑓(𝛼)𝑑𝛼
+∞

−∞
∫ cos⁡[𝑝(𝑥 − 𝛼) +
+∞

−∞

𝑛𝜋/2]𝑑𝑝. 

 

For integer values of 𝑛, (𝑑𝑛/𝑑𝑥𝑛)𝑐𝑜𝑠𝑝(𝑥 − 𝛼) = 𝑝𝑛𝑐𝑜𝑠[𝑝(𝑥 − 𝛼) + 𝑛𝜋/2]. Fourier replaced 

formally 𝑛 with 𝑢, where 𝑢 is arbitrary, and obtained, (𝑑𝑢/𝑑𝑥𝑢)𝑓(𝑥) = (1/

2𝜋) ∫ 𝑓(𝛼)𝑑𝛼
+∞

−∞
∫ 𝑝𝑢cos⁡[𝑝(𝑥 − 𝛼) + 𝑢𝜋/2]𝑑𝑝
+∞

−∞
. In this way, he defined a fractional operation. 

According to Fourier, ‘The number 𝑢 which appears in the above will be regarded as any quantity 

whatsoever, positive or negative.’ (Fourier, 1822; Ross, 1977). 

 

The first use of fractional operations was made by Niels Henrik Abel in 1823. To solve an integral 

equation that arises in the formulation of the tautochrone (isochrone) problem, he used fractional 

calculus. This problem is about the determination of the shape of a frictionless plane curve through 

the origin in a vertical plane along which a particle of mass 𝑚 can fall in a time which is 

independent of the starting position (Debnath, 1995). In this problem, the constant time of slide is 

given by 𝑘 = ∫ (𝑥 − 𝑡)−
1

2
𝑥

0
𝑓(𝑡)𝑑𝑡. The function 𝑓(𝑡) in the integrand is unknown and needs to be 

determined. Abel wrote the right side of the equation as √𝜋(𝑑
−
1

2/𝑑𝑥−
1

2)𝑓(𝑥). He then operated on 
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both sides with (𝑑
1

2/𝑑𝑥
1

2) and obtained (𝑑
1

2/𝑑𝑥
1

2)𝑘 = √𝜋𝑓(𝑥). So now 𝑓(𝑥) can be determined 

from the fractional derivative of order ½ of the constant 𝑘. The derivative of a constant function 

may not always be equal to zero. This is an elegant solution according to mathematicians (Abel, 

1881).  

 

In 1832, Joseph Liouville published three large memoirs. He formally extended the formula for 

the derivative of integer order 𝑚, 𝐷𝑚𝑒𝑎𝑥 = 𝑎𝑚𝑒𝑎𝑥 to derivatives of arbitrary order 𝜐, 𝐷𝜐𝑒𝑎𝑥 =

𝑎𝜐𝑒𝑎𝑥. Arbitrary derivatives of a function 𝑓(𝑥) which can be expanded in a series, 𝑓(𝑥) =

∑ 𝑐𝑛𝑒
𝑎𝑛𝑥∞

𝑛=0  was assumed to be found by the formula,  𝐷𝜐𝑓(𝑥) = ∑ 𝑐𝑛𝑎𝑛
𝜐𝑒𝑎𝑛𝑥∞

𝑛=0 . This formula 

is referred to as Liouville’s first formula for fractional derivatives. Here, 𝜐 can be any number- 

rational, irrational, or complex. But 𝜐 cannot have a value for which the series does not converge. 

Liouville knew this restriction, and he formulated a second definition. He started with a definite 

integral, 𝐼 = ∫ 𝑢𝑎−1𝑒−𝑥𝑢𝑑𝑢,
∞

0
𝑎 > 0, 𝑢 > 0 to reach his second definition. This integral is related 

to the Euler integral of the second kind (the gamma function). Plugging in 𝑥𝑢 = 𝑡 gives 𝐼 =

∫ (𝑡𝑎−1𝑒−𝑡)𝑑𝑡/𝑥𝑎 ⁡
∞

0
= Γ(𝑎)/𝑥𝑎 or, 𝑥−𝑎 = (1/Γ(𝑎))𝐼. Then, he operated on both sides with 𝐷𝜐 

and got 𝐷𝜐𝑥−𝑎 = (1/Γ(𝑎))𝐷𝜐 ∫ 𝑢𝑎−1𝑒−𝑥𝑢𝑑𝑢⁡
∞

0
. Applying Liouville’s basic assumption, the 

arbitrary derivative was written as, 𝐷𝜐𝑥−𝑎 = ((−1)𝜐/Γ(𝑎)) ∫ 𝑢𝑎+𝜐−1𝑒−𝑥𝑢𝑑𝑢
∞

0
. Finally, 

Liouville’s second definition of a fractional derivative became, 𝐷𝜐𝑥−𝑎 = ((−1)𝜐Γ(𝑎 +

𝜐)/Γ(𝑎))𝑥−𝑎−𝜐. He successfully applied both formulas to problems in potential theory. The 

second definition has also limitation. It can’t be applied to all functions. However, it is useful for 

functions of the type 𝑥−𝑎.  

 

2.4.2 Physical Meanings of Fractional Derivatives 

 

Fractional derivatives are used extensively to model natural phenomena and to better fit 

experimental results, but their physical meanings are not yet well and lucidly understood. Some 

authors have tried to understand the physical meaning of fractional derivatives. Glӧckle and 

Nonnenmacher (1994) found the fractional relaxation equation to be a special type of non-

Markovian process. Schiessel and Blumen (1993) and Heymans and Bauwens (1994) showed that 
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fractional differential or integral equations are not mathematical artifacts, but rather they arise 

naturally when expressing the rheological behavior of a fractal model. Podlubny (2002) recently 

suggested physical and geometric interpretations of operations of fractional integration and 

differentiation. J. A. Tenreiro Machado, in 2003, presented a probabilistic interpretation of 

fractional-order derivatives, based on the Grunwald–Letnikov definition of fractional-order 

differentiation. 

 

Interpretation of initial conditions is another problem arising in modeling with fractional 

derivatives. Though initial conditions for the Caputo derivatives are expressed in terms of initial 

values of integer-order derivatives, Riemann-Liouville fractional derivatives require initial 

conditions expressed in terms of initial values of fractional derivatives of the unknown function 

(Podlubny 1999, Samko et al. 1993). Heymans and Podlubny (2006) showed that it is possible to 

attribute physical meaning to initial conditions expressed in terms of Riemann Liouville fractional 

derivatives, and the corresponding quantities can be obtained from measurements. They suggested 

to consider the “inseparable twin” of the function and relate them via a basic physical law, and 

measure the function’s initial values by measuring the corresponding values of its twin to express 

initial conditions in terms of fractional derivatives of the function. They also demonstrated that, in 

many instances of practical significance, zero initial conditions, which are used frequently in 

practice, appear in a natural way. Though in many cases it is possible to explain the physical 

meaning of initial conditions expressed in terms of fractional derivatives, the definite and general 

meaning of this language is still difficult to understand. 

 

2.5 Application of Fractional Derivatives in Modeling 

 

It is not a completely novel idea to use fractional calculus for describing dynamical processes in 

complex media mathematically. Fractional calculus has been applied mostly in electrochemistry 

to study AC response of rough electrodes. Oldham made significant contributions regarding the 

mathematical developments of fractional calculus in electrochemistry. Fractional derivatives were 

applied to model rheological properties of solids, frequency-independent quality factor 

Fennoscandian uplift, heat diffusion, and in other fields of research (Zhang, 2003; Bagley, 1986; 

Caputo, 1967; Körnig et al., 1989; Lemehaute, 1983; Hossain et al., 2011; Al-Mutairi et al., 2013; 
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Zaslavsky, 2002; Hilfer, 2000; Metzler et al., 2004). It was introduced to model sub/super-

diffusion transport in the absence and presence of an external field (Barkai et al., 2000; Metzler et 

al., 1999), tumor invasion (Iomin et al., 2004; Iomin, 2005, and 2006;), and studies related to the 

dynamics of interfaces between nanoparticles and substrate (Chow, 2005). Using fractional 

derivatives, one can consider memory of a property by definition (Park et al., 2000). Even though 

it seems to be more complicated, this approach can be applicable for all time and all distance 

regimes.  

 

2.5.1 Fluid Modeling with Fractional Derivatives 

 

Fractional calculus has been proven to be a successful tool to extensively describe the constitutive 

relationships of viscoelastic fluids. Generally, development of fractional-order derivative models 

of non-Newtonian fluids is initiated by replacing the time derivative of an integer order of a 

classical differential equation by the Riemann–Liouville or Caputo fractional calculus operators.  

 

Sloninsky (1967) modified the Kelvin-Voigt model by introducing fractional derivatives to 

describe the relaxation processes in polymers. Bagley and Torvik (1983) showed that models of 

viscoelastic materials developed using fractional differential equations of order 1/2 are in harmony 

with molecular theory. Friedrich (1991) established relaxation and retardation functions for the 

four-parameter Maxwell model. Material functions (complex moduli) of the modified Maxwell 

model were developed and compared with experimental results by Li and Jiang (1994). Bagley 

and Torvik (1986) generalized the standard solid model or Zener model using fractional 

differential equations. They determined the material functions and calculated the parameter range 

for thermodynamic admissibility. Friedrich (1992) and Glӧckle (1991) generalized the models 

further, respectively. The two models were compared with respect to their usefulness and 

thermodynamic compatibility by Friedrich (1993). Junqi and Ciqun (1996), Wenchang et al. 

(2002), and Mingyu and Wenchang (2001, 2002) analyzed various problems of rheology using 

fractional calculus. They found the fractional calculus approach to be more appropriate for 

viscoelastic fluids. Song and Jiang (1998) obtained a very good fit with experimental data for 

viscoelastic glue fluids by applying fractional calculus. Fractional derivatives can describe 
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viscoelastic behavior quite flexibly (Schiessel et al., 1995; Palade et al., 1999; Rossihin et al., 

2001). 

 

2.5.2 Applications in Ground-Water Flow 

 

Botha and Cloot (2006) generalised the classical Darcy law regarding the water flow as a function 

of a non-integer order derivative of the piezometric head. In Darcy’s law, the Darcy velocity at a 

given point and a given time was considered to be dependent on the piezometric head and/or its 

derivatives at that point or in the direct neighbourhood around that point at that time. They tried to 

catch the effect of the global spatial distribution of piezometric field and also its past history on 

the Darcy velocity at the point of consideration at a given time. The information relative to the 

direct neighbourhood of the specific point under consideration was regarded to have greater 

influence on the fluid flow than the information dealing with events taking place far away from 

that point by assigning a weighting factor. To take the effect of history into account, as it is not 

possible to know the history from time, the behaviour of the fluid particles situated at different but 

larger distances from the considered point was taken as an image of the behaviour of the fluid 

particles present at that point for different times in the past. To give more importance to 

contemporary history than the far past, a weighting factor contained in the integral model acts as 

a time filter. According to their work, the effect of the geometry of the flow was implicitly included 

in the model through the integral character of the equation. Then, the generalised Darcy law and 

the law of conservation of mass were combined to derive a new equation for groundwater flow. 

Numerical solutions of this equation for various fractional orders of the derivatives were compared 

with experimental data and Barker’s generalised radial flow model, for which a fractal dimension 

for the flow is assumed. It was found that Cloot and Botha’s model and Barker’s model had much 

in common. 

 

In the same line of ideas with Cloot and Botha (2006), Atangana (2014) derived a new equation 

for groundwater flow by combining the law of conservation of mass and generalized Darcy law 

regarding the water flow as a function of a noninteger order derivative of the piezometric head. 

They examined an approximate solution of the generalized groundwater flow equation via the 
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Frobenius method. The results obtained from his investigation showed better prediction compared 

to conventional groundwater flow equation. 

 

2.5.3 Applications in Flow Modeling in Petroleum Reservoir 

 

Generally, fractional derivatives are introduced in the flow model of viscoelastic fluids through 

porous media. Fractional calculus is also used to describe fractal geometry, fractional dimension, 

and flow through fractals.  

 

Le Mehaute (1984) shows how the fractional derivative must be introduced to describe an 

irreversible process in a fractal media that involves coupling relations between space and time. He 

proposed a fractional constitutive equation for describing transfer processes in fractal media. He 

developed a kinetic equation to describe irreversible phenomena using fractional derivatives. He 

incorporated the interfacial characteristics into the fractional derivative in space-time. His idea of 

representing the temporal anomalies in the transfer processes by a convolutional constitutive 

equation between fluxes and driving forces is interesting, though it cannot be applied to the more 

general problem of diffusion on fractals. 

 

Giona and Roman (1992) formulated a diffusion equation on fractals for a one-dimensional system 

in a very simple way within the framework of fractional calculus. Their approach is aimed at 

describing the average behaviour of the physical quantities on fractals only. They developed a one-

parameter family of general fractional-differential diffusion equations, which reproduce the 

asymptotic behaviour of fractional Brownian motion and the standard model. They solved the 

fractional equation in one dimension and compared with exact results for fractional Brownian 

motion and the one-dimensional version of the standard diffusion equation on fractals. 

 

Roman and Giona (1992) generalized their previously developed fractional diffusion equation in 

isotropic and homogenous fractal structures for d - dimensional Euclidean systems. They obtained 

the asymptotic behaviour of the probability density function exactly and derived analytical 

expressions for the scattering and relaxation functions.  
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Giona and Roman (1992a, and 1992b) considered the ‘standard’ diffusion equation on a fractal to 

be correct and represented the equation in terms of fractional derivatives. Their research shows 

that a fractional diffusion equation represents the ‘standard’ diffusion equation on a fractal 

accurately and more generally. Though they did not consider fractional derivatives as a tool to 

model independently diffusion on random fractal structures, their research shows that one can use 

fractional derivatives to model flow in fractal media accurately and generally. Their developed 

model contains the limitations of the ‘standard’ diffusion equation inherently, because they 

considered the ‘standard’ diffusion equation to be correct. 

 

Park et al. (2000) introduced fractional calculus in the flow equation for fluid in a fractal reservoir. 

They proposed a general mathematical formula for the analysis of pressure behaviour that is 

applicable for the whole spatio-temporal domain in the fractal reservoir. The model captures the 

history and nonlocality of transport. They derived a new general constant-flow-rate solution, which 

is applicable to whole spatio-temporal ranges, using the Fox H-function. They find that the 

fractional calculus approach agrees with real fractal reservoirs, particularly that the described 

pressure behavior of the early-time stages is more accurate. However, they considered 

compressibility and density to be independent of the position of the media. Additional analysis for 

various field data and numerical studies is still required. 

 

Tong et al. (2004) established relaxation models of non-Newtonian viscoelastic fluids with 

fractional derivatives in fractal reservoirs. They studied flow characteristics by using the integral 

transform, the discrete Laplace transform of sequential fractional derivatives and the generalized 

Mittag-Leffler function. They obtained exact solutions for arbitrary fractional-order derivatives 

and also long-time and short-time asymptotic solutions for an infinite reservoir. The pressure 

transient behavior of non-Newtonian viscoelastic fluid flow through an infinite fractal reservoir 

was studied by using Stehfest's inversion method for the numerical Laplace 

transform. Their research shows that the clearer the viscoelastic characteristics of the fluid, the 

more the fluid is sensitive to the order of the fractional derivative. 

 

Tian et al. (2006) introduced fractional derivatives into the study of non-Newtonian fluids in 

porous media and fractal reservoirs. They studied the flow by using the finite integral transform, 
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the discrete Laplace transform of sequential fractional derivatives, and the generalized Mittag-

Leffler function. They obtained exact solutions for arbitrary fractional-order derivatives. The long-

time and short-time asymptotic solutions for an infinite reservoir were also obtained. The pressure 

transient behavior of fluids flowing through an infinite fractal reservoir was studied using 

Stehfest’s inversion method for the numerical Laplace transform. They showed that the order of 

the fractional derivative affects the whole pressure behavior, particularly that the effect of pressure 

behavior at the early-time stage is larger. 

 

Shan et al. (2009) established relaxation models of non-Newtonian viscoelastic fluids in dual 

porous media. They studied the flow characteristics using the Hankel transform, the discrete 

Laplace transform of sequential fractional derivatives, and the generalized Mittag-Leffler function. 

They obtained exact solutions for arbitrary fractional-order derivatives and also showed results of 

long-time and short-time asymptotic solutions for an infinite reservoir. The pressure transient 

behavior of non-Newtonian viscoelastic fluid flow through an infinite dual porous media was 

studied using Stehfest’s inversion method for the numerical Laplace transform. Their research 

shows that the characteristics of the fluid flow are appreciably affected by the order of the 

fractional derivative. 

 

Suzuki et al. (2010) employed fractional advection-dispersion equations (fADE) to describe non-

Fickian mass transport in fractured rock masses. The fractional time derivative in fADE was 

responsible for the variance of travel time in the tracer responses, resulting in the non-Fickian 

transport. Their research supports that fADE can be used for characterizing complex fluid flow in 

geothermal reservoirs. 

 

2.6 Discussions and Future Directions 

 

Due to difficulty in describing pore space, difficulty in observing detailed processes occurring in 

the pore space, and the high cost of CT scanning, a general mathematical model is required that 

would act as a platform to represent different types of flow of different fluids in different 

reservoirs, would have low computational time, and would capture the majority of the processes 

occurring in a reservoir. Memory functions and fractional derivatives come to the model to capture 
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the effects of history and the effects of other processes within the reservoir that are not captured 

explicitly. This development of general models could be an exciting research topic for future 

researchers. 

 

2.7 Conclusions 

 

Memory, an important characteristic of rock and fluids, has been reviewed and defined. Models 

that incorporate memory have been reviewed. Fractional derivatives and their physical meaning 

have been studied, and their application in incorporating memory is discussed. Finally, the 

necessity of a general memory-based model is realized and recommended. 
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Chapter 3 

 

Numerical Modeling of a Memory- based Diffusivity Equation Using the 

Riemann-Liouville Definition of the Fractional-Order Derivative and Uniform 

Meshes 
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3.1 Abstract 

 

Fractional order derivatives, that arise in the diffusion equation to incorporate memory make the 

equation complex and more challenging to solve analytically and numerically than the 

conventional diffusion equation. In this paper, a numerical model utilizing the Riemann-Liouville 

definition of the fractional-order derivative is developed for a time-fractional non-linear diffusion 

equation. Uniform meshes in both space and time have been used. The equation is also solved 

analytically for Dirichlet boundary conditions and for an initial condition to validate the numerical 
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model. Numerical and analytical solutions are compared, and it is found that the numerical and 

analytical solutions match with negligible error, calculated at a fixed final time for different 

numbers of time steps. The error results affirm that the discretization method used in the numerical 

model is consistent, but less than first order accurate in time. The effects of the fractional order on 

the error are significant, with increasing as the value of the fractional order is increased. The model 

can be used to investigate the effect of the fractional order on the solution of the diffusion equation. 

 

Keywords: Memory, Numerical Modeling, Fractional diffusion equation, Riemann-Liouville 

definition, Uniform mesh. 

 

3.2 Introduction 

 

Modeling and simulation of porous media flow is important for development and recovery of 

petroleum resources. Numerous models and ways to look at subsurface flow phenomena have been 

developed over more than the past fifty years. Recent years have seen interest in investigation of 

the effects of history of rock, fluid, fluid flow, and its implication on flow through porous media, 

commonly referred as memory of rock, fluid, and fluid flow. Memory incorporation makes the 

governing equations intricate and solving these equations becomes more challenging. 

 

The ‘memory’ idea is relatively new and growing in petroleum engineering. Zavala-Sanchez et al. 

(2009) showed that a system “remembers” its initial state, which defines memory effects for the 

effective transport coefficients. Hossain and Abu-Khamsin (2012) defined memory as the effect 

of past events on the present and future course of developments. Hossain (2006) considers the 

memory of the fluid as one of the most important and most neglected feature in fluid flow models. 

In this direction, Hossain et al. (2008) proposed the following diffusivity equation 

 

 
𝜕

𝜕𝑥
[
𝜌𝑘

𝜇
𝛵𝛼

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜌𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
 ,                                                                                              (3.1) 

 



46 

 

where 𝑝(𝑥, 𝑡) is the pressure, 𝜌(𝑥, 𝑡) the fluid density, 𝜙(𝑥, 𝑡) the porosity of the fluid medium, 

𝑘(𝑥, 𝑡) the permeability of the medium, 𝜇(𝑥, 𝑡) the dynamic viscosity of the fluid, 𝑐𝑡(𝑥, 𝑡) the total 

compressibility of the system, 𝛼 the fractional order of differentiation and 𝛵 the characteristic time. 

 

The fractional-order derivative is introduced into the mathematical model when memory is 

incorporated. There is no simple physical or geometric interpretation of the fractional-order 

derivative. Fractional derivatives have been suggested because they have been shown in some 

cases to improve the ‘fit’ between measured physical data and numerical models. However, the 

discretization of fractional derivative gives some sensible physical meaning and relation to the 

physical world. The expression found after discretizing the fractional-order derivative term 

includes discrete history terms that tells that history can be incorporated using fractional-order 

derivatives.   

 

Derivation of numerical solutions to fractional order differential equations is challenging because 

of their non-local behaviour. However, a number of studies on numerical approaches to the 

solution of fractional diffusion equations have appeared in the literature. Shen et al. (2005) 

proposed an explicit finite-difference approximation for a space-fractional diffusion equation. 

Tadjeran et al. (2006) used the Crank–Nicholson method combined with spatial extrapolation to 

obtain temporally and spatially second-order accurate numerical estimates for a fractional 

diffusion equation. Liu et al. (2011) developed a meshless approach using the L1 approximation 

for the time-fractional derivative and radial basis function (RBF) approximation for the spatial 

discretization. Sun and Wu (2006) constructed a finite-difference scheme for fractional diffusion-

wave systems. Sweilam et al. (2012) applied the Crank-Nicolson finite-difference method to solve 

a time-fractional diffusion equation. A variational iteration method and the Adomian 

decomposition method were used by Monami et al. (2006) to solve linear fractional partial 

differential equations. Langlands and Henry (2005) discussed a fractional diffusion equation with 

Neumann boundary conditions. Cui (2009), Du et al. (2010) and Gao et al. (2011) presented high 

spatial accuracy schemes for fractional sub-diffusion and super-diffusion equations. 

 

Instead of treating the fractional order derivative by its definition and discretizing the term that 

contains the fractional-order derivative, Hossain et al. (2008) considered the term as a parameter 
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and then solved the equation numerically in the way that an integer-order partial differential 

equation is solved. Hence their numerical solution is not accurate in the mathematical sense. The 

solution of this fractional-order diffusivity equation is important because it shows the way to solve 

other fractional-order diffusivity equations. 

 

In this paper, the model of Hossain et al. (2008) is solved numerically using the Riemann-Liouville 

definition of the fractional-order derivative. The L1 algorithm (Oldham et al., 1974) that uses the 

Riemann-Liouville definition for the fractional-order derivative is applied to discretize the 

diffusivity equation. 

 

The mathematical model is discretized using uniform meshes in both space and time. For some 

positive numbers 𝑋, and 𝑇, and positive integers 𝑁𝑥, and 𝑁𝑡, the grid sizes in space and time are 

defined by ∆𝑥 = 𝑋/𝑁𝑥 and ∆𝑡 = 𝑇/𝑁𝑡 respectively. The grid points in the space interval [0, 𝑋] 

are given by 𝑥𝑖 = 𝑖∆𝑥, 𝑖 = 0, 1, 2, … , 𝑁𝑥, and the grid points in the time interval [0, 𝑇] are labeled 

𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 0, 1, 2, … , 𝑁𝑡. The value of the function 𝑝 at the grid points is denoted by 𝑝𝑖
𝑛 =

𝑝(𝑥𝑖, 𝑡𝑛).  

 

3.3 Discretization and Numerical Solution Algorithm for Riemann-Liouville Definition 

 

Denoting 𝐶1(𝑥, 𝑡) =
𝜌𝑘

𝜇
𝛵𝛼 and 𝐶2(𝑥, 𝑡) = 𝜌𝜙𝑐𝑡 in Eq. (3.1) gives 

 

 
𝜕

𝜕𝑥
[𝐶1(𝑥𝑖, 𝑡𝑛)

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)]

𝑖

𝑛

= 𝐶2(𝑥𝑖, 𝑡𝑛)
𝜕𝑝𝑖

𝑛

𝜕𝑡
 .                                                                       (3.2) 

 

Discretizing this using implicit Euler in time and centred differences in space, writing 𝐹
𝑖±

1

2

𝑛 =

[𝐶1
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)]

𝑖±
1

2

𝑛

 gives 

 

 
1

∆𝑥
(𝐹

𝑖+
1

2

𝑛 − 𝐹
𝑖−

1

2

𝑛 ) = 𝐶2(𝑥𝑖, 𝑡𝑛)
𝑝𝑖
𝑛−𝑝𝑖

𝑛−1

∆𝑡
 .                                                                           (3.3) 
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To represent the fractional derivative, we use the L1 algorithm (Oldham et al., 1974), writing 

 

 
𝜕𝛼𝑢(𝑥𝑖,𝑡𝑛)

𝜕𝑡𝛼
=

𝑡𝑛
−𝛼𝑛𝛼

Γ(2−𝛼)
[
1−𝛼

𝑛𝛼
𝑢(𝑥𝑖, 0) 

                           +∑ {𝑢 (𝑥𝑖, 𝑡𝑛 −
𝑗𝑡𝑛

𝑛
) − 𝑢 (𝑥𝑖, 𝑡𝑛 −

(𝑗+1)𝑡𝑛

𝑛
)} {(𝑗 + 1)1−𝛼 − 𝑗1−𝛼}𝑛−1

𝑗=0 ] .        (3.4) 

 

Using this, 𝐹
𝑖+

1

2

𝑛  and 𝐹
𝑖−

1

2

𝑛  can be written as 

 

 𝐹
𝑖+

1

2

𝑛 ⁡=
1

∆𝑥
𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛) 𝜎𝛼,∆𝑡[
1−𝛼

𝑛𝛼
(𝑝𝑖+1

0 − 𝑝𝑖
0) + 𝑝𝑖+1

𝑛 − 𝑝𝑖
𝑛 − 𝑝𝑖+1

𝑛−1 + 𝑝𝑖
𝑛−1  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∑ 𝜔𝑗
(𝛼)
(𝑝𝑖+1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗
− 𝑝𝑖+1

𝑛−𝑗−1
+ 𝑝𝑖

𝑛−𝑗−1
)𝑛−1

𝑗=1 ] ,                 (3.5) 

 

 𝐹
𝑖−

1

2

𝑛 =
1

∆𝑥
𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) 𝜎𝛼,∆𝑡[
1−𝛼

𝑛𝛼
(𝑝𝑖

0 − 𝑝𝑖−1
0 ) + 𝑝𝑖

𝑛 − 𝑝𝑖−1
𝑛 − 𝑝𝑖

𝑛−1 + 𝑝𝑖−1
𝑛−1    

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∑ 𝜔𝑗
(𝛼)
(𝑝𝑖

𝑛−𝑗
− 𝑝𝑖−1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗−1
+ 𝑝𝑖−1

𝑛−𝑗−1
)𝑛−1

𝑗=1 ] ,                  (3.6) 

 

where 

 

 𝜔𝑗
(𝛼)

= (𝑗 + 1)1−𝛼 − 𝑗1−𝛼 ,                                                                                              (3.7) 

 

 𝜎𝛼,∆𝑡 =
1

∆𝑡𝛼Γ(2−𝛼)
 .                                                                                                             (3.8) 

 

Substitution of Eq. (3.5) and (3.6) into Eq. (3.3), and rearrangement, gives 

 

 −𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) 𝑝𝑖−1
𝑛 + [𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) + 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) +
𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥

2

𝜎𝛼,∆𝑡∆𝑡
] 𝑝𝑖

𝑛 −

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) 𝑝𝑖+1
𝑛 =

𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥
2

𝜎𝛼,∆𝑡∆𝑡
𝑝𝑖
𝑛−1 + 𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛) 𝐺𝑖
𝑛 − 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)𝐻𝑖
𝑛 +

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛)
1−𝛼

𝑛𝛼
(𝑝𝑖+1

0 − 𝑝𝑖
0) − 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)
1−𝛼

𝑛𝛼
(𝑝𝑖

0 − 𝑝𝑖−1
0 ) ,                                                      (3.9) 
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where 

 

 𝐺𝑖
𝑛 = −𝑝𝑖+1

𝑛−1 + 𝑝𝑖
𝑛−1 + ∑ 𝜔𝑗

(𝛼)
(𝑝𝑖+1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗
− 𝑝𝑖+1

𝑛−𝑗−1
+ 𝑝𝑖

𝑛−𝑗−1
)𝑛−1

𝑗=1  ,                     (3.10) 

 

 𝐻𝑖
𝑛 = −𝑝𝑖

𝑛−1 + 𝑝𝑖−1
𝑛−1 + ∑ 𝜔𝑗

(𝛼)
(𝑝𝑖

𝑛−𝑗
− 𝑝𝑖−1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗−1
+ 𝑝𝑖−1

𝑛−𝑗−1
)𝑛−1

𝑗=1  .                     (3.11) 

 

Fig. 3.1 shows the computational algorithm for the numerical model. Using the Riemann-Liouville 

definition of the fractional-order derivative, Eq. (3.9) is written for each grid-point and, then, the 

coupled system of equations is solved. Here a problem arises to solve the equation. The pressures, 

the solution of the equation, depend on the calculation of the density, permeability, viscosity, 

porosity, and compressibility, which themselves depend on these pressures.  

 

To get rid of this dilemma an iterative scheme (fixed-point iteration) is used to update the density, 

permeability, viscosity, porosity, and compressibility. The approach is illustrated qualitatively by 

 

𝐴(𝜌, 𝑘, 𝜇, 𝜙, 𝑐𝑡)
𝑛,𝑧⁡𝑝𝑛,𝑧+1 = 𝑅𝐻𝑆𝑛,𝑧 . 

 

For each time step, and each inner iteration, the pressure, density, permeability, viscosity, porosity, 

and compressibility data are assumed known from the most recent computational value. At the 

start of a new time step, the most recent value is that from the solution at the previous time step, 

while during a given time step, it is that from the last iteration. The coefficients are updated using 

the new values of pressure as the pressures are updated and this process is continued. The iteration 

process terminates when the convergence criterion is satisfied. A MATLAB program has been 

written based on Eq. (3.9) to numerically solve Eq. (3.1). 

 

3.4 Analytical Solution 

 

To validate this algorithm, we consider the case where 𝐶1 = 𝐶2 = 1, and find the analytical 

solution of Eq. (3.1). For 𝐶1 = 𝐶2 = 1, the equation becomes linear. Initial and boundary 

conditions are taken as 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0 respectively.  
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Figure 3.1: Computational algorithm to solve the numerical model. 
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Utilizing the Riemann-Liouville definition for the fractional-order derivative, the analytical 

solution of Eq. (3.1) is found as (details shown in Appendix, Eq. A 3.19) 

 

 𝑝(𝑥, 𝑡) = 𝐸1−𝛼(−𝜋
2𝑡1−𝛼)𝑠𝑖𝑛⁡(𝜋𝑥) ,                                                                              (3.12) 

 

where 𝐸1−𝛼(𝑠) is the Mittag-Leffler function, and is defined for (1 − 𝛼) > 0 as 

 

 𝐸1−𝛼(𝑠) = ∑
𝑠𝑘

Γ((1−𝛼)𝑘+1)

∞
𝑘=0  .                                                                                            (3.13) 

 

3.5 Results and Discussion 

 

Finding analytical solution of Eq. (3.1) for initial and boundary conditions used in real field 

applications is very difficult. Numerical model can be helpful in this regard to find the solutions. 

However, it is required to validate the numerical model before using it to find the solutions. In this 

section, the validation of the developed numerical model has been checked. In addition, the order 

of temporal and spatial accuracies of the developed model have been investigated. 

  

3.5.1 Validation of Numerical Models 

 

Numerical solutions are compared with analytical solutions to validate the numerical models. The 

initial condition, 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and boundary conditions, 𝑝(0, 𝑡) = 0, 𝑝(1, 𝑡) = 0, are used 

for the numerical solution as they are used in the analytical solution. The solutions at 201 equally 

spaced time steps between 𝑡 = 0 and 𝑡 = 1 are shown in Fig. 3.2 and Fig. 3.3. Fig. 3.2 shows the 

solutions for 𝛼 = 0 and Fig. 3.3 shows the solutions for 𝛼 = 0.25. The analytical and numerical 

solutions match very well for 𝛼 = 0. For 𝛼 = 0.25, numerical solutions deviate slightly from the 

analytical solution for the chosen values of 𝑁𝑥 and 𝑁𝑡. 

 

Error values are also computed for different numbers of steps in space and time, and for different 

𝛼 values. Fig. 3.4 presents the change in error with number of time steps for 𝛼 =

0, 0.1, 0.25, 0.50, 0.75,⁡and⁡0.90, where the one-dimensional space is divided into 50, and 100 



52 

 

grid-points. In general, the error decreases linearly with the increase in number of time steps with 

good rate initially. With the increase of number of time steps, the error becomes smaller and the 

rate of change of the error decreases, until the error values reach a plateau before other errors start 

to dominate. The trend in error with the number of time steps implies that the numerical model is 

consistent. Order of temporal accuracies are computed for different values of fractional order, 𝛼, 

and are shown in Table 3.1. Table 3.1 shows that the numerical model is (1 − 𝛼)th-order accurate 

in time. For large values of 𝛼, increasingly many points in time are needed to achieve fixed 

accuracy. Also, notable in this figure is that the error increases with higher 𝛼 values. 

   

Fig. 3.4 also depicts that the error decreases with the increase of number of grid-points in space. 

At very small number of time steps, the differences between error found from 50 and 100 spatial 

grid-points is insignificant. However, at large numbers of time steps, the differences seen are 

substantial, reflect smaller spatial discretization error with 𝑁𝑥 = 100. 

 

 

 
 

Figure 3.2: Comparison between analytical and numerical solutions for 𝛼 = 0 in RL case. 
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Figure 3.3: Comparison between analytical and numerical solutions for α = 0.25 in RL case. 

 

 

 

 
 

Figure 3.4 Comparison of the error values for different 𝛼 and 𝑁𝑥. 
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Table 3.2 shows the error values found using different numbers of grid-points in space and 

different 𝛼 values for 200 time steps. Here, the change in error with the change in number of grid-

points in space is very small. Since the discretization is first-order in time (for 𝛼 = 0) and second-

order in space (for 𝛼 = 0), the errors in this table are dominated by the temporal discretization 

error. Table 3.3 shows the error values using different numbers of time steps and different 𝛼 values 

for 200 grid-points in space. Increasing the number of grid-points in space and/or number of time 

steps decreases the error. However, the rate of decrease in error is not the same in the two cases. 

The change observed in the error with changing in number of grid-points in space and time steps 

implies that the numerical model here is consistent. The tabulated values also show that the 

deviation of the numerical solution from the analytical solution increases with the increase in the 

value of 𝛼. 

 

Table 3.4 shows the order of spatial accuracies computed for different values of fractional order, 

𝛼. Order of accuracies for 𝑁𝑡 = 12800, 25600, and 51200 are calculated using the error values 

for  𝑁𝑥 = 10, 20, and⁡40. It is found from Table 3.4 that the numerical model here is second-order 

accurate in space for 𝛼 = 0. 

 

Considering 𝛼 = 0, ∆𝑥 = 0.01,⁡and⁡∆𝑡 = 0.0001, the error value 5.6726×10−7 is achieved. We 

now consider the maximum values of length of time step needed to get the same error for ∆𝑥 =

0.00025 and for different 𝛼 values. It is found that the maximum values of length of time step, 

∆𝑡 ≤ 1×10−7 for 𝛼 = 0.1, ≤ 1×10−9 for 𝛼 = 0.25, and ≤ 1×10−14 for 𝛼 = 0.5. 

 

These results satisfy Theorem 2 provided by Gracia et al. (2017), that, if translated to our notation, 

states that the finite difference solution to the time-fractional heat equation is accurate to 𝑂(ℎ2) in 

space, but only 𝑂(𝑡1−𝛼) in time.  
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Table 3.1 Order of temporal accuracy. 
 

Value of fractional 

order, 𝜶 

Order of temporal accuracy 

𝑵𝒙 = 𝟓𝟎 𝑵𝒙 = 𝟏𝟎𝟎 

0 0.9946 1.0256 

0.10 0.8889 0.9042 

0.25 0.7496 0.7535 

0.50 0.5006 0.5009 

0.75 0.2501 0.2502 

0.90 0.1000 0.1000 

 

 

 

Table 3.2 Error values for different number of spatial steps and 𝛼 (No. of time steps = 200). 
 

Total length of space = 1, Total time = 1, Number of time steps = 200 

No. of grid-

points in space 

Absolute Error 

𝜶 = 𝟎 𝜶 = 𝟎. 𝟐𝟓 𝜶 = 𝟎. 𝟓𝟎 

50 1.395695e-05 3.927319e-03 3.282228e-02 

100 1.380472e-05 3.918687e-03 3.280845e-02 

200 1.376672e-05 3.916529e-03 3.280499e-02 

400 1.375721e-05 3.915990e-03 3.280413e-02 

800 1.375481e-05 3.915855e-03 3.280391e-02 

1600 1.375395e-05 3.915818e-03 3.280385e-02 

3200 1.375051e-05 3.915796e-03 3.280383e-02 

6400 1.373193e-05 3.915752e-03 3.280381e-02 
 

 

 

Table 3.3 Error values for different number of time steps and 𝛼 (No. of spatial steps = 200). 
 

Total length of space = 1, Total time = 1, Number of spatial steps = 200 

No. of time steps Absolute Error 

𝜶 = 𝟎 𝜶 = 𝟎. 𝟐𝟓 𝜶 = 𝟎. 𝟓𝟎 

200 1.376672e-05 3.916529e-03 3.280499e-02 

400 6.594127e-06 2.319126e-03 2.317149e-02 

800 3.230522e-06 1.374807e-03 1.637395e-02 

1600 1.602791e-06 8.156872e-04 1.157351e-02 

3200 8.022427e-07 4.843112e-04 8.181768e-03 

6400 4.052734e-07 2.877807e-04 5.784659e-03 
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Table 3.4 Order of spatial accuracy. 

 

𝑵𝒕 Order of spatial accuracy 

𝜶 = 𝟎 𝜶 = 𝟎. 𝟏𝟎 𝜶 = 𝟎. 𝟐𝟓 

12800 1.8587 1.6168 0.9162 

25600 1.9447 1.7756 1.1657 

51200 1.9913 1.8758 1.3968 

102400 2.0156 1.9347 1.5882 
 

 

3.5.2 Significance of the Model and Sensitivity Analysis 

 

It is difficult to interpret analytical solutions of the time fractional diffusion equation for some 

initial and boundary conditions. This model can help to numerically solve the equation for any 

initial and boundary conditions. The model also gives us an idea about the effect of the fractional 

order values on the solution. The solutions of Eq. (3.1) for different 𝛼 values are shown in Fig. 3.5 

considering (𝜌𝑘/𝜇)𝛵𝛼 = 1,⁡and⁡𝜌𝜙𝑐𝑡 = 1. Initial and boundary condition are taken as 𝑝(𝑥, 0) =

𝑠𝑖𝑛⁡(𝜋𝑥), and 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0 respectively. It is found that, with the increase of the 𝛼 value, 

the numerical values of the solutions also increase within the range of 0 ≤ 𝛼 < 1. The equation 

gives different numerical solutions based on its fractional order while keeping the other parameters 

constant. Field data shall be used to determine the value of fractional order to accurately model 

flow phenomenon. From the value of fractional order, the dependence of flow phenomenon on 

history can be quantified.   
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Figure 3.5 Solutions of the time fractional diffusion equation for different α values. 

 

3.6 Conclusions 

 

Numerical models are developed to solve a time-fractional diffusion equation applying the 

Riemann-Liouville definition for the fractional-order derivative. Uniform mesh spacing in both 

space and time has been used. The numerical model is validated comparing with an analytical 

solution. From the error analysis, it can be concluded that the numerical model is consistent, and 

(1 − 𝛼)th-order accurate in time. The differences among the analytical and numerical solutions 

increase with the increment of fractional order, 𝛼. It is also found that the solution of the diffusion 

equation increases in size with the increase of 𝛼 value. 
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Appendix 

 

Analytical Solution 

 

Considering unit value for all the coefficients of Hossain et al.’s equation, Eq. (3.1) can be written 

as 

 

 
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕𝑝

𝜕𝑡
 .                                                                                                          (A 3.1) 

 

Take, 𝑝(𝑥, 𝑡) = 𝑓(𝑡)𝑠𝑖𝑛⁡(𝜋𝑥) with 𝑓(0) = 1 .  

 

This gives  

 

 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) ,                                                                                                     (A 3.2) 

 

 𝑝(0, 𝑡) = 0 ,                                                                                                                  (A 3.3) 

 

 𝑝(1, 𝑡) = 0 .                                                                                                                  (A 3.4) 

 

Then, 
𝜕𝑓

𝜕𝑡
𝑠𝑖𝑛⁡(𝜋𝑥) = −𝜋2 (

𝜕𝛼

𝜕𝑡𝛼
𝑓(𝑡)) 𝑠𝑖𝑛⁡(𝜋𝑥) ,                                                                    (A 3.5) 

 

 𝑜𝑟,
𝜕𝑓

𝜕𝑡
= −𝜋2

𝜕𝛼𝑓(𝑡)

𝜕𝑡𝛼
,⁡⁡⁡[𝑓(0) = 1] .                                                                              (A 3.6) 

 

Taking the Laplace Transform in time 

 

 ℒ [
𝜕𝑓

𝜕𝑡
] = 𝑠𝐹(𝑠) − 𝑓(0) = 𝑠𝐹(𝑠) − 1 .                                                                         (A 3.7) 

 

For the Riemann-Liouville definition of the fractional order derivative, 
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 ℒ [
𝜕𝛼𝑓

𝜕𝑡𝛼
] = 𝑠𝛼𝐹(𝑠) − [𝐷𝛼−1𝑓(𝑡)]𝑡=0 ,                                                                           (A 3.8) 

 

where 𝐷𝛼−1𝑓(𝑡) represents the derivative of 𝑓(𝑡) of order 𝛼 − 1.  

 

Take [𝐷𝛼−1𝑓(𝑡)]𝑡=0 = 𝑐 .                                                                                                      (A 3.9) 

 

We get  

 

 𝑠𝐹(𝑠) − 1 = −𝜋2(𝑠𝛼𝐹(𝑠) − 𝑐) ,                                                                               (A 3.10) 

 

 𝑜𝑟, 𝐹(𝑠) =
1+𝜋2𝑐

𝑠+𝜋2𝑠𝛼
=

(1+𝜋2𝑐)𝑠−𝛼

𝑠1−𝛼+𝜋2
 .                                                                                (A 3.11) 

 

It is known that 

 

 ℒ[𝑥𝑐1−1𝐸𝑐2,𝑐1(𝑐3𝑥
𝑐2)] =

𝑠𝑐2−𝑐1

𝑠𝑐2−𝑐3
 ,                                                                                 (A 3.12) 

 

where 𝐸 represents the generalized Mittag-Leffler function. 

 

Comparing 
𝑠𝑐2−𝑐1

𝑠𝑐2−𝑐3
 with 

(1+𝜋2𝑐)𝑠−𝛼

𝑠1−𝛼+𝜋2
 we get 𝑐2 = 1 − 𝛼, 𝑐1 = 1, 𝑐3 = −𝜋2 . 

 

Therefore, 𝑓(𝑡) = (1 + 𝜋2𝑐)𝐸1−𝛼,1(−𝜋
2𝑡1−𝛼) .                                                                (A 3.13) 

 

Recognizing 𝐷𝛼−1𝑓 = 𝐼1−𝛼𝑓,⁡⁡⁡⁡⁡since⁡𝛼 − 1 < 0,                                                            (A 3.14) 

 

where 𝐼1−𝛼𝑓 represents the integral of 𝑓 of order (1 − 𝛼), we have 

 

 𝐼1−𝛼(𝐸1−𝛼(𝜆𝑡
1−𝛼)) =

1

𝜆
(𝐸1−𝛼(𝜆𝑡

1−𝛼) − 1)                                              (A 3.15) 

 



62 

 

 𝑜𝑟, 𝐷𝛼−1𝑓(𝑡) =
(1+𝜋2𝑐)

−𝜋2
(𝐸1−𝛼(−𝜋

2𝑡1−𝛼) − 1)                                                         (A 3.16) 

 

 𝑜𝑟, [𝐷𝛼−1𝑓(𝑡)]𝑡=0 =
(1+𝜋2𝑐)

−𝜋2
(𝐸1−𝛼(0) − 1) = 𝑐 .                                                     (A 3.17) 

 

But 𝐸1−𝛼(0) =
1

Γ(1)
= 1, Hence, 𝑐 = 0 .    

 

Therefore, 𝑓(𝑡) = 𝐸1−𝛼(−𝜋
2𝑡1−𝛼) .                                                                                   (A 3.18) 

 

Therefore, the analytical solution of Eq. (A 3.1) is 

 

 𝑝(𝑥, 𝑡) = 𝐸1−𝛼(−𝜋
2𝑡1−𝛼)𝑠𝑖𝑛⁡(𝜋𝑥) .                                                                          (A 3.19) 
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Chapter 4 

 

Comparison among Proposed Numerical Models Using the Riemann-

Liouville, Caputo, and Grünwald-Letnikov Definitions of the Fractional-

Order Derivative for a Memory- based Diffusivity Equation 
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T. U. Zaman, S. MacLachlan, and M. E. Hossain (in preparation). “Comparison among numerical 

models of a memory- based radial diffusivity equation developed using the Riemann-Liouville, 

Caputo, and Grünwald-Letnikov definitions of the fractional-order derivative.”  

 

The research work presented in this chapter was conducted by Tareq Uz Zaman under the direction 

and supervision of M. Enamul Hossain, and the guidance and close supervision of Scott 

MacLachlan.  The manuscript itself was written by Tareq Uz Zaman and reviewed by M. Enamul 

Hossain and Scott MacLachlan. 

 

4.1 Abstract 

 

Unlike the conventional diffusivity equation, memory- based diffusivity equations use fractional-

order derivatives that make the equations complicated and difficult to solve, both analytically and 

numerically, compared to the conventional diffusivity equation. In this paper, a numerical model 

that utilizes the Caputo definition of the fractional-order derivative, is developed for a time-

fractional non-linear diffusion equation. Analytical solution of the equation is derived for Dirichlet 

boundary conditions and for an initial condition to validate the numerical model. Numerical and 
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analytical solutions are compared and it is found that numerical and analytical solutions match 

with negligible error. Deviation of the numerical solution from the analytical solution gets larger 

with increases in the value of the fractional order, 𝛼. The time-fractional non-linear diffusion 

equation is also solved using the Grünwald-Letnikov definition of the fractional-order derivative. 

The Grünwald-Letnikov definition of the fractional-order derivative is itself a numerical 

algorithm, hence, validation by analytical solution is not required in this case. Numerical solutions 

found using the Caputo and Grünwald-Letnikov definitions are compared. They are also compared 

with the numerical solutions found from a numerical model that uses the Riemann-Liouville 

definition of the fractional-order derivative. It is found that the use of the Caputo definition gives 

the largest pressure values, and use of the Riemann-Liouville definition gives the lowest pressure 

values. Pressure values obtained using the Grünwald-Letnikov definition lie between those found 

from the application of the Caputo and Riemann-Liouville definitions. 

 

Keywords: Memory, Numerical Modeling, Fractional diffusion equation, Caputo definition, 

Riemann-Liouville definition, Grünwald-Letnikov definition, Uniform mesh. 

 

4.2 Introduction 

 

Recent years have seen interest in the investigation of the effects of history of rock, fluid, and flow 

of fluid on flow through porous media. From this perspective, it is assumed that all materials have 

memory, and that memory affects the present and future characteristics of the materials. 

Incorporation of memory makes the governing equations intricate, and solving the equations 

becomes more challenging. 

 

The ‘memory’ idea is relatively new and growing in petroleum engineering. Zhang (2003) defined 

memory as a function of time and space, where forward-time events depend on previous-time 

events. Hossain and Abu-Khamsin (2012) defined memory as the effect of past events on the 

present and future course of developments. Hossain et al. (2006) claim that the memory of the 

fluid is the most important and most neglected feature in considering fluid flow models. In this 

direction, Hossain et al. (2008) proposed the following diffusivity equation 
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𝜕

𝜕𝑥
[
𝜌𝑘

𝜇
𝛵𝛼

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜌𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
 ,                                                                                               (4.1) 

 

where 𝑝(𝑥, 𝑡) is the pressure, 𝜌(𝑥, 𝑡) the fluid density, 𝜙(𝑥, 𝑡) the porosity of the fluid medium, 

𝑘(𝑥, 𝑡) the permeability of the medium, 𝜇(𝑥, 𝑡) the dynamic viscosity of the fluid, 𝑐𝑡(𝑥, 𝑡) the total 

compressibility of the system, 𝛼 the fractional order of differentiation and 𝛵 the characteristic time. 

 

Memory is incorporated in the mathematical model by the inclusion of a fractional-order 

derivative. Finding numerical solutions to fractional-order differential equations is challenging 

because of their non-local behaviour. However, a number of studies on numerical approaches to 

fractional diffusion equations have recently appeared in the literature. Sun et al. (2011) solved 

time-fractional diffusion equations by applying a semi-analytical finite-element method.  Wang et 

al. (2011) solved a space-fractional advection diffusion equation by developing a fast characteristic 

difference method. Murillo and Yuste (2009) compared the solutions of the time-fractional 

anomalous diffusion equations utilizing three explicit difference methods, where all three methods 

were based on the Grünwald–Letnikov discretization. Based on the L1 discretization, Zhuang et 

al. (2006) constructed a finite-difference scheme and analyzed its stability and convergence using 

a maximum principle argument. Celik and Duman (2012) applied the Crank-Nicolson method with 

the Riesz fractional derivative to numerically solve a fractional diffusion equation. Lin and Xu 

(2007) combined the L1 approximation for the time-fractional part with spectral approximations 

for spatial derivatives.  

 

The solution of a particular fractional-order diffusivity equation is important because it shows the 

way to solve other fractional-order diffusivity equations. While the physical meaning of a 

fractional-order differential equation is very difficult to understand, we can use its discrete solution 

to give some sensible physical interpretation. 

 

In this paper, the model of Hossain et al. (2008) is solved numerically for two cases: a) for the 

Caputo definition of the fractional-order derivative, and b) for the Grünwald-Letnikov definition 

of the fractional-order derivative. An implicit finite-difference approximation for the computation 

of the Caputo fractional derivative given by Murio (2008) is used to discretize the Eq. (4.1) for 
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case (a). The G1 algorithm that uses the Grünwald-Letnikov definition for the fractional-order 

derivative is applied to discretize the diffusivity equation for case (b). The solutions found for case 

(a) and case (b) are compared with the numerical solutions found by Zaman et al. (2017) using the 

Riemann-Liouville definition of fractional order derivative. 

 

The mathematical model is discretized using uniform meshes in both space and time. For some 

positive numbers 𝑋, and 𝑇, and positive integers 𝑁𝑥, and 𝑁𝑡, the grid sizes in space and time are 

defined by ∆𝑥 = 𝑋/𝑁𝑥 and ∆𝑡 = 𝑇/𝑁𝑡 respectively. The grid points in the space interval [0, 𝑋] 

are given by 𝑥𝑖 = 𝑖∆𝑥, 𝑖 = 0, 1, 2, … , 𝑁𝑥, and the grid points in the time interval [0, 𝑇] are labeled 

𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 0, 1, 2, … , 𝑁𝑡. The values of a function 𝑝 at the grid points are denoted by 𝑝𝑖
𝑛 =

𝑝(𝑥𝑖, 𝑡𝑛).  

  

4.3 Numerical Solutions for Different Approaches 

 

4.3.1 For Caputo Definition 

 

Writing 𝐶1(𝑥, 𝑡) =
𝜌𝑘

𝜇
𝛵𝛼 and 𝐶2(𝑥, 𝑡) = 𝜌𝜙𝑐𝑡 in Eq. (4.1) and use of the Caputo definition for the 

fractional-order derivative gives 

 

 
𝜕

𝜕𝑥
[𝐶1(𝑥𝑖, 𝑡𝑛)

𝜕𝐶 𝛼

𝜕𝐶 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)]

𝑖

𝑛

= 𝐶2(𝑥𝑖, 𝑡𝑛)
𝜕𝑝𝑖

𝑛

𝜕𝑡
 ,                                                                    (4.2) 

 

where the left superscript, 𝑐 in 
𝜕𝐶 𝛼

𝜕𝐶 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
) stands for the Caputo definition of the fractional-order 

derivative. 

 

Discretization by implicit Euler in time and staggered finite differences in space, with 𝐹
𝑖±

1

2

𝑛 =

[𝐶1
𝜕𝐶 𝛼

𝜕𝐶 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)]

𝑖±
1

2

𝑛

 gives 
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1

∆𝑥
(𝐹

𝑖+
1

2

𝑛 − 𝐹
𝑖−

1

2

𝑛 ) = 𝐶2(𝑥𝑖, 𝑡𝑛)
𝑝𝑖
𝑛−𝑝𝑖

𝑛−1

∆𝑡
 .                                                                              (4.3) 

 

Murio’s (2008) approximation formula for the Caputo definition of the fractional-order derivative 

is 

 

 
𝜕𝐶 𝛼𝑢(𝑥𝑖,𝑡𝑛)

𝜕𝐶 𝑡𝛼
= 𝜎𝛼,∆𝑡 ∑ 𝜔𝑗

(𝛼)(𝑢𝑖
𝑛−𝑗+1

− 𝑢𝑖
𝑛−𝑗

)𝑛
𝑗=1  ,                                                               (4.4) 

 

where 𝜎𝛼,∆𝑡 =
1

∆𝑡𝛼Γ(2−𝛼)
 and 𝜔𝑗

(𝛼) = 𝑗1−𝛼 − (𝑗 − 1)1−𝛼. Applying Murio’s formula, 𝐹
𝑖+

1

2

𝑛  and 𝐹
𝑖−

1

2

𝑛  

can be written as 

 

 𝐹
𝑖+

1

2

𝑛 =
1

∆𝑥
𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛) 𝜎𝛼,∆𝑡[𝑝𝑖+1
𝑛 − 𝑝𝑖

𝑛 − 𝑝𝑖+1
𝑛−1 + 𝑝𝑖

𝑛−1 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∑ 𝜔𝑗
(𝛼)(𝑝𝑖+1

𝑛−𝑗+1
− 𝑝𝑖

𝑛−𝑗+1
− 𝑝𝑖+1

𝑛−𝑗
+ 𝑝𝑖

𝑛−𝑗
)𝑛

𝑗=2 ] ,                                                 (4.5) 

 

 𝐹
𝑖−

1

2

𝑛 =
1

∆𝑥
𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) 𝜎𝛼,∆𝑡[𝑝𝑖
𝑛 − 𝑝𝑖−1

𝑛 − 𝑝𝑖
𝑛−1 + 𝑝𝑖−1

𝑛−1 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∑ 𝜔𝑗
(𝛼)(𝑝𝑖

𝑛−𝑗+1
− 𝑝𝑖−1

𝑛−𝑗+1
− 𝑝𝑖

𝑛−𝑗
+ 𝑝𝑖−1

𝑛−𝑗
)𝑛

𝑗=2 ] .                                                 (4.6) 

 

Substitution of Eq. (4.5) and (4.6) into Eq. (4.3) and rearrangement gives 

 

 −𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) 𝑝𝑖−1
𝑛 + [𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛) + 𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) +
𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥

2

𝜎𝛼,∆𝑡∆𝑡
] 𝑝𝑖

𝑛 −

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) 𝑝𝑖+1
𝑛 =

𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥
2

𝜎𝛼,∆𝑡∆𝑡
𝑝𝑖
𝑛−1 + 𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛) 𝐺𝑖
𝑛 − 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)𝐻𝑖
𝑛 ,                          (4.7) 

 

where 

 

 𝐺𝑖
𝑛 = −𝑝𝑖+1

𝑛−1 + 𝑝𝑖
𝑛−1 + ∑ 𝜔𝑗

(𝛼)(𝑝𝑖+1
𝑛−𝑗+1

− 𝑝𝑖
𝑛−𝑗+1

− 𝑝𝑖+1
𝑛−𝑗

+ 𝑝𝑖
𝑛−𝑗

)𝑛
𝑗=2  ,                         (4.8) 
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  𝐻𝑖
𝑛 = −𝑝𝑖

𝑛−1 + 𝑝𝑖−1
𝑛−1 + ∑ 𝜔𝑗

(𝛼)
(𝑝𝑖

𝑛−𝑗+1
− 𝑝𝑖−1

𝑛−𝑗+1
− 𝑝𝑖

𝑛−𝑗
+ 𝑝𝑖−1

𝑛−𝑗
)𝑛

𝑗=2  .                         (4.9) 

 

4.3.2 For Grünwald-Letnikov Definition 

 

Using the Grünwald-Letnikov definition of the fractional-order derivative, Eq. (4.2) can be written 

as 

 
𝜕

𝜕𝑥
[𝐶1(𝑥𝑖, 𝑡𝑛)

𝜕𝐺𝐿 𝛼

𝜕𝐺𝐿 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)]

𝑖

𝑛

= 𝐶2(𝑥𝑖, 𝑡𝑛)
𝜕𝑝𝑖

𝑛

𝜕𝑡
 ,                                                                 (4.10) 

 

where the left superscript, 𝐺𝐿 in 
𝜕𝐺𝐿 𝛼

𝜕𝐺𝐿 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
) stands for the Grünwald-Letnikov definition of the 

fractional-order derivative. 

 

Again, discretizing using implicit Euler in time and staggered finite differences in space with 

𝐹
𝑖±

1

2

𝑛 = [𝐶1
𝜕𝐺𝐿 𝛼

𝜕𝐺𝐿 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)]

𝑖±
1

2

𝑛

 gives 

 

 
1

∆𝑥
(𝐹

𝑖+
1

2

𝑛 − 𝐹
𝑖−

1

2

𝑛 ) = 𝐶2(𝑥𝑖, 𝑡𝑛)
𝑝𝑖
𝑛−𝑝𝑖

𝑛−1

∆𝑡
 .                                                                          (4.11) 

 

We now use the G1 algorithm (Oldham et al., 1974) to approximate the fractional-order derivative 

as 

 

  
𝜕𝐺𝐿 𝛼𝑢(𝑥𝑖,𝑡𝑛)

𝜕𝐺𝐿 𝑡𝛼
=

∆𝑡−𝛼

Γ(−𝛼)
∑

Γ(𝑗−𝛼)

Γ(𝑗+1)
𝑢𝑖
𝑛−𝑗𝑛−1

𝑗=0  .                                                                         (4.12) 

 

Applying the G1 algorithm, 𝐹
𝑖+

1

2

𝑛  and 𝐹
𝑖−

1

2

𝑛  can be written as 

 

 𝐹
𝑖+

1

2

𝑛 =
1

∆𝑥
𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛)
∆𝑡−𝛼

Γ(−𝛼)
[Γ(−𝛼)(𝑝𝑖+1

𝑛 − 𝑝𝑖
𝑛) + ∑

Γ(𝑗−𝛼)

Γ(𝑗+1)
(𝑝𝑖+1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗
)𝑛−1

𝑗=1 ] ,       (4.13) 

 



69 

 

 𝐹
𝑖−

1

2

𝑛 =
1

∆𝑥
𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)
∆𝑡−𝛼

Γ(−𝛼)
[Γ(−𝛼)(𝑝𝑖

𝑛 − 𝑝𝑖−1
𝑛 ) + ∑

Γ(𝑗−𝛼)

Γ(𝑗+1)
(𝑝𝑖

𝑛−𝑗
− 𝑝𝑖−1

𝑛−𝑗
)𝑛−1

𝑗=1 ] .       (4.14) 

 

Substitution of Eq. (4.13) and (4.14) into Eq. (4.11) and rearranging terms gives 

 

 −𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) 𝑝𝑖−1
𝑛 + [𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) + 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) +
𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥

2

∆𝑡1−𝛼
] 𝑝𝑖

𝑛 −

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) 𝑝𝑖+1
𝑛 =

𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥
2

∆𝑡1−𝛼
𝑝𝑖
𝑛−1 + 𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛)
1

Γ(−𝛼)
𝐺𝑖
𝑛 − 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)
1

Γ(−𝛼)
𝐻𝑖
𝑛 ,      (4.15) 

 

where 

 

 𝐺𝑖
𝑛 = ∑

Γ(𝑗−𝛼)

Γ(𝑗+1)
(𝑝𝑖+1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗
)𝑛−1

𝑗=1  ,                                                                                 (4.16) 

 

 𝐻𝑖
𝑛 = ∑

Γ(𝑗−𝛼)

Γ(𝑗+1)
(𝑝𝑖

𝑛−𝑗
− 𝑝𝑖−1

𝑛−𝑗
)𝑛−1

𝑗=1  .                                                                                 (4.17) 

 

4.3.3 For Riemann-Liouville Definition 

 

Zaman et al. (2017) developed the following numerical model using uniform meshes both in space 

and time to numerically solve Eq. (4.1) when the fractional-order derivative is taken using the 

Riemann-Liouville definition, 

 

 −𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) 𝑝𝑖−1
𝑛 + [𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) + 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) +
𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥

2

𝜎𝛼,∆𝑡∆𝑡
] 𝑝𝑖

𝑛 −

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) 𝑝𝑖+1
𝑛 =

𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥
2

𝜎𝛼,∆𝑡∆𝑡
𝑝𝑖
𝑛−1 + 𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛) 𝐺𝑖
𝑛 − 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)𝐻𝑖
𝑛 +

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛)
1−𝛼

𝑛𝛼
(𝑝𝑖+1

0 − 𝑝𝑖
0) − 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)
1−𝛼

𝑛𝛼
(𝑝𝑖

0 − 𝑝𝑖−1
0 ) ,                                                              (4.18) 

 

where 

 

 𝐺𝑖
𝑛 = −𝑝𝑖+1

𝑛−1 + 𝑝𝑖
𝑛−1 + ∑ 𝜔𝑗

(𝛼)
(𝑝𝑖+1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗
− 𝑝𝑖+1

𝑛−𝑗−1
+ 𝑝𝑖

𝑛−𝑗−1
)]𝑛−1

𝑗=1  ,                     (4.19) 
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 𝐻𝑖
𝑛 = −𝑝𝑖

𝑛−1 + 𝑝𝑖−1
𝑛−1 + ∑ 𝜔𝑗

(𝛼)
(𝑝𝑖

𝑛−𝑗
− 𝑝𝑖−1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗−1
+ 𝑝𝑖−1

𝑛−𝑗−1
)]𝑛−1

𝑗=1  .                     (4.20) 

 

For the Caputo and Grünwald-Letnikov definitions of the fractional-order derivative, Eq. (4.7) and 

(4.15) are written for each grid-point, respectively and, then, the system of equations is solved. 

Here, solution of the system is complicated by its nonlinearity. The density, permeability, 

viscosity, porosity, and compressibility themselves depend on the pressure, the solution of the 

equation. To resolve this, an iterative scheme (fixed-point iteration) is used to update the density, 

permeability, viscosity, porosity, and compressibility. The approach is illustrated qualitatively by 

 

𝐴(𝜌, 𝑘, 𝜇, 𝜙, 𝑐𝑡)
𝑛,𝑧⁡𝑝𝑛,𝑧+1 = 𝑅𝐻𝑆𝑛,𝑧 . 

 

For each time step, and each iteration level, the pressure, density, permeability, viscosity, porosity, 

and compressibility data are assumed known from the most recent computational value. At the 

start of a new time step, the most recent value is that from the solution at the previous time step, 

while during a given time step it is that from the last iteration. The coefficients are updated using 

the new values of pressure as the pressures are updated and this process is continued. The iteration 

process terminates when the convergence criterion is satisfied. Two MATLAB programs have 

been written based on Eqs. (4.7), and (4.15) to numerically solve Eq. (4.1). MATLAB program 

written by Zaman et al. (2017) has been used to solve Eq. (4.18). 

 

4.4 Analytical Solution 

 

To validate this algorithm, we consider the case where 𝐶1 = 𝐶2 = 1, and find the analytical 

solution of Eq. (4.1). For 𝐶1 = 𝐶2 = 1, the equation becomes linear. Initial and boundary 

conditions are taken as 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0 respectively. 

 

Utilizing the Caputo definition for the fractional-order derivative, the analytical solution of Eq. 

(4.1) is found as to be 

  

 𝑝(𝑥, 𝑡) = 𝑠𝑖𝑛⁡(𝜋𝑥)⁡⁡⁡⁡⁡⁡0 < 𝛼 < 1 .                                                                                 (4.21) 



71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Computational algorithm to solve the numerical model. 
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For 𝛼 = 0, Caputo derivative does not coincide with the classical derivative. In this case, the 

analytical solution of Eq. (4.1) is not derived. Instead, we use the analytical solution of the equation 

(𝜕/𝜕𝑥)[(𝜕𝛼/𝜕𝑡𝛼)(𝜕𝑝(𝑥, 𝑡)/𝜕𝑥)] − 𝜋2 𝑠𝑖𝑛(𝜋𝑥) = (𝜕𝑝/𝜕𝑡) with the same initial and boundary 

condition, and obtain 

 

 𝑝(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜋𝑥) 𝑒−𝜋
2𝑡 .                                                                                               (4.22) 

 

4.5 Results and Discussion 

 

4.5.1 Validation of Numerical Model 

 

The numerical solutions are compared with the analytical solutions to validate the numerical 

models. The initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) and boundary conditions 𝑝(0, 𝑡) = 0, 𝑝(1, 𝑡) =

0 are used for the numerical solution, as they are used in the analytical solution. 

 

The analytical solution (Eq. 4.21) found using the Caputo definition is applicable for 0 < 𝛼 < 1, 

while the numerical solution obtained for this definition is applicable for 0 ≤ 𝛼 < 1. The term 

‘−𝜋2 𝑠𝑖𝑛(𝜋𝑥)’ is added to the right-hand side of Eq. 4.7 as a forcing function when comparing 

with the analytical solution (Eq. 4.22) of the modified equation in the case of 𝛼 = 0. MATLAB 

code was written to evaluate the numerical and analytical solutions. The solutions are shown and 

compared in Figs. 4.2, 4.3, 4.4, and 4.5 for 𝛼 = 0, 0.25, 0.50 and 0.75 respectively. The numerical 

solutions match very well with the analytical solutions. For 𝛼 ≠ 0, the solution does not depend 

on time, hence only one curve is found for both analytical and numerical solutions. The fact that 

the solution derived using the Caputo definition is independent of time did not result from the 

choice of initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥). It is shown in Appendix that the solution of Eq. 

(4.2) for 𝐶1 = 𝐶2 = 1 is independent of 𝛼 and 𝑡 for any initial condition when the Caputo definition 

is used.  
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4.5.2 Comparison among the Solutions for the Riemann-Liouville, Caputo and Grünwald-

Letnikov Definitions 

 

The solutions found from the Caputo, Grünwald-Letnikov, and Riemann-Liouville definitions of 

the fractional-order derivative for 𝑇𝑓 ⁡= ⁡0.0005 are compared in Figs. 4.6, 4.7, and 4.8 for 𝛼⁡ =

⁡0, 0.25, and 0.50, respectively.  Fig. 4.6 shows that, for 𝛼 = 0, all three definitions for the 

fractional-order derivative give same result. However, Fig. 4.7 and Fig. 4.8 show that, for 0 < 𝛼 <

1, the Caputo definition gives the largest value (equal to the initial condition), the Riemann-

Liouville definition gives the lowest value and the values given by the Grünwald-Letnikov 

definition lie in between. From the figures, it is also found that the differences among the three 

solutions increase with increase in the value of 𝛼. 

 

Figs. 4.9, and 4.10 depicts the solutions found from the Caputo, Grünwald-Letnikov, and Riemann-

Liouville definitions of the fractional-order derivative using 𝛼⁡ = ⁡0.25 for 𝑇𝑓 ⁡= ⁡0.005,⁡and⁡0.05 

respectively. It is found from Figs. 4.7, 4.9, and 4.10 that the differences among the three solutions 

increase as the time at which the solutions are obtained increases. 

 

The reason behind the differences among the three solutions and the increment of the differences 

with 𝛼 and time can be understood looking at the three different definitions of fractional-order 

derivatives. Eq. (24), (25), and (26) are the Grünwald-Letnikov, the Riemann-Liouville, and the 

Caputo definitions respectively. 

 

 
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
≡ lim

𝑁→∞
{
(
𝑡

𝑁
)−𝛼

𝛤(−𝛼)
∑

Γ(𝑗−𝛼)

Γ(𝑗+1)
𝑢(𝑥, 𝑡 − 𝑗

𝑡

𝑁
)𝑁−1

𝑗=0 }                                                                     (23) 

 

 
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
≡

1

Γ(𝑞−𝛼)

𝜕𝑞

𝜕𝑡𝑞
∫ (𝑡 − 𝜏)𝑞−𝛼−1𝑢(𝑥, 𝜏)𝑑𝜏
𝑡

0
             (𝑞 − 1 < 𝛼 < 𝑞)                            (24)        

 

 
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
≡

1

Γ(𝑞−𝛼)
∫ (𝑡 − 𝜏)𝑞−𝛼−1

𝜕𝑞𝑢(𝑥, 𝜏)

𝜕𝑡𝑞
𝑑𝜏

𝑡

0
                (𝑞 − 1 < 𝛼 < 𝑞)                            (25) 
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Riemann-Liouville definition takes the 𝑞th-order derivative of the integral of the product of 

(𝑡 − 𝜏)𝑞−𝛼−1 and 𝑢, whereas Caputo definition takes the integral of the product of (𝑡 − 𝜏)𝑞−𝛼−1 

and 𝑞th-order derivative of 𝑢. Grünwald-Letnikov definition is also different from the other two 

definitions. The three definitions are not unique, and it is not possible to reach one definition from 

the other. Therefore, the differences among the solutions found from the Caputo, Grünwald-

Letnikov, and Riemann-Liouville definitions of the fractional-order derivative increases with the 

increase of 𝛼 and time. 

 

 

 
 

Figure 4.2 Comparison between analytical and numerical solution for α = 0 in Caputo case. 
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Figure 4.3 Comparison between analytical and numerical solution for α = 0.25 in Caputo case. 

 

 

 

 
 

Figure 4.4 Comparison between analytical and numerical solution for 𝛼 = 0.50 in Caputo case. 
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Figure 4.5 Comparison between analytical and numerical solution for α = 0.75 in Caputo case. 

 

 

 

 
 

Figure 4.6 Comparison among three solutions for 𝛼 = 0, 𝐿 = 1, 𝑁𝑥 = 100,𝑁𝑡 = 1, ⁡𝑇𝑓 =

0.0005. 
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Figure 4.7 Comparison among three solutions for 𝛼 = 0.25, 𝐿 = 1,𝑁𝑥 = 100,𝑁𝑡 = 1, ⁡𝑇𝑓 =

0.0005. 

 

 

 

 
 

Figure 4.8 Comparison among three solutions for 𝛼 = 0.50, 𝐿 = 1,𝑁𝑥 = 100,𝑁𝑡 = 1, ⁡𝑇𝑓 =

0.0005. 
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Figure 4.9 Comparison among three solutions for 𝛼 = 0.25, 𝐿 = 1,𝑁𝑥 = 100,𝑁𝑡 = 1, ⁡𝑇𝑓 =

0.005. 

 

 

 

 

Figure 4.10 Comparison among three solutions for 𝛼 = 0.25, 𝐿 = 1,𝑁𝑥 = 100,𝑁𝑡 = 1, ⁡𝑇𝑓 =

0.05. 
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4.6 Conclusions 

 

Numerical models are developed to solve a time-fractional diffusion equation applying the Caputo, 

and Grünwald-Letnikov definitions for the fractional-order derivative. Uniform mesh grading in 

both space and time has been used. The numerical model developed using the Caputo definition is 

validated by comparing with the analytical solution. Numerical solutions found from the Caputo 

and Grünwald-Letnikov definitions are compared with the solutions found from the use of the 

Riemann-Liouville definition. It is found that Caputo definition gives the largest pressure values, 

and the Riemann-Liouville definition gives the lowest values. The pressure values found using the 

Grünwald-Letnikov definition lie between those found from the application of the Caputo and 

Riemann-Liouville definitions.  
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Appendix 

 

Analytical Solution for Caputo Definition 

 

To find the analytical solution, we consider 𝐶1 = 𝐶2 = 1 in Eq. (4.2) giving 

 

 
𝜕

𝜕𝑥
[

𝜕𝐶 𝛼

𝜕𝐶 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕𝑝

𝜕𝑡
 ,                                                                                                        (A 4.1) 

 

with boundary conditions 𝑝(0) = 𝑝(1) = 0 . 

 

We write the solution in series form as 

 

 𝑝(𝑥, 𝑡) = ∑ 𝑇𝑘
∞
𝑘=1 (𝑡)𝑠𝑖𝑛⁡(𝑘𝜋𝑥) ,                                                                                    (A 4.2) 

 

noting that 

 

 
𝜕𝑝

𝜕𝑡
(𝑥, 𝑡) = ∑ 𝑇𝑘

′(𝑡)∞
𝑘=1 𝑠𝑖𝑛(𝑘𝜋𝑥) = −∑ 𝑘2𝜋2

𝜕𝛼𝑇𝑘(𝑡)

𝜕𝑡𝛼
𝑠𝑖𝑛(𝑘𝜋𝑥)∞

𝑘=1 =
𝜕

𝜕𝑥
[

𝜕𝐶 𝛼

𝜕𝐶 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] .(A 4.3) 

 

To be a solution, we require that 

 

 𝑇𝑘
′(𝑡) = −𝑘2𝜋2

𝜕𝐶 𝛼𝑇𝑘(𝑡)

𝜕𝐶 𝑡𝛼
 ,                                                                                                (A 4.4) 

 

 and 𝑇𝑘(0) = 𝛽𝑘 ,                                                                                                             (A 4.5) 

 

where 𝛽𝑘 comes from the sine series expansion of the initial data, 𝑝(𝑥, 0) = ∑ 𝛽𝑘
∞
𝑘=1 𝑠𝑖𝑛⁡(𝑘𝜋𝑥). 

 

Taking Laplace transforms, we have 

  

 ℒ[𝑇𝑘
′(𝑡)] = 𝑠𝑇̂𝑘(𝑠) − 𝛽𝑘 .                                                                                                (A 4.6) 
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For the Caputo definition of the fractional-order derivative, 

 

 ℒ [
𝜕𝐶 𝛼𝑇𝑘(𝑡)

𝜕𝐶 𝑡𝛼
] = 𝑠𝛼𝑇̂𝑘(𝑠) − 𝑠𝛼−1𝛽𝑘 .                                                                                (A 4.7) 

 

Therefore, 

 

 𝑠𝑇̂𝑘(𝑠) − 𝛽𝑘 = −𝑘2𝜋2(𝑠𝛼𝑇̂𝑘(𝑠) − 𝑠𝛼−1𝛽𝑘)                                                                  (A 4.8) 

 

 𝑜𝑟, (𝑠 + 𝑘2𝜋2𝑠𝛼)𝑇̂𝑘(𝑠) = 𝛽𝑘(1 + 𝑘2𝜋2𝑠𝛼−1) ,                                                            (A 4.9) 

 

 𝑜𝑟, 𝑇̂𝑘(𝑠) = 𝛽𝑘
(1+𝑘2𝜋2𝑠𝛼−1)

(𝑠+𝑘2𝜋2𝑠𝛼)
=

𝛽𝑘

𝑠
 .                                                                                (A 4.10) 

 

We get 

 

 𝑇𝑘(𝑡) = 𝛽𝑘 ,                                                                                                                   (A 4.11) 

 

giving 𝑝(𝑥, 𝑡) = 𝑝(𝑥, 0) .                                                                                                        (A 4.12) 

 

Eq. (A 4.12) is the general analytical solution of Eq. (A 4.1) for any initial condition while using 

the Caputo definition of fractional order derivative. The analytical solution found in this case is 

independent of 𝛼 and 𝑡. 
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Chapter 5 

 

Numerical Approximation of a Time-Fractional Diffusion Equation Using the 

Riemann-Liouville Definition of the Fractional Derivative and Graded Meshes 
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derivative and graded meshes.”  
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and supervision of M. Enamul Hossain, and the guidance and close supervision of Scott 

MacLachlan.  The manuscript itself was written by Tareq Uz Zaman and reviewed by M. Enamul 

Hossain and Scott MacLachlan. 

 

5.1 Abstract 

 

A time-fractional non-linear diffusion equation is numerically solved by applying the finite-

difference method. The Riemann-Liouville definition for the fractional-order derivative has been 

used. A graded mesh in time is adapted to the problem and the L1 algorithm is derived for graded 

meshes. The fractional diffusion equation is discretized using a uniform mesh in space and a graded 

mesh in time. To validate the numerical model, numerical solutions are compared to analytical 

solutions in the linear case and compared to manufactured solutions in non-linear cases. 

Comparisons are made for different boundary conditions, and errors are analyzed. The error results 
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affirm that the discretization method used in the numerical model is consistent, second-order 

accurate in space, and first-order accurate in time. The developed numerical solutions can be used 

to investigate the effects of memory on fluid flow through porous media. The developed numerical 

model, and the written code are initial steps to develop a memory-based reservoir simulator. 

 

Keywords: Memory, Numerical Modeling, Fractional diffusion equation, Riemann-Liouville 

definition, Graded mesh. 

 

5.2 Introduction 

 

Numerous models have been developed over more than the past fifty years for simulations of 

porous media flow that are crucial to overcoming the challenges associated with petroleum 

production. The continuum approach, the simplest among the common approaches, is based on 

semi-empirical equations such as Darcy’s law, the Blake-Kozeny-Carman, or Ergun equations 

(Sochi, 2010). Several continuum models are also based in their derivation on the capillary bundle 

concept. Another approach is pore-scale network modeling that is a compromise between the two 

extremes of continuum and numerical approaches (Sochi, 2010). This approach takes the 

microscopic description of the pore geometry with affordable computational resources into 

consideration. However, these approaches do not consider the effects of history of the rock, fluid, 

and flow on fluid flow phenomena. 

 

The effects of history are incorporated in fluid flow models by the inclusion of ‘memory’. The 

parameter ‘memory’ represents the effects of history of both the rock and fluid. According to 

Zhang (2003), memory is a function of time and space, where forward time events depend on 

previous time events. The ‘memory’ idea is relatively new and growing in petroleum engineering. 

Hossain et al. (2006) considered the memory of the fluid as the most important and most neglected 

feature in fluid flow models. In this direction, Hossain et al. (2008) proposed the following 

diffusivity equation 

 

 
𝜕

𝜕𝑥
[
𝜌𝑘

𝜇
𝛵𝛼

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜌𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
 ,                                                                                               (5.1) 
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where 𝑝(𝑥, 𝑡) is the pressure, 𝜌(𝑥, 𝑡) the fluid density, 𝜙(𝑥, 𝑡) the porosity of the fluid medium, 

𝑘(𝑥, 𝑡) the permeability of the medium, 𝜇(𝑥, 𝑡) the dynamic viscosity of the fluid, 𝑐𝑡(𝑥, 𝑡) the total 

compressibility of the system, 𝛼 the fractional order of differentiation and 𝛵 the characteristic time. 

 

Memory is incorporated in the mathematical model with the aid of fractional-order derivatives. 

Derivation of numerical solutions to fractional-order differential equation is challenging because 

of their non-local behaviour. However, a number of studies on the numerical approaches to 

fractional diffusion equations have recently appeared in the literature. Different numerical methods 

have been applied to solve fractional differential equations (Gorenflo et al. (2002), Lynch et al. 

(2003), Meerschaert et al. (2004), Yuste et al. (2005), Yuste (2006), Sun et al. (2006), Chen et al. 

(2007), Podlubny et al. (2009), Cui (2009), Brunner et al. (2010), Skovranek et al. (2010), 

Mustapha et al. (2011)). Finite difference methods are convenient among these methods. However, 

constant time steps are used in almost all cases. Very few cases use variable time steps.  

 

Instead of treating the fractional-order derivative by its definition and discretizing the term that 

contains the fractional-order derivative, Hossain et al. (2008) considered the term as a parameter 

and then solved the Eq. (5.1) numerically in the way that an integer-order partial differential 

equation would be solved. Hence, their numerical solution is not accurate in the mathematical 

sense. The solution of a fractional-order diffusivity equation is important, because it shows the 

way to solve other fractional order diffusivity equations. 

 

Zaman et al. (2017) solved Eq. (5.1) numerically using uniform meshes. However, Stynes et al. 

(2017) defined a graded mesh for a time-fractional diffusion equation and showed that the graded 

mesh gives better performance for time-fractional equations. Their definition of a graded mesh has 

been adapted for the time derivative in this work. 

 

In this paper, the fractional order diffusivity equation (Eq. (5.1)) is solved numerically using the 

Riemann-Liouville definition for the fractional-order derivative. The L1 algorithm for graded 

meshes using the Riemann-Liouville definition for fractional-order derivatives is derived and 

applied to discretize the diffusivity equation. 
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Eq. (5.1) is discretized using a uniform mesh in space and graded meshes in time. For some positive 

numbers 𝑋, and 𝑇, and positive integers 𝑁𝑥, and 𝑁𝑡, the grid sizes in space and time are defined 

by ∆𝑥 = 𝑋/𝑁𝑥 and ∆𝑡𝑛 = ⁡𝑡𝑛 − 𝑡𝑛−1 respectively. The grid points in the space interval [0, 𝑋] are 

the numbers 𝑥𝑖 = 𝑖∆𝑥, 𝑖 = 0, 1, 2, … ,𝑁𝑥, and the grid points in the time interval [0, 𝑇] are labeled 

𝑡𝑛 = 𝑇(𝑛/𝑁)𝜔, 𝑛 = 0, 1, 2, … ,𝑁𝑡, where the constant mesh grading 𝜔 ≥ 1 is adapted from Stynes 

et al. (2017). For our case, 𝜔 = (1 + 𝛼)/(1 − 𝛼) relate to Stynes et al. (2017). The values of a 

function 𝑝 at the grid points are denoted by 𝑝𝑖
𝑛 = 𝑝(𝑥𝑖, 𝑡𝑛).  

 

5.3 L1 Algorithm for Non-Uniform Mesh Grading 

 

The L1 algorithm is derived for non-uniform mesh grading using the Riemann-Liouville definition 

for fractional-order derivatives. 

 

From its definition, the Riemann-Liouville fractional derivative for 𝛼 ≥ 0 is given by 

 

 [
𝑑𝛼𝑓

𝑑(𝑥−𝑎)𝛼
]𝑅−𝐿 ≡

𝑑𝛼

𝑑𝑥𝛼
[

𝑑𝛼−𝑛𝑓

𝑑(𝑥−𝑎)𝛼−𝑛
]
𝑅−𝐿

≡
𝑑𝑛

𝑑𝑥𝑛
[

1

Γ(𝑛−𝛼)
∫

𝑓(𝑦)𝑑𝑦

(𝑥−𝑦)𝛼−𝑛+1

𝑥

𝑎
] ,⁡⁡⁡⁡⁡⁡⁡⁡𝑛 > 𝛼 .                      (5.2) 

 

Applying the Leibniz rule for differentiating integrals, Eq. (5.2) is identical to 

 

 [
𝑑𝛼𝑓

𝑑(𝑥−𝑎)𝛼
]𝑅−𝐿 ≡ ∑

(𝑥−𝑎)𝑘−𝛼𝑓(𝑘)(𝑎)

Γ(𝑘−𝛼+1)

𝑛−1
𝑘=0 +

1

Γ(𝑛−𝛼)
∫

𝑓(𝑛)(𝑦)𝑑𝑦

(𝑥−𝑦)𝛼−𝑛+1

𝑥

𝑎
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑛 > 𝛼 .                        (5.3) 

 

Now, setting 𝑎 = 0 and 𝑛 = 1, restricting 0 ≤ 𝛼 < 1 yields 

 

 
𝑑𝛼𝑓

𝑑𝑥𝛼
≡

𝑥−𝛼𝑓(0)

Γ(1−𝛼)
+

1

Γ(1−𝛼)
∫

𝑑𝑓(𝑦)

𝑑𝑦

𝑑𝑦

(𝑥−𝑦)𝛼

𝑥

0
 .                                                                                   (5.4) 

 

Eq. (5.4) can be written as 

 

 
𝑑𝛼𝑓

𝑑𝑥𝛼
⁡≡

1

Γ(1−𝛼)
[
𝑓(0)

𝑥𝛼
+ ∑ ∫

𝑑𝑓(𝑦)

𝑑𝑦

𝑑𝑦

(𝑥−𝑦)𝛼

𝑥𝑗+1
𝑥𝑗

𝑁−1
𝐽=0 ] .                                                                       (5.5) 
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The L1 algorithm utilizes the approximations 

 

 ∫
𝑑𝑓(𝑦)

𝑑𝑦

𝑑𝑦

(𝑥−𝑦)𝛼

𝑥𝑗+1
𝑥𝑗

≡
𝑓(𝑥𝑗+1)−𝑓(𝑥𝑗)

𝑥𝑗+1−𝑥𝑗
∫

𝑑𝑦

(𝑥−𝑦)𝛼

𝑥𝑗+1
𝑥𝑗

≡
1

1−𝛼

𝑓(𝑥𝑗+1)−𝑓(𝑥𝑗)

𝑥𝑗+1−𝑥𝑗
[(𝑥 − 𝑥𝑗)

1−𝛼
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−(𝑥 − 𝑥𝑗+1)
1−𝛼] .             (5.6) 

 

Substitution of Eq. (5.6) into Eq. (5.5) gives 

 

 [
𝑑𝛼𝑓

𝑑𝑥𝛼
]𝐿1 ≡

1

Γ(1−𝛼)
[
𝑓(0)

𝑥𝛼
+ ∑

1

1−𝛼

𝑓(𝑥𝑗+1)−𝑓(𝑥𝑗)

𝑥𝑗+1−𝑥𝑗
[(𝑥 − 𝑥𝑗)

1−𝛼
− (𝑥 − 𝑥𝑗+1)

1−𝛼
]𝑁−1

𝐽=0 ] .            (5.7) 

 

Eq. (5.7) can be written as 

 

 [
𝑑𝛼𝑓

𝑑𝑥𝛼
]𝐿1 ≡

1

Γ(2−𝛼)
[
(1−𝛼)𝑓(0)

𝑥𝛼
+ ∑

𝑓(𝑥𝑗+1)−𝑓(𝑥𝑗)

𝑥𝑗+1−𝑥𝑗
[(𝑥 − 𝑥𝑗)

1−𝛼
− (𝑥 − 𝑥𝑗+1)

1−𝛼
]𝑁−1

𝐽=0 ] .       (5.8) 

 

Eq. (5.8) is the L1 algorithm for non-uniform mesh spacing for the Riemann-Liouville definition 

of the fractional-order derivative. 

 

5.4 Numerical Solution for Riemann-Liouville Definition 

 

Writing 𝐶1(𝑥, 𝑡) =
𝜌𝑘

𝜇
𝛵𝛼 and 𝐶2(𝑥, 𝑡) = 𝜌𝜙𝑐𝑡 in Eq. (5.1) gives 

 

 
𝜕

𝜕𝑥
[𝐶1(𝑥𝑖, 𝑡𝑛)

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)]

𝑖

𝑛

= 𝐶2(𝑥𝑖, 𝑡𝑛)
𝜕𝑝𝑖

𝑛

𝜕𝑡
 .                                                                                 (5.9) 

 

Discretizing this using implicit Euler in time and staggered finite differences in space with 𝐹
𝑖±

1

2

𝑛 =

[𝐶1
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)]

𝑖±
1

2

𝑛

 gives 

 

 
1

∆𝑥
(𝐹

𝑖+
1

2

𝑛 − 𝐹
𝑖−

1

2

𝑛 ) = 𝐶2(𝑥𝑖, 𝑡𝑛)
𝑝𝑖
𝑛−𝑝𝑖

𝑛−1

𝑡𝑛−𝑡𝑛−1
 .                                                                             (5.10) 
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Using the L1 algorithm derived in Eq. (5.8), 𝐹
𝑖+

1

2

𝑛  and 𝐹
𝑖−

1

2

𝑛  can be written as 

 

 𝐹
𝑖+

1

2

𝑛 =
1

∆xΓ(2−𝛼)
𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛) [
(1−𝛼)

(𝑡𝑛)𝛼
(𝑝𝑖+1

0 − 𝑝𝑖
0) 

+(𝑡𝑛 − 𝑡𝑛−1)
−𝛼(𝑝𝑖+1

𝑛 − 𝑝𝑖
𝑛) − (𝑡𝑛 − 𝑡𝑛−1)

−𝛼(𝑝𝑖+1
𝑛−1 − 𝑝𝑖

𝑛−1) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∑
[(𝑡𝑛−𝑡𝑗)

1−𝛼
−(𝑡𝑛−𝑡𝑗+1)

1−𝛼
]

(𝑡𝑗+1−𝑡𝑗)
(𝑝𝑖+1

𝑗+1
− 𝑝𝑖

𝑗+1
− 𝑝𝑖+1

𝑗
+ 𝑝𝑖

𝑗
)𝑛−2

𝐽=0 ] ,                       (5.11) 

 

 𝐹
𝑖−

1

2

𝑛 =
1

∆xΓ(2−𝛼)
𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) [
(1−𝛼)

(𝑡𝑛)𝛼
(𝑝𝑖

0 − 𝑝𝑖−1
0 ) 

+(𝑡𝑛 − 𝑡𝑛−1)
−𝛼(𝑝𝑖

𝑛 − 𝑝𝑖−1
𝑛 ) − (𝑡𝑛 − 𝑡𝑛−1)

−𝛼(𝑝𝑖
𝑛−1 − 𝑝𝑖−1

𝑛−1) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∑
[(𝑡𝑛−𝑡𝑗)

1−𝛼
−(𝑡𝑛−𝑡𝑗+1)

1−𝛼
]

(𝑡𝑗+1−𝑡𝑗)
(𝑝𝑖

𝑗+1
− 𝑝𝑖−1

𝑗+1
− 𝑝𝑖

𝑗
+ 𝑝𝑖−1

𝑗
)𝑛−2

𝐽=0 ] .                    (5.12) 

 

Substitution of Eqs. (5.11) and (5.12) into Eq. (5.10), rearranging terms, 

 

 −𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) 𝑝𝑖−1
𝑛 + [𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) + 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) + 𝐶2(𝑥𝑖, 𝑡𝑛)∆x
2Γ(2 − 𝛼)(𝑡𝑛 −

𝑡𝑛−1)
𝛼−1] 𝑝𝑖

𝑛 − 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) 𝑝𝑖+1
𝑛 = 𝐶2(𝑥𝑖, 𝑡𝑛)∆x

2Γ(2 − 𝛼)(𝑡𝑛 − 𝑡𝑛−1)
𝛼−1𝑝𝑖

𝑛−1 +

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) (𝑡𝑛 − 𝑡𝑛−1)
𝛼𝐺𝑖

𝑛 − 𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) (𝑡𝑛 − 𝑡𝑛−1)
𝛼𝐻𝑖

𝑛 + 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛)
(1−𝛼)

(𝑡𝑛)𝛼
(𝑡𝑛 −

𝑡𝑛−1)
𝛼(𝑝𝑖+1

0 − 𝑝𝑖
0) + 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)
(1−𝛼)

(𝑡𝑛)𝛼
(𝑡𝑛 − 𝑡𝑛−1)

𝛼(𝑝𝑖
0 − 𝑝𝑖−1

0 ),                                             (5.13)  

 

where 

 

 𝐺𝑖
𝑛 = −(𝑡𝑛 − 𝑡𝑛−1)

−𝛼(𝑝𝑖+1
𝑛−1 − 𝑝𝑖

𝑛−1) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∑
[(𝑡𝑛−𝑡𝑗)

1−𝛼
−(𝑡𝑛−𝑡𝑗+1)

1−𝛼
]

(𝑡𝑗+1−𝑡𝑗)
(𝑝𝑖+1

𝑗+1
− 𝑝𝑖

𝑗+1
− 𝑝𝑖+1

𝑗
+ 𝑝𝑖

𝑗
)𝑛−2

𝐽=0  ,                                        (5.14) 

 

 𝐻𝑖
𝑛 = −(𝑡𝑛 − 𝑡𝑛−1)

−𝛼(𝑝𝑖
𝑛−1 − 𝑝𝑖−1

𝑛−1) 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∑
[(𝑡𝑛−𝑡𝑗)

1−𝛼
−(𝑡𝑛−𝑡𝑗+1)

1−𝛼
]

(𝑡𝑗+1−𝑡𝑗)
(𝑝𝑖

𝑗+1
− 𝑝𝑖−1

𝑗+1
− 𝑝𝑖

𝑗
+ 𝑝𝑖−1

𝑗
)𝑛−2

𝐽=0  .                                       (5.15) 

 

Fig. 5.1 shows the computational algorithm to solve the numerical model. Eq. (5.13) is written for 

each grid-point and, then, the system of equations is solved. Note, however, that the equation is 

nonlinear: the pressures depend on the density, permeability, viscosity, porosity, and 

compressibility which, themselves, depend on these pressures. Thus, an iterative scheme is used 

to update the density, permeability, viscosity, porosity, and compressibility. The approach is 

illustrated qualitatively by 

 

𝐴(𝜌, 𝑘, 𝜇, 𝜙, 𝑐𝑡)
𝑛,𝑧⁡𝑝𝑛,𝑧+1 = 𝑅𝐻𝑆𝑛,𝑧 . 

 

For each time step, and each iteration level, the pressure, density, permeability, viscosity, porosity, 

and compressibility data are assumed known from the most recent computational value. At the 

start of a new time step, the most recent value is that from the previous time step, while during a 

given time step it is that from the last iteration. The coefficients are updated using the new values 

of pressure as the pressures are solved and this process is continued. The iteration process 

terminates when the convergence criterion is satisfied. A MATLAB program has been written 

based on Eq. (5.13) to numerically solve Eq. (5.1). 

 

5.5 Analytical Solution for Linear Case 

 

To find the analytical solution, 𝐶1 = 𝐶2 = 1 is considered in Eq. (5.9). For 𝐶1 = 𝐶2 = 1 the 

equation becomes linear. The initial condition is taken to be 𝑝(𝑥, 0) = 𝑥(1 − 𝑥) and the boundary 

conditions are taken as 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. The Riemann-Liouville definition for fractional-

order derivative is utilized. The analytical solution is found to be (details shown in Appendix, Eq. 

A 5.31) 

  

 ⁡𝑝(𝑥, 𝑡) = ∑
4

𝑘3𝜋3
[1 − (−1)𝑘]𝐸1−𝛼(−𝑘

2𝜋2𝑡1−𝛼)∞
𝑘=1 𝑠𝑖𝑛(𝑘𝜋𝑥) ,                                        (5.16) 

 

where 𝐸1−𝛼(𝑠) is the Mittag-Leffler function, and is defined for (1 − 𝛼) > 0 as 
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Figure 5.1 Computational algorithm to solve the numerical model. 
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 𝐸1−𝛼(𝑠) = ∑
𝑠𝑘

Γ((1−𝛼)𝑘+1)

∞
𝑘=0  .                                                                                            (5.17) 

 

5.6 Manufactured Solution for Non-Linear Case 

 

Eq. (5.9) becomes non-linear when 𝐶1⁡and/or⁡𝐶2 are not constant. To find a manufactured solution, 

non-linearity in the equation is included considering just one among 𝜌, 𝜙, 𝑐𝑡,⁡⁡⁡or⁡𝜇 as variable at a 

time, while others are kept constant. The variable is expressed in terms of pressure. The true 

expressions of 𝜌, 𝜙, 𝜇 are simplified, and non-linearity is introduced into the equation by 

considering the simplified terms. For each non-linear term, a manufactured solution is obtained by 

adding a forcing function to Eq. (5.1).  

 

5.6.1 Inclusion of Density, 𝝆 

 

5.6.1.1 Case 𝜶 = 𝟎 

 

Taking 𝜌 = 50 +
𝑝

1000
− (

𝑝

1000
)2, unit values for 𝜙, 𝑐𝑡,⁡⁡⁡𝜇, and 𝑘, and 𝛼 = 0, Eq. (5.1) becomes 

 

 
𝜕

𝜕𝑥
[𝜌

𝜕𝑝

𝜕𝑥
] = 𝜌

𝜕𝑝

𝜕𝑡
 .                                                                                                                         (5.18) 

 

The initial condition, and boundary conditions are taken to be 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) and 𝑝(0, 𝑡) =

𝑝(1, 𝑡) = 0, respectively. The solution is then taken to be 𝑝(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠𝑖𝑛⁡(𝜋𝑥), and Eq. (5.18) 

is modified to the following (details shown in Appendix) 

 

 
𝜕

𝜕𝑥
[𝜌

𝜕𝑝

𝜕𝑥
] = 𝜌

𝜕𝑝

𝜕𝑡
+

1

103
𝜋2𝑒−2𝜋

2𝑡 𝑐𝑜𝑠2(𝜋𝑥) −
2

106
𝜋2𝑒−3𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠2(𝜋𝑥).                (5.19)                                                                                              

 

5.6.1.2 Case 𝜶 ≠ 𝟎 

 

In this case, considering unit values for 𝜙, 𝑐𝑡,⁡⁡⁡𝜇, 𝑘, and 𝛵, 𝛼 ≠ 0, and 𝜌 = 50 +
𝑝

1000
− (

𝑝

1000
)2, 

Eq. (5.1) becomes 
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𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜌

𝜕𝑝

𝜕𝑡
 .                                                                                                          (5.20) 

 

Taking the initial condition, 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) and boundary conditions, 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0, 

the solution is fixed to be 𝑝(𝑥, 𝑡) = 𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥). The following modified equation gives this 

solution (details shown in Appendix) 

 

 
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜌

𝜕𝑝

𝜕𝑡
+ 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [

1

103
𝜋𝑒−𝜋𝑡 𝑐𝑜𝑠2(𝜋𝑥) −

2

106
𝜋𝑒−2𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠2(𝜋𝑥) − 50𝜋 𝑠𝑖𝑛(𝜋𝑥) −

1

103
𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛2(𝜋𝑥) +

1

106
𝜋𝑒−2𝜋𝑡𝑠𝑖𝑛3(𝜋𝑥)] +

50𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) +
1

103
𝜋𝑒−2𝜋𝑡 𝑠𝑖𝑛2(𝜋𝑥) −

1

106
𝜋𝑒−3𝜋𝑡𝑠𝑖𝑛3(𝜋𝑥) .                                                  (5.21)                                                                   

 

5.6.2 Inclusion of Porosity, 𝝓 

 

5.6.2.1 Case 𝜶 = 𝟎 

 

Taking 𝜙 = 0.25 + 10−9𝑝, unit values for 𝜌, 𝑐𝑡,⁡⁡⁡𝜇, 𝑘, and 𝛼 = 0, Eq. (5.1) becomes 

 

 
𝜕2𝑝

𝜕𝑥2
= 𝜙

𝜕𝑝

𝜕𝑡
 .                                                                                                                             (5.22) 

 

Eq. (5.22) is modified to provide the solution 𝑝(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠𝑖𝑛⁡(𝜋𝑥) for initial condition 

𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) and boundary conditions 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0, giving (details shown in 

Appendix) 

 

 
𝜕2𝑝

𝜕𝑥2
= 𝜙

𝜕𝑝

𝜕𝑡
− 0.75𝜋2𝑒−𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) + 10−9𝜋2𝑒−2𝜋
2𝑡 𝑠𝑖𝑛2(𝜋𝑥) .                                       (5.23)                                                                         

 

5.6.2.2 Case 𝜶 ≠ 𝟎 

 

Considering unit values for 𝜌, 𝑐𝑡,⁡⁡⁡𝜇, 𝑘, and 𝛵, 𝛼 ≠ 0 and 𝜙 = 0.25 + 10−9𝑝, Eq. (5.1) becomes 
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𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜙

𝜕𝑝

𝜕𝑡
 .                                                                                                              (5.24) 

 

For initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) and boundary conditions 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0, the 

following equation gives the solution 𝑝(𝑥, 𝑡) = 𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥) (details shown in Appendix) 

 

 
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜙

𝜕𝑝

𝜕𝑡
− 𝜋2 𝑠𝑖𝑛(𝜋𝑥) 𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+[𝜋𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥)][0.25 + 10−9𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥)] .                                                   (5.25) 

 

5.6.3 Inclusion of viscosity, 𝝁 

 

5.6.3.1 Case 𝜶 = 𝟎 

 

Taking 𝑘 = 10−7, 𝜇 = (10−4𝑝)10
−3𝑝, unit values for 𝜌, 𝜙, 𝑐𝑡⁡ and 𝛼 = 0, Eq. (5.1) becomes 

 

 
𝜕

𝜕𝑥
[

10−7

(10−4𝑝)10
−3𝑝

𝜕𝑝

𝜕𝑥
] =

𝜕𝑝

𝜕𝑡
⁡ .                                                                                                                         (5.26) 

 

Taking initial and boundary conditions to be 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) and 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0 

respectively, the equation that gives the solution 𝑝(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠𝑖𝑛⁡(𝜋𝑥) is (details shown in 

Appendix) 

 

 
𝜕

𝜕𝑥
[

10−7

(10−4𝑝)10
−3𝑝

𝜕𝑝

𝜕𝑥
] =

𝜕𝑝

𝜕𝑡
+

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−10−7𝜋𝑒−𝜋
2𝑡 𝑐𝑜𝑠(𝜋𝑥)

10−3𝜋𝑒−𝜋
2𝑡 𝑐𝑜𝑠(𝜋𝑥) 𝑙𝑛(10−4𝑒−𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥))+10−3𝜋𝑒−𝜋
2𝑡 𝑐𝑜𝑠(𝜋𝑥)

(10−4𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥))

10−3𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥)

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−10−7𝜋2𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥)

1

(10−4𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥))

10−3𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥)

+ 𝜋2𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥).           (5.27)                                                                                            

 

5.6.3.2 Case 𝜶 ≠ 𝟎 
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Considering unit values for 𝜌, 𝜙, 𝑐𝑡⁡, 𝛵 and 𝛼 ≠ 0, with 𝑘 = 10−7, 𝜇 = (10−4𝑝)10
−3𝑝, Eq. (5.1) 

becomes 

 

 
𝜕

𝜕𝑥
[

10−7

(10−4𝑝)10
−3𝑝

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕𝑝

𝜕𝑡
 .                                                                                           (5.28)                              

 

For Initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) and boundary conditions 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0, the 

solution is taken to be 𝑝(𝑥, 𝑡) = 𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥). The following equation gives this as its solution 

(details shown in Appendix) 

 

𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕𝑝

𝜕𝑡
+ 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [𝑐𝑜𝑠(𝜋𝑥)

𝜕𝜂

𝜕𝑥
− 𝜋 𝑠𝑖𝑛(𝜋𝑥) 𝜂] + 𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) ,     (5.29)                                                                                                     

 

where 

 

 𝜂 =
10−7

(10−4𝑝)10
−3𝑝

𝛵𝛼 .                                                                                                              (5.30) 

 

5.7 Analytical Solution and Numerical Approximation for Linear Case in Cylindrical Co-

ordinates 

 

For 𝛼 = 0, Eq. (5.1) becomes (𝜕/𝜕𝑥)[𝜌𝑘(𝜕𝑝/𝜕𝑥)/𝜇] = 𝜌𝜙𝑐𝑡(𝜕𝑝/𝜕𝑡), which in cylindrical co-

ordinate system converts to 

 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜌𝑘

𝜇

𝜕𝑝

𝜕𝑟
) = 𝜌𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
 .                                                                                                                  (5.31) 

 

For initial condition 𝑝(𝑟, 0) = 𝑝𝑜 , 0 ≤ 𝑟 < ∞, and boundary conditions 𝑝(𝑟, 𝑡) = 𝑝𝑜 as 𝑟 →

∞, 𝑡 ≥ 0, and 𝑟(𝜕𝑝/𝜕𝑟) = 𝑄𝜇/(2𝜋𝑘ℎ) as 𝑟 → 0, 𝑡 > 0, the analytical solution can be written as 

 

 𝑝(𝑟, 𝑡) = 𝑝𝑜 +
𝑄𝜇

4𝜋𝑘𝐻
𝐸𝑖 (−

𝜙𝜇𝑐𝑡𝑟
2

4𝑘𝑡
) ,⁡⁡⁡⁡⁡⁡⁡𝑡 > 0 ,                                                                                (5.32) 
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Figure 5.2 Discretization in space. 

 

where 𝐸𝑖(𝑠) is the exponential integral, and is defined as 

 

 𝐸𝑖(𝑠) = ∫
𝑒−𝑤

𝑤

∞

𝑠
𝑑𝑤 .                                                                                                          (5.33) 

 

Fig. 5.2 shows the space discretization for Eq. (5.31) where the pressure is calculated at the center 

of each grid cell. Time is non-uniformly discretized according to the definition of adapted graded 

mesh above. Discretization of Eq. (5.31) gives 

 

 −
∆𝑡

(𝑖−
1

2
)∆𝑟2

(𝑖 − 1)𝐶1 (𝑟𝑖−1
2

, 𝑡𝑛) 𝑝𝑖−1
𝑛 +

∆𝑡

(𝑖−
1

2
)∆𝑟2

[(𝑖 − 1)𝐶1 (𝑟𝑖−1
2

, 𝑡𝑛) + 𝑖𝐶1 (𝑟𝑖+1
2

, 𝑡𝑛) +

(𝑖−
1

2
)∆𝑟2

∆𝑡
𝐶2(𝑟𝑖, 𝑡𝑛)] 𝑝𝑖

𝑛 −
∆𝑡

(𝑖−
1

2
)∆𝑟2

𝑖𝐶1 (𝑟𝑖+1
2

, 𝑡𝑛) 𝑝𝑖+1
𝑛 = 𝐶2(𝑟𝑖, 𝑡𝑛)𝑝𝑖

𝑛−1 .                                  (5.34) 

 

5.8 Results and Discussion 

 

It is necessary to validate the numerical model before using it to find the solutions. In this section, 

the validation of the developed numerical model has been checked. In addition, the order of 

temporal and spatial accuracies of the developed model have been investigated. 

 

5.8.1 Validation of the Model 

 

To validate the numerical model, numerical solutions are compared with analytical solutions for 

the linear case. Eq. (5.17) gives the analytical solution for initial condition 𝑝(𝑥, 0) = 𝑥(1 − 𝑥) and 

boundary conditions 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. Errors are calculated for different numbers of steps in 

𝑟 = 0 
∆𝑟 

𝑖 = 1 𝑖 = 2 𝑖 = 3 
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space and time, and different 𝛼 values. Figure 5.3 shows the variation of error with number of time 

steps for 𝛼 = 0, 0.1, 0.25⁡and⁡0.50, where the one-dimensional space is divided into 50, and 100 

grid-points. As the number of time steps is increased, the error decreases linearly at first. However, 

for higher numbers of time steps, the rate of change in error decreases and, at some point, the error 

values reach a plateau before spatial discretization error starts to dominate. The change in error 

with the number of time steps implies that the numerical model is consistent. The figure shows 

that the numerical model gives the least error for 𝛼 = 0. With increases in 𝛼, the model gives 

larger errors. 

 

Figure 5.3 also shows that the error decreases with increase in the number of grid-points. At very 

small numbers of time steps, the differences between error found from 50 and 100 grid-points is 

insignificant. However, at large number of time steps, the differences are substantial indicating the 

plateau behaviour is due to the spatial discretization error. 

 

Table 5.1 shows the order of temporal accuracies computed for different values of fractional order, 

𝛼. It is found that the numerical model is first-order accurate in time. Order of spatial accuracies 

calculated for different values of fractional order, 𝛼, and number of time steps, 𝑁𝑡, are tabulated 

in Table 5.2. Here, the order of spatial accuracies for 𝑁𝑡 = 12800,⁡and⁡25600 are calculated using 

the error values for  𝑁𝑥 = 10, 20, and⁡40. Table 5.2 shows that the order of spatial accuracy of the 

discretization method approaches ‘two’, when large value of number of time steps, 𝑁𝑡 is used. 

Therefore, it can be concluded that the numerical model developed using graded meshes is second-

order accurate in space.  

 

Error values found using different numbers of grid-points in space and different α values are 

presented in Table 5.3. It is observed that increases in the number of grid-points in space reduces 

the error, but that the rate of decrease in the error is not the same as with increasing the number of 

time steps. The tabulated values also show that the deviation of the numerical solution from the 

analytical solution increases with the increase in the value of 𝛼.  
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Figure 5.3 Error for different 𝛼 and 𝑁𝑥. 

 

 

Table 5.1: Order of temporal accuracy. 

 

Value of fractional 

order, 𝜶 

Order of temporal accuracy 

𝑵𝒙 = 𝟓𝟎 𝑵𝒙 = 𝟏𝟎𝟎 𝑵𝒙 = 𝟐𝟎𝟎 

0 0.9946 1.0256 1.0337 

0.10 0.9273 0.9524 0.9589 

0.25 0.9274 0.9465 0.9515 

0.50 0.9555 0.9683 0.9716 

 

 

 

Table 5.2: Order of spatial accuracy. 

 

𝑵𝒕 Order of spatial accuracy 

𝜶 = 𝟎 𝜶 = 𝟎. 𝟏𝟎 𝜶 = 𝟎. 𝟐𝟓 𝜶 = 𝟎. 𝟓𝟎 

12800 1.8581 1.7712 1.7071 1.5971 

25600 1.9441 1.8770 1.8389 1.7722 
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Table 5.3: Error values for different number of grid-points in space for 200 time steps. 

 

Total length of space = 1, Total time = 1, Number of time steps = 200 

No. of grid-

points in space 

Absolute Error 

𝜶 = 𝟎 𝜶 = 𝟎. 𝟐𝟓 𝜶 = 𝟎. 𝟓𝟎 

50 3.601062e-06 3.198723e-04 8.245439e-04 

100 3.561788e-06 3.177042e-04 8.210083e-04 

200 3.551982e-06 3.171656e-04 8.201315e-04 

400 3.549531e-06 3.171175e-04 8.200890e-04 

800 3.548915e-06 3.189707e-04 8.238759e-04 

1600 3.548733e-06 2.889448e-04 7.631701e-04 

3200 3.548448e-06 2.889438e-04 7.631672e-04 

6400 3.546670e-06 2.889509e-04 7.631698e-04 

 

 

Numerical solutions of the modified equations are compared with the manufactured solutions for 

different numbers of space and time steps, and varying 𝛼 values to validate the numerical model. 

Code for the numerical solution is modified to include the expression for the pressure-dependent 

parameters and the source term arising when the equation is modified to obtain that solution. 

Tables 5.4, 5.5, and 5.6 shows the error found incorporating 𝜌, 𝜙 and 𝑘/𝜇 in terms of pressure in 

Eq. (5.1). Numerical values of the errors in these tables give the same conclusions that were made 

from the linear case.  

 

 

Table 5.4: Error values incorporating 𝜌 = 50 +
𝑝

1000
− (

𝑝

1000
)2, and 𝑁𝑥 = 50. 

 

𝝆 = 𝟓𝟎 +
𝒑

𝟏𝟎𝟎𝟎
− (

𝒑

𝟏𝟎𝟎𝟎
)𝟐, 𝑵𝒙 = 𝟓𝟎 

𝑵𝒕 Absolute Error 

α=0 α=0.25 α=0.50 α=0.75 α=0.90 

200 1.3953×10-5 4.7073×10-4 1.0435×10-3 5.2555×10-3 2.7103×10-2 

400 6.7659×10-6 2.3965×10-4 4.7512×10-4 2.2868×10-3 1.2867×10-2 

800 3.3952×10-6 1.2804×10-4 2.2341×10-4 9.7888×10-4 6.0437×10-3 

1600 1.7639×10-6 7.3516×10-5 1.1020×10-4 4.0512×10-4 2.8057×10-3 

3200 9.6166×10-7 4.6701×10-5 5.8808×10-5 1.5552×10-4 1.2780×10-3 

6400 5.6383×10-7 3.3463×10-5 3.5473×10-5 6.2953×10-5 5.6052×10-4 

12800 3.6574×10-7 2.6915×10-5 2.4999×10-5 5.5179×10-5 2.2607×10-4 

25600 2.6690×10-7 2.3676×10-5 2.0436×10-5   

 



100 

 

Table 5.5: Error values incorporating 𝜙 = 0.25 + 10−9𝑝, and 𝑁𝑥 = 50. 

 

𝝓 = 𝟎. 𝟐𝟓 + 𝟏𝟎−𝟗𝒑, 𝑵𝒙 = 𝟓𝟎 

𝑵𝒕 Absolute Error 

α=0 α=0.25 α=0.50 α=0.75 α=0.90 

200 4.5922×10-7 1.4289×10-4 5.4423×10-4 4.5573×10-3 2.6355×10-2 

400 2.3824×10-7 7.4488×10-5 2.3158×10-4 1.9675×10-3 1.2538×10-2 

800 1.2980×10-7 4.3647×10-5 1.0624×10-4 8.5457×10-4 5.9554×10-3 

1600 7.6082×10-8 2.9244×10-5 5.4672×10-5 3.7673×10-4 2.8512×10-3 

3200 4.9348×10-8 2.2351×10-5 3.2845×10-5 1.7140×10-4 1.3938×10-3 

6400 3.6011×10-8 1.8997×10-5 2.3340×10-5 8.2905×10-5 7.1017×10-4 

12800 2.9351×10-8 1.7348×10-5 1.9087×10-5 4.4677×10-5 3.9022×10-4 

25600 2.6022×10-8 1.6532×10-5 1.7138×10-5 2.8094×10-5 2.3997×10-4 

51200 2.4359×10-8 1.6127×10-5 1.6227×10-5 2.0866×10-5 1.6991×10-4 

 

Table 5.6: Error values incorporating 
𝑘

𝜇
=

10−7

(10−4𝑝)10
−3𝑝

, and 𝑁𝑥 = 50. 

 
𝒌

𝝁
=

𝟏𝟎−𝟕

(𝟏𝟎−𝟒𝒑)𝟏𝟎
−𝟑𝒑

, 𝑵𝒙 = 𝟓𝟎 

𝑵𝒕 Absolute Error 

α=0 α=0.25 α=0.50 α=0.75 α=0.90 

200 2.4470×10-2 6.7009×10-3 8.6624×10-3 1.6384×10-2 4.0056×10-2 

400 1.2286×10-2 3.3550×10-3 4.3401×10-3 8.2286×10-3 2.0266×10-2 

800 6.1555×10-3 1.6786×10-3 2.1722×10-3 4.1234×10-3 1.0193×10-2 

1600 3.0809×10-3 8.3949×10-4 1.0865×10-3 2.0639×10-3 5.1115×10-3 

3200 1.5413×10-3 4.1975×10-4 5.4328×10-4 1.0323×10-3 2.5594×10-3 

6400 7.7082×10-4 2.0982×10-4 2.7154×10-4 5.1615×10-4 1.2805×10-3 

12800 3.8546×10-4 1.0484×10-4 1.3565×10-4 2.5795×10-4 6.4032×10-4 

25600 1.9274×10-4 5.2356×10-5 6.7699×10-5 1.2882×10-4 3.2006×10-4 

51200 9.6375×10-5 2.6109×10-5 3.3721×10-5 6.4251×10-5 1.5988×10-4 

 

 

The numerical model for the memory-based radial diffusivity equation is developed following the 

way that the model is developed for the linear case. The memory-based radial diffusivity equation 

converts to the standard radial diffusivity equation for 𝛼 = 0. The numerical solution for 𝛼 = 0 is 

compared to the analytical solution of the radial diffusivity equation for initial condition 𝑝(𝑟, 0) =

𝑝𝑜 , 0 ≤ 𝑟 < ∞, and boundary conditions 𝑝(𝑟, 𝑡) = 𝑝𝑜 as 𝑟 → ∞, 𝑡 ≥ 0, and 𝑟(𝜕𝑝/𝜕𝑟) =

𝑄𝜇/(2𝜋𝑘ℎ) as 𝑟 → 0, 𝑡 > 0. The parameters used in the calculation are shown in Table 5.7. 

Analytical and numerical solutions at distances of 𝑟𝑤 and 𝑟𝑒 are tabulated in Tables 5.8 and 5.9, 
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respectively. From these tables, it is seen that the numerical solution is very close to the analytical 

solution. The difference between analytical and numerical solution is about 0.18 at 𝑟 = 𝑟𝑤. The 

differences between analytical and numerical solutions are negligible at the distance of 𝑟𝑒 from the 

center of wellbore. Pressure profiles generated from the numerical simulation for this case is shown 

in Fig. 5.4. 

 

Table 5.7: Parameters for a reservoir. 

 

Item Description Value 

In British unit system In Darcy Unit System 

𝑄𝑜 Oil production rate 300 STB/D 552.04 cm3/sec 

𝜇 Oil viscosity 1.06 cp 1.06 cp 

𝑘 Permeability 300 md 0.3 darcy 

𝐻 Thickness 100 ft 3048 cm 

𝑐𝑜 Oil compressibility 0.00001 psi-1 1.46959×10-4 atm-1 

𝑐𝑅 Rock compressibility 0.000004 psi-1 5.87838×10-5 atm-1 

𝑐𝑡 Total compressibility, (𝑐𝑜 + 𝑐𝑅) 0.000014 psi-1 2.05743×10-4 atm-1 

𝜙 Porosity 0.2 (fraction) 0.2 (fraction) 

𝑝𝑜 Initial pressure 3600 psia 244.9656 atm 

𝑝𝑏 Bubble point pressure 2000 psia 136.092 atm 

𝐵𝑜𝑏 Oil formation volume factor at 𝑝𝑏 1.063 (fraction) 1.063 (fraction) 

𝑟𝑤 Radius of wellbore 0.1875 ft 5.715 cm 

𝑟𝑒 An arbitrary distance from center of 

wellbore 

28.0176 ft 853.98 cm 

𝐿 Length in the 𝑥-direction 8100 ft 246888 cm 

 

Table 5.8: The pressure comparison at 𝑟 = 𝑟𝑤. 

 

Time 

(days) 

Time 

(Seconds) 

p (analytical 

solution) (psia) 

ph (numerical 

solution) (psia) 
ph – p 
(psia) 

0.1 8640 3588.08 3588.26 0.18 

0.2 17280 3587.54 3587.72 0.18 

0.3 25920 3587.22 3587.40 0.18 

0.4 34560 3587.00 3587.18 0.18 

0.5 43200 3586.82 3587.00 0.18 

0.6 51840 3586.68 3586.86 0.18 

0.7 60480 3586.56 3586.74 0.18 

0.8 69120 3586.45 3586.64 0.19 

0.9 77760 3586.36 3586.54 0.18 

1.0 86400 3586.28 3586.46 0.18 
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Table 5.9: The pressure comparison at 𝑟 = 𝑟𝑒. 
 

Time 

(days) 

Time 

(Seconds) 

p (analytical 

solution) (psia) 

ph (numerical 

solution) (psia) 

ph – p 

(psia) 

0.1 8640 3595.9205103 3595.9196454 -0.0008649 

0.2 17280 3595.3779089 3595.3781949 0.0002860 

0.3 25920 3595.0605074 3595.0611771 0.0006697 

0.4 34560 3594.8353075 3594.8361691 0.0008616 

0.5 43200 3594.6606288 3594.6616056 0.0009768 

0.6 51840 3594.5179060 3594.5189595 0.0010535 

0.7 60480 3594.3972355 3594.3983439 0.0011084 

0.8 69120 3594.2927060 3594.2938555 0.0011495 

0.9 77760 3594.2005045 3594.2016859 0.0011814 

1.0 86400 3594.1180274 3594.1192344 0.0012070 

 

 

 
 

Figure 5.4 Pressure profile from numerical simulation for the radial case. 

 

 

5.8.2 Significance of the Model and Sensitivity Analysis 

 

Finding analytical solutions of the time-fractional diffusion equation is not always convenient. 

This model can be helpful to numerically solve the equation for any initial and boundary 

conditions. In addition, the model can be used to observe the effects of the fractional order on the 
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solutions. The solutions of Eq. (5.1) for different 𝛼 values are shown in Fig. 5.5. Here, 

(𝜌𝑘/𝜇)𝛵𝛼 = 1,⁡and⁡𝜌𝜙𝑐𝑡 = 1 has been considered. The initial condition is taken as 𝑝(𝑥, 0) =

𝑥(1 − 𝑥) and boundary condition is taken as 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. The numerical values of the 

solutions get higher as the value of fractional order increases within 0 ≤ 𝛼 < 1. The equation can 

give different numerical solutions based on its fractional order while keeping the other parameters 

constant. Field data can be used to determine the value of the fractional order that will accurately 

represent true flow phenomenon. The fractional order value provides information about the 

dependence of the fluid flow phenomenon through that porous media on its history. 

 

 

 
 

Figure 5.5 Solutions of the time fractional diffusion equation for different 𝛼 values. 

 

 

5.9 Conclusions 

 

A numerical model is developed to solve a time-fractional non-linear diffusion equation applying 

the Riemann-Liouville definition for the fractional-order derivative. The L1 algorithm is derived 

for an adapted graded mesh. The numerical model is validated, comparing with analytical solutions 

in the linear case and with manufactured solutions in the non-linear cases of the equation. From 

the error analysis, it can be concluded that the numerical model is consistent, second-order accurate 



104 

 

in space, and first-order accurate in time. The model can be used to investigate the effect of 

memory on fluid flow through porous media. 
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Appendix 

 

Analytical Solution for Linear Case 

 

To find the analytical solution, we consider 𝐶1 = 𝐶2 = 1 in Eq. (5.9) giving 

 

 
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕𝑝

𝜕𝑡
 ,                                                                                                         (A 5.1) 

 

with boundary conditions 𝑝(0) = 𝑝(1) = 0 . 

 

We write the solution in series form as 

 

 𝑝(𝑥, 𝑡) = ∑ 𝑇𝑘
∞
𝑘=1 (𝑡)𝑠𝑖𝑛⁡(𝑘𝜋𝑥) ,                                                                                    (A 5.2) 

 

noting that 

 

 
𝜕𝑝

𝜕𝑡
(𝑥, 𝑡) = ∑ 𝑇𝑘

′(𝑡)∞
𝑘=1 𝑠𝑖𝑛(𝑘𝜋𝑥) = −∑ 𝑘2𝜋2

𝜕𝛼𝑇𝑘(𝑡)

𝜕𝑡𝛼
𝑠𝑖𝑛(𝑘𝜋𝑥)∞

𝑘=1 =
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] .  (A 5.3) 

 

To be a solution, we require that 

 

 𝑇𝑘
′(𝑡) = −𝑘2𝜋2

𝜕𝛼𝑇𝑘(𝑡)

𝜕𝑡𝛼
 ,                                                                                                  (A 5.4) 

 

 and 𝑇𝑘(0) = 𝛽𝑘 ,                                                                                                             (A 5.5) 

 

where 𝛽𝑘 comes from the sine series expansion of the initial data, 𝑝(𝑥, 0) = ∑ 𝛽𝑘
∞
𝑘=1 𝑠𝑖𝑛⁡(𝑘𝜋𝑥). 

 

Taking Laplace transforms, we have 

  

 ℒ[𝑇𝑘
′(𝑡)] = 𝑠𝑇̂𝑘(𝑠) − 𝛽𝑘 .                                                                                                (A 5.6) 
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For the Riemann-Liouville definition of the fractional-order derivative, 

 

 ℒ [
𝜕𝛼𝑇𝑘(𝑡)

𝜕𝑡𝛼
] = 𝑠𝛼𝑇̂𝑘(𝑠) − [𝐷𝛼−1𝑇𝑘(𝑡)]𝑡=0 .                                                                    (A 5.7) 

 

Therefore, 

 

 𝑠𝑇̂𝑘(𝑠) − 𝛽𝑘 = −𝑘2𝜋2(𝑠𝛼𝑇̂𝑘(𝑠) − 𝑐𝑘)   where 𝑐𝑘 = [𝐷𝛼−1𝑇𝑘(𝑡)]𝑡=0                          (A 5.8) 

 

 𝑜𝑟, (𝑠 + 𝑘2𝜋2𝑠𝛼)𝑇̂𝑘(𝑠) = 𝛽𝑘 + 𝑘2𝜋2𝑐𝑘 ,                                                                       (A 5.9) 

 

 𝑜𝑟, 𝑇̂𝑘(𝑠) =
𝛽𝑘+𝑘

2𝜋2𝑐𝑘

𝑠+𝑘2𝜋2𝑠𝛼
=

(𝛽𝑘+𝑘
2𝜋2𝑐𝑘)𝑠

−𝛼

𝑠1−𝛼+𝑘2𝜋2
 .                                                                     (A 5.10) 

 

This gives 

 

 𝑇𝑘(𝑡) = (𝛽𝑘 + 𝑘2𝜋2𝑐𝑘)𝐸1−𝛼(−𝑘
2𝜋2𝑡1−𝛼) ,                                                                (A 5.11) 

 

where 𝐸1−𝛼(𝑣) is the Mittag-Leffler function, and is defined for (1 − 𝛼) > 0 as 

 

 𝐸1−𝛼(𝑣) = ∑
𝑣𝑘

Γ((1−𝛼)𝑘+1)

∞
𝑘=0  ,                                                                                       (A 5.12) 

 

since ℒ[𝐸1−𝛼(−𝑘
2𝜋2𝑡1−𝛼)] =

𝑠−𝛼

𝑠1−𝛼+𝑘2𝜋2
 .                                                                              (A 5.13) 

 

Now, 

 

 𝐷𝛼−1[(𝛽𝑘 + 𝑘2𝜋2𝑐𝑘)𝐸1−𝛼(−𝑘
2𝜋2𝑡1−𝛼)] =

𝛽𝑘+𝑘
2𝜋2𝑐𝑘

−𝑘2𝜋2
(𝐸1−𝛼(−𝑘

2𝜋2𝑡1−𝛼) − 1) ,   (A 5.14) 

 

which forces  𝐷𝛼−1[𝑇𝑘(𝑡)]𝑡=0 = 0   as  𝐸1−𝛼(0) = 1 ,                                                         (A 5.15) 
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 giving 𝑐𝑘 = 0, 𝑇𝑘(𝑡) = 𝛽𝑘𝐸1−𝛼(−𝑘
2𝜋2𝑡1−𝛼) ,                                                            (A 5.16) 

  

 and 𝑝(𝑥, 𝑡) = ∑ 𝛽𝑘𝐸1−𝛼(−𝑘
2𝜋2𝑡1−𝛼)∞

𝑘=1 𝑠𝑖𝑛(𝑘𝜋𝑥) .                                                 (A 5.17) 

 

Eq. (A 5.17) is the general analytical solution of Eq. (A 5.1) for any initial condition. 

 

Now, taking the initial condition considered above, 

 

 𝑝0(𝑥) = 𝑥(1 − 𝑥) ,                                                                                                       (A 5.18) 

 

We write this as 

 

 𝑝0(𝑥)𝑠𝑖𝑛⁡(𝑚𝜋𝑥) ≡ ∑ 𝛽𝑘
∞
𝑘=1 𝑠𝑖𝑛(𝑘𝜋𝑥) 𝑠𝑖𝑛(𝑚𝜋𝑥) ,                                                      (A 5.19) 

 

 𝑜𝑟, ∫ 𝑝0(𝑥)𝑠𝑖𝑛⁡(𝑚𝜋𝑥)𝑑𝑥
1

0
≡ ∫ ∑ 𝛽𝑘

∞
𝑘=1 𝑠𝑖𝑛(𝑘𝜋𝑥) 𝑠𝑖𝑛(𝑚𝜋𝑥)

1

0
𝑑𝑥 .                              (A 5.20) 

  

Interchanging summation and integration and expanding, we get, 

 

 ∫ 𝑝0(𝑥)𝑠𝑖𝑛⁡(𝑚𝜋𝑥)𝑑𝑥
1

0
≡ ∫ 𝛽1 𝑠𝑖𝑛(𝜋𝑥) 𝑠𝑖𝑛(𝑚𝜋𝑥)

1

0
𝑑𝑥 + ∫ 𝛽2 𝑠𝑖𝑛(2𝜋𝑥) 𝑠𝑖𝑛(𝑚𝜋𝑥)

1

0
𝑑𝑥 +

⋯+ ∫ 𝛽𝑘 𝑠𝑖𝑛(𝑘𝜋𝑥) 𝑠𝑖𝑛(𝑚𝜋𝑥)
1

0
𝑑𝑥 +⋯                                                                                 (A 5.21) 

 

If 𝑘 ≠ 𝑚,⁡ 

 

 ∫ 𝛽𝑘 𝑠𝑖𝑛(𝑘𝜋𝑥) 𝑠𝑖𝑛(𝑚𝜋𝑥)
1

0
𝑑𝑥 = 0 ,                                                                              (A 5.22)           

 

while, if 𝑘 = 𝑚,⁡ 

 

 ∫ 𝛽𝑘 𝑠𝑖𝑛(𝑘𝜋𝑥) 𝑠𝑖𝑛(𝑚𝜋𝑥)
1

0
𝑑𝑥 ≠ 0 .                                                                              (A 5.23) 
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So, we get, ∫ 𝑝0(𝑥)𝑠𝑖𝑛⁡(𝑘𝜋𝑥)𝑑𝑥
1

0
= ∫ 𝛽𝑘 𝑠𝑖𝑛

2(𝑘𝜋𝑥)
1

0
𝑑𝑥 .                                                    (A 5.24) 

 

Solving for 𝛽𝑘 gives 

 

 𝛽𝑘 =
∫ 𝑝0(𝑥)𝑠𝑖𝑛⁡(𝑘𝜋𝑥)𝑑𝑥
1
0

∫ 𝑠𝑖𝑛2(𝑘𝜋𝑥)
1
0

𝑑𝑥
 .                                                                                                 (A 5.25) 

 

Now, 

  

 ∫ 𝑥(1 − 𝑥) 𝑠𝑖𝑛(𝑘𝜋𝑥) 𝑑𝑥
1

0
= [−

1

𝑘𝜋
(𝑥 − 𝑥2) 𝑐𝑜𝑠(𝑘𝜋𝑥) 

                       +
1

𝑘2𝜋2
(1 − 2𝑥) 𝑠𝑖𝑛(𝑘𝜋𝑥) −

2

𝑘3𝜋3
𝑐𝑜𝑠⁡(𝑘𝜋𝑥)]0

1                                                (A 5.26) 

 

 = −
1

𝑘2𝜋2
𝑠𝑖𝑛(𝑘𝜋) −

2

𝑘3𝜋3
𝑐𝑜𝑠(𝑘𝜋) +

2

𝑘3𝜋3
=

2

𝑘3𝜋3
−

2

𝑘3𝜋3
(−1)𝑘 ,                               (A 5.27) 

 

and 

 

 ∫ 𝑠𝑖𝑛2(𝑘𝜋𝑥)
1

0
𝑑𝑥 =

1

2
∫ {1 − 𝑐𝑜𝑠⁡(2𝑘𝜋𝑥)}
1

0
𝑑𝑥 =

1

2
 .                                                      (A 5.28) 

  

Hence, 

 

 𝛽𝑘 =
2

𝑘3𝜋3
−

2

𝑘3𝜋3
(−1)𝑘

1

2

 ,                                                                                                      (A 5.29) 

 

 𝑜𝑟, 𝛽𝑘 = 2[
2

𝑘3𝜋3
−

2

𝑘3𝜋3
(−1)𝑘] =

4

𝑘3𝜋3
[1 − (−1)𝑘] .                                                   (A 5.30) 

 

This gives 

 

 𝑝(𝑥, 𝑡) = ∑
4

𝑘3𝜋3
[1 − (−1)𝑘]𝐸1−𝛼(−𝑘

2𝜋2𝑡1−𝛼)∞
𝑘=1 𝑠𝑖𝑛(𝑘𝜋𝑥) .                                 (A 5.31) 
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Manufactured Solutions for the Nonlinear case 

 

Inclusion of Density, 𝛒 

 

Case 𝜶 = 𝟎 

 

Taking 𝜌 = 50 +
𝑝

1000
− (

𝑝

1000
)2, unit values for 𝜙, 𝑐𝑡,⁡⁡⁡𝜇, and 𝑘, and 𝛼 = 0, Eq. (5.1) becomes 

 

 
𝜕

𝜕𝑥
[𝜌

𝜕𝑝

𝜕𝑥
] = 𝜌

𝜕𝑝

𝜕𝑡
⁡ .                                                                                                           (A 5.32) 

 

Let the analytical solution of the equation 

 

 
𝜕

𝜕𝑥
[𝜌

𝜕𝑝

𝜕𝑥
] = 𝜌

𝜕𝑝

𝜕𝑡
+ 𝑓(𝑥, 𝑡)                                                                                            (A 5.33) 

 

be 𝑝(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠𝑖𝑛⁡(𝜋𝑥), giving                                                                                        (A 5.34) 

 

 𝜌 = 50 +
1

1000
𝑒−𝜋

2𝑡𝑠𝑖𝑛⁡(𝜋𝑥) −
1

106
𝑒−2𝜋

2𝑡𝑠𝑖𝑛2(𝜋𝑥) .                                                 (A 5.35) 

 

Note 𝑝(𝑥, 𝑡) as given satisfies the initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and the boundary conditions 

𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. 

 

Now, 

 

 
𝜕

𝜕𝑥
(𝜌

𝜕𝑝

𝜕𝑥
) =

𝜕𝜌

𝜕𝑥

𝜕𝑝

𝜕𝑥
+ 𝜌

𝜕2𝑝

𝜕𝑥2
                                                                                            (A  5.36) 

 

 gives⁡
𝜕

𝜕𝑥
(𝜌

𝜕𝑝

𝜕𝑥
) = [

1

103
𝜋𝑒−𝜋

2𝑡 𝑐𝑜𝑠(𝜋𝑥) −
2

106
𝜋𝑒−2𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠(𝜋𝑥)][𝜋𝑒−𝜋
2𝑡 𝑐𝑜𝑠(𝜋𝑥)] 

   +[50 +
1

103
𝑒−𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) −
1

106
𝑒−2𝜋

2𝑡𝑠𝑖𝑛2(𝜋𝑥)][−𝜋2𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥)] ,    (A 5.37) 
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 𝑜𝑟,
𝜕

𝜕𝑥
(𝜌

𝜕𝑝

𝜕𝑥
) =

1

103
𝜋2𝑒−2𝜋

2𝑡 𝑐𝑜𝑠2(𝜋𝑥) −
2

106
𝜋2𝑒−3𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠2(𝜋𝑥) −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡50𝜋2𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥) −

1

103
𝜋2𝑒−2𝜋

2𝑡 𝑠𝑖𝑛2(𝜋𝑥) +
1

106
𝜋2𝑒−3𝜋

2𝑡 𝑠𝑖𝑛3(𝜋𝑥) .      (A 5.38) 

 

From direct calculation, 

 

 𝜌
𝜕𝑝

𝜕𝑡
= [50 +

1

103
𝑒−𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) −
1

106
𝑒−2𝜋

2𝑡𝑠𝑖𝑛2(𝜋𝑥)] [−𝜋2𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥)] ,           (A 5.39) 

 

𝑜𝑟, 𝜌
𝜕𝑝

𝜕𝑡
= −50𝜋2𝑒−𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) −
1

103
𝜋2𝑒−2𝜋

2𝑡 𝑠𝑖𝑛2(𝜋𝑥) +
1

106
𝜋2𝑒−3𝜋

2𝑡 𝑠𝑖𝑛3(𝜋𝑥) .     (A 5.40) 

 

Therefore, defining 

 

 𝑓(𝑥, 𝑡) =
𝜕

𝜕𝑥
(𝜌

𝜕𝑝

𝜕𝑥
) − 𝜌

𝜕𝑝

𝜕𝑡
                                                                                            (A 5.41) 

 

 gives⁡𝑓(𝑥, 𝑡) =
1

103
𝜋2𝑒−2𝜋

2𝑡 𝑐𝑜𝑠2(𝜋𝑥) −
2

106
𝜋2𝑒−3𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠2(𝜋𝑥) .              (A 5.42) 

 

Case 𝜶 ≠ 𝟎 

 

Consider unit values for 𝜙, 𝑐𝑡,⁡⁡⁡𝜇, 𝑘, and 𝛵, 𝛼 ≠ 0 and 𝜌 = 50 +
𝑝

1000
− (

𝑝

1000
)2. For these values, 

Eq. (5.1) becomes 

 

 
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜌

𝜕𝑝

𝜕𝑡
 .                                                                                                  (A 5.43) 

 

Let the analytical solution of the equation 

 

 
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜌

𝜕𝑝

𝜕𝑡
+ 𝑓(𝑥, 𝑡)                                                                                   (A 5.44) 

 

be 𝑝(𝑥, 𝑡) = 𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥). With this,                                                                                   (A 5.45) 



113 

 

 𝜌 = 50 +
1

103
𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥) −

1

106
𝑒−2𝜋𝑡𝑠𝑖𝑛2(𝜋𝑥) .                                                      (A 5.46) 

 

Note that 𝑝(𝑥, 𝑡) satisfies the initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and the boundary conditions 

𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. 

 

Now, 

 

 
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(𝜋𝑒−𝜋𝑡 𝑐𝑜𝑠(𝜋𝑥))] .                                                              (A 5.47) 

 

Using the Riemann-Liouville definition of the fractional order derivative, 
𝜕𝛼

𝜕𝑡𝛼
(𝑒𝜆𝑡) =

𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡), we get 

 

 ⁡
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕

𝜕𝑥
[𝜌𝜋 𝑐𝑜𝑠(𝜋𝑥) 𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡)] ,                                                   (A 5.48) 

 

 𝑜𝑟,
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [𝑐𝑜𝑠(𝜋𝑥)

𝜕𝜌

𝜕𝑥
+ 𝜌(−𝜋𝑠𝑖𝑛⁡(𝜋𝑥))] .                   (A 5.49) 

  

 Thus,⁡
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [𝑐𝑜𝑠(𝜋𝑥) {

1

103
𝜋𝑒−𝜋𝑡 𝑐𝑜𝑠(𝜋𝑥) −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
2

106
𝜋𝑒−2𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠(𝜋𝑥)} − 𝜋 𝑠𝑖𝑛(𝜋𝑥) {50 +

1

103
𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
1

106
𝑒−2𝜋𝑡𝑠𝑖𝑛2(𝜋𝑥)}] ,                (A5.50)  

 

 𝑜𝑟,
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [

1

103
𝜋𝑒−𝜋𝑡 𝑐𝑜𝑠2(𝜋𝑥) −

2

106
𝜋𝑒−2𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠2(𝜋𝑥) − 50𝜋 𝑠𝑖𝑛(𝜋𝑥) −

1

103
𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛2(𝜋𝑥) +

1

106
𝜋𝑒−2𝜋𝑡𝑠𝑖𝑛3(𝜋𝑥)]. 

                                                                                                                                              (A 5.51) 

Furthermore, 

 

 𝜌
𝜕𝑝

𝜕𝑡
= [50 +

1

103
𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) −

1

106
𝑒−2𝜋𝑡𝑠𝑖𝑛2(𝜋𝑥)] [−𝜋𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥)] ,                 (A 5.52) 
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 𝑜𝑟, 𝜌
𝜕𝑝

𝜕𝑡
= [−50𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) −

1

103
𝜋𝑒−2𝜋𝑡 𝑠𝑖𝑛2(𝜋𝑥) +

1

106
𝜋𝑒−3𝜋𝑡𝑠𝑖𝑛3(𝜋𝑥)] .    (A 5.53) 

 

Thus, defining 

 

 𝑓(𝑥, 𝑡) =
𝜕

𝜕𝑥
[𝜌

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] − 𝜌

𝜕𝑝

𝜕𝑡
                                                                                    (A 5.54) 

 

 gives⁡⁡𝑓(𝑥, 𝑡) = 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [
1

103
𝜋𝑒−𝜋𝑡 𝑐𝑜𝑠2(𝜋𝑥) −

2

106
𝜋𝑒−2𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠2(𝜋𝑥) −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡50𝜋 𝑠𝑖𝑛(𝜋𝑥) −
1

103
𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛2(𝜋𝑥) +

1

106
𝜋𝑒−2𝜋𝑡𝑠𝑖𝑛3(𝜋𝑥)] + 50𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
1

103
𝜋𝑒−2𝜋𝑡 𝑠𝑖𝑛2(𝜋𝑥) −

1

106
𝜋𝑒−3𝜋𝑡𝑠𝑖𝑛3(𝜋𝑥) .                                                     (A 5.55) 

 

Inclusion of Porosity, 𝝓 

 

Case 𝜶 = 𝟎 

 

Taking 𝜙 = 0.25 + 10−9𝑝, unit values for 𝜌, 𝑐𝑡,⁡⁡⁡𝜇, and 𝑘, and 𝛼 = 0, Eq. (5.1) becomes 

 

 
𝜕2𝑝

𝜕𝑥2
= 𝜙

𝜕𝑝

𝜕𝑡
 .                                                                                                                    (A 5.56) 

 

Let the analytical solution of the equation 

 

 
𝜕2𝑝

𝜕𝑥2
= 𝜙

𝜕𝑝

𝜕𝑡
+ 𝑓(𝑥, 𝑡)                                                                                                     (A 5.57) 

 

be 𝑝(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠𝑖𝑛⁡(𝜋𝑥), giving                                                                                       (A 5.58) 

 

 𝜙 = 0.25 + 10−9𝑒−𝜋
2𝑡𝑠𝑖𝑛⁡(𝜋𝑥) .                                                                                 (A 5.59) 

 

Note 𝑝(𝑥, 𝑡) as given satisfies the initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and the boundary conditions 

𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. 
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Now, 

 

 
𝜕2𝑝

𝜕𝑥2
= −𝜋2𝑒−𝜋

2𝑡𝑠𝑖𝑛⁡(𝜋𝑥) .                                                                                            (A 5.60) 

 

From direct calculation, 

 

 𝜙
𝜕𝑝

𝜕𝑡
= (0.25 + 10−9𝑝)[−𝜋2𝑒−𝜋

2𝑡𝑠𝑖𝑛⁡(𝜋𝑥)] ,                                                              (A 5.61) 

 

 𝑜𝑟, 𝜙
𝜕𝑝

𝜕𝑡
= [0.25 + 10−9𝑒−𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥)][−𝜋2𝑒−𝜋
2𝑡𝑠𝑖𝑛⁡(𝜋𝑥)] ,                                  (A 5.62) 

 

 𝑜𝑟, 𝜙
𝜕𝑝

𝜕𝑡
= −0.25𝜋2𝑒−𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥) − 10−9𝜋2𝑒−2𝜋
2𝑡 𝑠𝑖𝑛2(𝜋𝑥) .                                (A 5.63) 

 

Therefore, defining 

 

 𝑓(𝑥, 𝑡) =
𝜕2𝑝

𝜕𝑥2
− 𝜙

𝜕𝑝

𝜕𝑡
                                                                                                     (A 5.64) 

 

 gives 𝑓(𝑥, 𝑡) = −0.75𝜋2𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥) + 10−9𝜋2𝑒−2𝜋

2𝑡 𝑠𝑖𝑛2(𝜋𝑥) .                          (A 5.65) 

 

Case 𝜶 ≠ 𝟎 

 

Consider unit values for 𝜌, 𝑐𝑡,⁡⁡⁡𝜇, 𝑘, and 𝛵, 𝛼 ≠ 0 and 𝜙 = 0.25 + 10−9𝑝. For these values, Eq. 

(5.1) becomes 

 

 
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜙

𝜕𝑝

𝜕𝑡
 .                                                                                                     (A 5.66) 

 

Let the analytical solution of the equation 

 

 
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜙

𝜕𝑝

𝜕𝑡
+ 𝑓(𝑥, 𝑡)                                                                                      (A 5.67) 
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 be 𝑝(𝑥, 𝑡) = 𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥). With this,                                                                                  (A 5.68) 

 

 ⁡𝜙 = 0.25 + 10−9𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥) .                                                                                  (A 5.69) 

 

Note that 𝑝(𝑥, 𝑡) satisfies the initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and the boundary conditions 

𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. 

 

Now, 

 

 
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(𝜋𝑒−𝜋𝑡𝑐𝑜𝑠⁡(𝜋𝑥))]                                                                    (A 5.70) 

 

 gives 
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕

𝜕𝑥
[𝜋 𝑐𝑜𝑠(𝜋𝑥) 𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡)] ,                                               (A 5.71) 

 

 𝑜𝑟,
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = −𝜋2 𝑠𝑖𝑛(𝜋𝑥) 𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) .                                                    (A 5.72) 

 

Furthermore, 

 

 𝜙
𝜕𝑝

𝜕𝑡
= [0.25 + 10−9𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥)][−𝜋𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥)] .                                              (A 5.73) 

 

Thus, defining 

 

 𝑓(𝑥, 𝑡) =
𝜕

𝜕𝑥
[
𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] − 𝜙

𝜕𝑝

𝜕𝑡
                                                                                      (A 5.74) 

 

 gives⁡𝑓(𝑥, 𝑡) = −𝜋2 𝑠𝑖𝑛(𝜋𝑥) 𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) + [𝜋𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥)][0.25 +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡10−9𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥)] .                                                                            (A 5.75) 

 

Inclusion of 𝝁 

 

Case 𝜶 = 𝟎 
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Taking 𝑘 = 10−7, 𝜇 = (10−4𝑝)10
−3𝑝, unit values for 𝜌, 𝜙, 𝑐𝑡⁡ and 𝛼 = 0, Eq. (5.1) becomes 

 

 
𝜕

𝜕𝑥
[

10−7

(10−4𝑝)10
−3𝑝

𝜕𝑝

𝜕𝑥
] =

𝜕𝑝

𝜕𝑡
⁡ .                                                                                            (A 5.76) 

 

Let the analytical solution of the equation 

 

 
𝜕

𝜕𝑥
[

10−7

(10−4𝑝)10
−3𝑝

𝜕𝑝

𝜕𝑥
] =

𝜕𝑝

𝜕𝑡
+ 𝑓(𝑥, 𝑡)                                                                               (A 5.77) 

 

be 𝑝(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠𝑖𝑛⁡(𝜋𝑥) .                                                                                               (A 5.78) 

 

Note 𝑝(𝑥, 𝑡) as given satisfies the initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and the boundary conditions 

𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. 

 

Now, defining 

 

 𝑓(𝑥, 𝑡) =
𝜕

𝜕𝑥
[

10−7

(10−4𝑝)10
−3𝑝

𝜕𝑝

𝜕𝑥
] −

𝜕𝑝

𝜕𝑡
                                                                             (A 5.79) 

 

 

 gives⁡𝑓(𝑥, 𝑡) =

−10−7𝜋𝑒−𝜋
2𝑡 𝑐𝑜𝑠(𝜋𝑥)

10−3𝜋𝑒−𝜋
2𝑡 𝑐𝑜𝑠(𝜋𝑥) 𝑙𝑛(10−4𝑒−𝜋

2𝑡 𝑠𝑖𝑛(𝜋𝑥))+10−3𝜋𝑒−𝜋
2𝑡 𝑐𝑜𝑠(𝜋𝑥)

(10−4𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥))

10−3𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥)

−

10−7𝜋2𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥)

1

(10−4𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥))

10−3𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥)

+ 𝜋2𝑒−𝜋
2𝑡 𝑠𝑖𝑛(𝜋𝑥) .                        (A 5.80) 

 

Case 𝜶 ≠ 𝟎 

 

Consider unit values for 𝜌, 𝜙, 𝑐𝑡, 𝛵 and 𝛼 ≠ 0, 𝑘 = 10−7, 𝜇 = (10−4𝑝)10
−3𝑝, and 𝜂 = (𝑘/𝜇)𝛵𝛼. 

For these values, Eq. (5.1) becomes 
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𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕𝑝

𝜕𝑡
 .                                                                                                    (A 5.81)                              

 

Let the analytical solution of the equation 

 

 
𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕𝑝

𝜕𝑡
+ 𝑓(𝑥, 𝑡)                                                                                 (A 5.82) 

 

be 𝑝(𝑥, 𝑡) = 𝑒−𝜋𝑡𝑠𝑖𝑛⁡(𝜋𝑥) .                                                                                                   (A 5.83) 

 

Note that 𝑝(𝑥, 𝑡) satisfies the initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and the boundary conditions 

𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0. 

 

Now, 

 

 
𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(𝜋𝑒−𝜋𝑡 𝑐𝑜𝑠(𝜋𝑥))]                                                             (A 5.84) 

 

 gives 
𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] =

𝜕

𝜕𝑥
[𝜂𝜋 𝑐𝑜𝑠(𝜋𝑥) 𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡)] ,                                          (A 5.85) 

 

 𝑜𝑟,
𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [𝑐𝑜𝑠(𝜋𝑥)

𝜕𝜂

𝜕𝑥
+ 𝜂(−𝜋𝑠𝑖𝑛⁡(𝜋𝑥))] ,                  (A 5.86) 

 

 𝑜𝑟,
𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [𝑐𝑜𝑠(𝜋𝑥)

𝜕𝜂

𝜕𝑥
− 𝜋𝑠𝑖𝑛⁡(𝜋𝑥)𝜂] .                         (A 5.87) 

 

Furthermore,  

 

 
𝜕𝑝

𝜕𝑡
= −𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥) .                                                                                                 (A 5.88) 

 

Thus, defining 

 

 𝑓(𝑥, 𝑡) =
𝜕

𝜕𝑥
[𝜂

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] −

𝜕𝑝

𝜕𝑡
                                                                                       (A 5.89) 



119 

 

 gives 𝑓(𝑥, 𝑡) = 𝜋𝑡−𝛼𝐸1,1−𝛼(−𝜋𝑡) [𝑐𝑜𝑠(𝜋𝑥)
𝜕𝜂

𝜕𝑥
− 𝜋 𝑠𝑖𝑛(𝜋𝑥) 𝜂] + 𝜋𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥),  (A 5.90) 

 

where 

 

 
𝜕𝜂

𝜕𝑥
= −10−7𝛵𝛼

10−3𝜋𝑒−𝜋𝑡 𝑐𝑜𝑠(𝜋𝑥) 𝑙𝑛(10−4𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥))+10−3𝜋𝑒−𝜋𝑡 𝑐𝑜𝑠(𝜋𝑥)

(10−4𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥))10
−3𝑒−𝜋𝑡 𝑠𝑖𝑛(𝜋𝑥)

 .                         (A 5.91) 
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Chapter 6 

 

Comparison among Numerical Models of a Memory- based Diffusivity 

Equation Developed Using Uniform and Graded Meshes, and Determination 

of ‘𝜶’ value 

 

 

Co-Authorship 

 

Chapter 6 is prepared according to the Guidelines for Manuscript Format Theses in the Faculty of 

Engineering and Applied Science at Memorial University. This chapter has been prepared for 

submission as a journal article: 

 

T. U. Zaman, S. MacLachlan, and M. E. Hossain (in preparation). “Comparison among numerical 

models of a memory- based radial diffusivity equation developed using uniform and graded 

meshes.”  

 

The research work presented in this chapter was conducted by Tareq Uz Zaman under the direction 

and supervision of M. Enamul Hossain, and the guidance and close supervision of Scott 

MacLachlan.  The manuscript itself was written by Tareq Uz Zaman and reviewed by M. Enamul 

Hossain and Scott MacLachlan. 

 

6.1 Abstract 

 

Two different numerical models developed for a memory-based radial diffusivity equation 

utilizing uniform and graded meshes have been studied and compared. Numerical solutions 

obtained from these numerical models are compared with analytical solutions for Dirichlet 

boundary conditions and two different initial conditions to calculate and compare errors. It is found 

that the numerical model developed using graded meshes gives smaller error than that using 

uniform meshes. Experimental data regarding one-dimensional flow measurements through a 
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porous layer with constant pressure gradient are collected from the literature. The value of the 

fractional order in the diffusivity equation in this paper is computed to fit the experimental data by 

the mathematical model. A reasonable value of the fractional order is found to be 0.05. Optimal 

numbers of time steps in unit time for this value of fractional order and for different numbers of 

grid-points in unit length are found by error analysis, where the optimal number of steps in unit 

time is required to minimize the temporal discretization error. The comparison between uniform 

and graded meshes shows that utilization of graded meshes to develop the numerical model for the 

time-fractional diffusion equation is advantageous compared to the utilization of uniform meshes. 

 

Keywords: Memory, Numerical Modeling, Fractional diffusion equation, Riemann-Liouville 

definition, Uniform mesh, Graded mesh. 

 

6.2 Introduction 

 

Reservoir modeling is a critical component in the development, planning, and production 

management of oil and gas fields. The ultimate goal of reservoir modeling is to aid in the decision-

making process throughout all stages of field life. Numerous mathematical models have been 

developed for different types of reservoirs and fluids over more than the past fifty years modelling 

various flow regimes and properties. In recent years, researchers have started to investigate the 

effects of the history of the rock, fluid, and flow, that is also known as memory, on flow through 

porous media. The recent literature on the mathematical modeling of rock/fluid interactions in 

porous media shows that many researchers are developing models with memory (Caputo, 1998; 

Caputo, 2000; Hossain et al., 2012a; Hossain et al., 2012b; Hossain et al., 2015). 

 

Several definitions of memory are found in the literature. Zhang (2003) defined memory as a 

function of time and space, where forward time events depend on previous time events. 

Christensen (2003) defined memory to be when the history of the deformation and fractures of a 

solid under stress is used to determine the propagation of a fracture within a solid. Zavala-Sanchez 

et al. (2009) showed that the system “remembers” its initial state, which was defined as memory 

effects for the effective transport coefficients. Hossain et al. (2012a) defined memory as the effect 
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of past events on the present and future course of developments. In this direction, Hossain et al. 

(2008) proposed the following diffusivity equation 

 

 
𝜕

𝜕𝑥
[
𝜌𝑘

𝜇
𝛵𝛼

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] = 𝜌𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
 ,                                                                                               (6.1) 

 

where 𝑝(𝑥, 𝑡) is the pressure, 𝜌(𝑥, 𝑡) the fluid density, 𝜙(𝑥, 𝑡) the porosity of the fluid medium, 

𝑘(𝑥, 𝑡) the permeability of the medium, 𝜇(𝑥, 𝑡) the dynamic viscosity of the fluid, 𝑐𝑡(𝑥, 𝑡) the total 

compressibility of the system, 𝛼 the fractional order of differentiation and 𝛵 the characteristic time. 

 

The fractional-order derivative is required to be included in the diffusion equation in order to 

incorporate memory. However, inclusion of the fractional-order derivative makes the diffusion 

equation difficult to solve analytically and numerically. The non-local behavior of the fractional-

order differential equation makes the equation challenging to solve numerically. However, 

numerous studies on numerical approaches to fractional diffusion equations are found in the 

literature. Various powerful methods have been proposed for numerical solution of fractional 

differential equations. Many authors have applied finite-difference methods (Abu-Saman, 2007; 

Chen et al., 2007; Chen et al., 2009; Chen et al., 2010; Cui et al., 2009; Du et al., 2010; Gao et 

al., 2011; Langlands et al., 2005; Liu et al., 2006; Liu et al., 2011; Lynch et al., 2003; Meerschaert 

et al., 2004; Murillo et al., 2009; Sun et al., 2006; Tadjeran et al., 2006; Wang et al., 2011; Yuste 

et al., 2005; Zhuang et al., 2006; Zhuang et al., 2008), while others have applied finite-element 

methods (Deng, 2008; Roop, 2006). Gorenflo et al. (2002) used random walk approaches, and Li 

et al. (2009, 2010) used a spectral method. A decomposition method was applied by El-Sayed et 

al. (2010), and Odibat (2006). Momani et al. (2007), and Yildirim (2010) utilized a homotopy 

perturbation method; Kumar et al. (2006) used an integral equation method; Jiang et al. (2010) 

applied a reproducing kernel method; and a variational iteration method was applied by Odibat et 

al. (2009) to solve a fractional differential equation. Zhuang et al. (2006) introduced a difference 

scheme that is based on the L1 approximation for Caputo time-fractional derivatives. Murillo et 

al. (2011) developed an explicit finite difference schemes. These authors also showed stability 

conditions by means of fractional von-Neumann analysis techniques. An implicit finite difference 

scheme using the L1 formula was constructed by Sun et al. (2006). 
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Zaman et al. (2017a) developed a numerical model for Eq. (6.1) using uniform meshes in both 

space and time, and the Riemann-Liouville definition of the fractional-order derivative. However, 

Stynes et al. (2017) defined a graded mesh and theoretically showed that their graded mesh gives 

better performance for the time-fractional equation. Zaman et al. (2017b) adapted their definition 

of graded mesh for Eq. (6.1) and solved the equation utilizing this definition of a graded mesh in 

time. In this paper, the numerical models developed by Zaman et al. (2017a, 2017b) for Eq. (6.1) 

utilizing uniform and graded meshes are studied and compared. The value of fractional order, 𝛼 

has been calculated for different experimental data collected from literature. The relationship 

between the optimal number of steps in unit time and number of grid-points in unit length is found 

for different values of 𝛼. 

 

The mathematical model (Eq. (6.1)) is discretized using a finite-difference method. For some 

positive value 𝑋, and integer 𝑁𝑥, the grid size in space is defined by ∆𝑥 = 𝑋/𝑁𝑥. The grid points 

in the space interval [0, 𝑋] are given by 𝑥𝑖 = 𝑖∆𝑥, 𝑖 = 0,1,2, … ,𝑁𝑥. In case of uniform mesh in 

time, for some positive value 𝑇, and integer 𝑁𝑡, the grid size is defined by ∆𝑡 = 𝑇/𝑁𝑡. The grid 

points in the time interval [0, 𝑇] are labeled 𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 0, 1, 2, … ,𝑁𝑡. For the graded mesh, the 

local grid size is defined by ∆𝑡𝑛 =⁡ 𝑡𝑛 − 𝑡𝑛−1. The grid points in the time interval [0, 𝑇] are labeled 

𝑡𝑛 = 𝑇(𝑛/𝑁)𝜔, 𝑛 = 0, 1, 2, … ,𝑁 where the constant mesh grading 𝜔 ≥ 1 is adapted from Stynes 

et al. (2017). In the notation of Eq. (6.1), 𝜔 = (1 + 𝛼)/(1 − 𝛼) matches that recommended in 

Stynes et al. (2017). The values of a function 𝑝 at the grid points are denoted by 𝑝𝑖
𝑛 = 𝑝(𝑥𝑖, 𝑡𝑛) 

for both uniform and graded meshes. 

 

6.3 Numerical Model for Uniform Mesh in Time 

 

Zaman et al. (2017a) developed the following numerical model for Eq. (6.1) using uniform meshes 

in both space and time. 
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 −𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) 𝑝𝑖−1
𝑛 + [𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) + 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) +
𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥

2

𝜎𝛼,∆𝑡∆𝑡
] 𝑝𝑖

𝑛 −

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) 𝑝𝑖+1
𝑛 =

𝐶2(𝑥𝑖,𝑡𝑛)∆𝑥
2

𝜎𝛼,∆𝑡∆𝑡
𝑝𝑖
𝑛−1 + 𝐶1 (𝑥𝑖+1

2

, 𝑡𝑛) 𝐺𝑖
𝑛 − 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)𝐻𝑖
𝑛 +

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛)
1−𝛼

𝑛𝛼
(𝑝𝑖+1

0 − 𝑝𝑖
0) − 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)
1−𝛼

𝑛𝛼
(𝑝𝑖

0 − 𝑝𝑖−1
0 ) ,                                                      (6.2)                                   

 

where 

 

 𝐺𝑖
𝑛 = −𝑝𝑖+1

𝑛−1 + 𝑝𝑖
𝑛−1 + ∑ 𝜔𝑗

(𝛼)
(𝑝𝑖+1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗
− 𝑝𝑖+1

𝑛−𝑗−1
+ 𝑝𝑖

𝑛−𝑗−1
)]𝑛−1

𝑗=1  ,                       (6.3) 

 

 𝐻𝑖
𝑛 = −𝑝𝑖

𝑛−1 + 𝑝𝑖−1
𝑛−1 + ∑ 𝜔𝑗

(𝛼)
(𝑝𝑖

𝑛−𝑗
− 𝑝𝑖−1

𝑛−𝑗
− 𝑝𝑖

𝑛−𝑗−1
+ 𝑝𝑖−1

𝑛−𝑗−1
)]𝑛−1

𝑗=1  ,                       (6.4) 

  

 and 𝐶1(𝑥, 𝑡) =
𝜌𝑘

𝜇
𝛵𝛼 ,                                                                                                       (6.5) 

 

 𝐶2 = 𝜌𝜙𝑐𝑡 .                                                                                                                       (6.6) 

 

6.4 Numerical Model for Graded Mesh in Time 

 

The following numerical model is developed by Zaman et al. (2017b) for Eq. (6.1) using a uniform 

mesh in space and graded mesh in time, 

 

 −𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) 𝑝𝑖−1
𝑛 + [𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛) + 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) + 𝐶2(𝑥𝑖, 𝑡𝑛)∆x
2Γ(2 − 𝛼)(𝑡𝑛 −

𝑡𝑛−1)
𝛼−1] 𝑝𝑖

𝑛 − 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) 𝑝𝑖+1
𝑛 = 𝐶2(𝑥𝑖, 𝑡𝑛)∆x

2Γ(2 − 𝛼)(𝑡𝑛 − 𝑡𝑛−1)
𝛼−1𝑝𝑖

𝑛−1 +

𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛) (𝑡𝑛 − 𝑡𝑛−1)
𝛼𝐺𝑖

𝑛 − 𝐶1 (𝑥𝑖−1
2

, 𝑡𝑛) (𝑡𝑛 − 𝑡𝑛−1)
𝛼𝐻𝑖

𝑛 + 𝐶1 (𝑥𝑖+1
2

, 𝑡𝑛)
(1−𝛼)

(𝑡𝑛)𝛼
(𝑡𝑛 −

𝑡𝑛−1)
𝛼(𝑝𝑖+1

0 − 𝑝𝑖
0) + 𝐶1 (𝑥𝑖−1

2

, 𝑡𝑛)
(1−𝛼)

(𝑡𝑛)𝛼
(𝑡𝑛 − 𝑡𝑛−1)

𝛼(𝑝𝑖
0 − 𝑝𝑖−1

0 ) ,                                                (6.7)   

 

where 
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 𝐺𝑖
𝑛 = −(𝑡𝑛 − 𝑡𝑛−1)

−𝛼(𝑝𝑖+1
𝑛−1 − 𝑝𝑖

𝑛−1) 

   +∑
[(𝑡𝑛−𝑡𝑗)

1−𝛼
−(𝑡𝑛−𝑡𝑗+1)

1−𝛼
]

(𝑡𝑗+1−𝑡𝑗)
(𝑝𝑖+1

𝑗+1
− 𝑝𝑖

𝑗+1
− 𝑝𝑖+1

𝑗
+ 𝑝𝑖

𝑗
)𝑛−2

𝐽=0  ,                                     (6.8) 

 

 𝐻𝑖
𝑛 = −(𝑡𝑛 − 𝑡𝑛−1)

−𝛼(𝑝𝑖
𝑛−1 − 𝑝𝑖−1

𝑛−1) 

   +∑
[(𝑡𝑛−𝑡𝑗)

1−𝛼
−(𝑡𝑛−𝑡𝑗+1)

1−𝛼
]

(𝑡𝑗+1−𝑡𝑗)
(𝑝𝑖

𝑗+1
− 𝑝𝑖−1

𝑗+1
− 𝑝𝑖

𝑗
+ 𝑝𝑖−1

𝑗
)𝑛−2

𝐽=0  ,                                   (6.9) 

 

and 𝐶1 and 𝐶2 are defined by Eq. (6.5) and (6.6), respectively. 

 

6.5 Analytical Solution 

 

To find the analytical solution, Zaman et al. (2017a, 2017b) made Eq. (6.1) linear, by considering 

𝐶1 = (𝜌𝑘/𝜇)𝛵𝛼 = 1, and 𝐶2 = 𝜌𝜙𝑐𝑡 = 1. The Riemann-Liouville definition for the fractional-

order derivative is utilized.  

 

For the initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and boundary conditions 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0, the 

analytical solution of Eq. (6.1) is found as 

  

 𝑝(𝑥, 𝑡) = 𝐸1−𝛼(−𝜋
2𝑡1−𝛼)𝑠𝑖𝑛⁡(𝜋𝑥) .                                                                                         (6.10)  

 

For the initial condition 𝑝(𝑥, 0) = 𝑥(1 − 𝑥), and boundary conditions 𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0, the 

analytical solution of Eq. (6.1) becomes 

  

 ⁡𝑝(𝑥, 𝑡) = ∑
4

𝑘3𝜋3
[1 − (−1)𝑘]𝐸1−𝛼(−𝑘

2𝜋2𝑡1−𝛼)∞
𝑘=1 𝑠𝑖𝑛(𝑘𝜋𝑥) .                                         (6.11) 

 

6.6 Comparison of Errors found from Uniform and Graded Meshes 

 

Figures 6.1 through 6.6 compare the errors found using uniform and graded meshes for different 

values of fractional order, 𝛼, and for different number of grid-points in space for the linear model 

problem presented above. Figs. 6.1 to 6.3 are for initial condition, 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥), and Figs. 
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6.4 to 6.6 are for initial condition, 𝑝(𝑥, 0) = 𝑥(1 − 𝑥). It is found that in all cases, the graded mesh 

gives smaller errors than the uniform mesh, except when 𝛼 = 0, where the errors for the uniform 

and graded meshes are identical, since in this case, the graded mesh coincides with the uniform 

mesh. We note that, in the Figures 6.1 through 6.6, the shape of the error lines found for 𝛼 = 0.75 

and a graded mesh are different from the other error lines, depicting that the error reaches a 

minimum value at 𝑁𝑡 = 6400, and then starts to increase. It seems roundoff error starts to 

dominate beyond 𝑁𝑡 = 6400. The size of the first-time step falls to about 10−26 for 𝑁𝑡 = 6400. 

However, Fig. 6.7 shows that for 𝛼 = 0.75 in graded meshes, the size of the first-time step is 

smaller than 10−16 for 𝑁𝑡 = 200. With a time-step that small, any numerical accuracy in the 

solution for 𝛼 = 0.75 should not be expected. This is true for that 𝛼 and 𝑁𝑡, for which the size of 

the first-time step is smaller than 10−16. 

 

Tables 6.1, and 6.2 compare order of accuracies of the numerical models developed using uniform 

and graded meshes. The Tables show that the numerical model developed using uniform meshes 

is (1 − 𝛼)th-order accurate in time, and that developed using graded meshes is second-order 

accurate in space, and first-order accurate in time. 

 

 
 

Figure 6.1 Comparison of the error values for uniform and graded meshes for initial condition 

𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) (𝑁𝑥 = 50). 
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Figure 6.2 Comparison of the error values for uniform and graded meshes for initial condition 

𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) (𝑁𝑥 = 100). 

 

 

 
 

Figure 6.3 Comparison of the error values for uniform and graded meshes for initial condition 

𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) (𝑁𝑥 = 200). 
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Figure 6.4 Comparison of the error values for uniform and graded meshes for initial condition 

𝑝(𝑥, 0) = 𝑥(1 − 𝑥) (𝑁𝑥 = 50). 

 

 

 
 

Figure 6.5 Comparison of the error values for uniform and graded meshes for initial condition 

𝑝(𝑥, 0) = 𝑥(1 − 𝑥) (𝑁𝑥 = 100). 
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Figure 6.6 Comparison of the error values for uniform and graded meshes for initial condition 

𝑝(𝑥, 0) = 𝑥(1 − 𝑥) (𝑁𝑥 = 200). 

 

 

 

 

Figure 6.7 Minimum time-step size for graded mesh. 
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Table 6.1 Comparison of order of temporal accuracies for uniform and graded meshes for initial 

condition, 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥). 
 

Value of fractional 

order, 𝜶 

Order of temporal accuracy 

𝑵𝒙 = 𝟓𝟎 𝑵𝒙 = 𝟏𝟎𝟎 

Uniform mesh Graded mesh Uniform mesh Graded mesh 

0 0.9946 0.9946 1.0256 1.0256 

0.10 0.8889 0.9270 0.9042 0.9522 

0.25 0.7496 0.9269 0.7535 0.9462 

0.50 0.5006 0.9551 0.5009 0.9681 

0.75 0.2501 1.0629 0.2502 1.0705 

 

 

Table 6.2 Comparison of order of temporal accuracies for uniform and graded meshes for initial 

condition, 𝑝(𝑥, 0) = 𝑥(1 − 𝑥). 
 

Value of 

fractional 

order, 𝜶 

Order of temporal accuracy 

𝑵𝒙 = 𝟓𝟎 𝑵𝒙 = 𝟏𝟎𝟎 𝑵𝒙 = 𝟐𝟎𝟎 

Uniform 

mesh 

Graded 

mesh 

Uniform 

mesh 

Graded 

mesh 

Uniform 

mesh 

Graded 

mesh 

0 1.0195 0.9946 1.0256 1.0256 1.0337 1.0337 

0.10 0.8890 0.9273 0.9044 0.9524 0.9083 0.9589 

0.25 0.7497 0.9274 0.7536 0.9465 0.7546 0.9515 

0.50 0.5006 0.9555 0.5009 0.9683 0.5010 0.9716 

0.75 0.2501 1.0464 0.2502 1.0535 0.2502 1.0552 

 

 

6.7 Determination of the Values of 𝜶 and 𝜯 from Experimental Data 

 

Iaffaldano et al. (2005) designed an experiment to measure volumetric flux through a porous layer 

while keeping the pressure difference constant between the boundary surfaces. Fig. 6.8 shows the 

experimental device used in their study. Water-saturated sand is used in the cell for the medium. 

A cylinder-shaped metal box of height 11.6 cm with surface’s inner diameter of 10.1 cm was used 

to keep the sand in. Dry sand and water were slowly and alternately filled in the empty cell to 

obtain the condition of saturation. The initial pressure value for water inside the cell is attained by 

keeping water-taps 𝑅 and 𝑅𝐼 switched on and 𝑅𝑈 switched off, until the height of the water column, 

𝐻, is obtained. After attaining the same pressure as the initial pressure through the medium, water-

tap 𝑅𝑈 is opened. This results in atmospheric pressure on the right boundary plane. Since the 
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pressure on the left boundary plane is atmospheric pressure plus the pressure due to the water 

column of height 𝐻, the pressure difference is the pressure due to the water column of height 𝐻, 

and water starts to flow through the porous medium and runs out from 𝑅𝑈. The height of the water 

column is always 𝐻 because the surplus water from the water-tap 𝑅 flows out from the output gate, 

𝑈. Water flow at the right boundary surface was measured by storing water in a small container of 

known volume, and measuring the relative time interval. 

 

Five different samples of sand were used as the porous layer. The authors presented their 

experimental results by plotting volumetric flux as a function of elapsed time. The plots that they 

presented in their article are redrawn here in Figs. 6.9 to 6.13. Their experimental results support 

that permeability may decrease due to rearrangement of the grains and consequent compaction, 

which was qualitatively shown by Elias and Hajash (1992). 
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Figure 6.8 Experimental device used in experiment of Iaffaldano et al. (from Iaffaldano et al. 

(2005)) 
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Figure 6.9 Flux results from first experiment. (Redrawn from Iaffaldano et al. (2005)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Flux results from second experiment. (Redrawn from Iaffaldano et al. (2005)) 
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Figure 6.11 Flux results from third experiment. (Redrawn from Iaffaldano et al. (2005)) 

 

 

 
 

Figure 6.12 Flux results from fourth experiment. (Redrawn from Iaffaldano et al. (2005)) 
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Figure 6.13 Flux results from the fifth experiment. (Redrawn from Iaffaldano et al. (2005)) 

 

 

Iaffaldano et al. (2005) used the empirical Fair and Hatch law (1993) to calculate the permeability, 

𝑘 (Bear, 1972), and found 𝑘=26 darcy. They used water of 190C as the fluid in all of their 

experiments. The density and viscosity of water at 190C are 0.998408 g/cc and 1.0266 cp, 

respectively. A pressure difference was maintained by exerting an additional pressure equivalent 

to 212 cm height of water column (0.20485 atm) at one end. The mass of dry sand used in each 

experiment was around 1550 g. The density of sand used was 2.4 gcm-3. From this information, 

the porosity in the sand medium within the cylinder-shaped metal box can be calculated as 30.51%. 

 

Hossain et al.’s (2008) diffusivity equation (Eq. 6.1) is based on the following equation that relates 

volumetric flux to pressure gradient, 

  

 𝑢 = −
𝑘

𝜇
𝛵𝛼[

𝜕𝛼

𝜕𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)] .                                                                                                                 (6.12) 

 

Using the Riemann-Liouville definition of the fractional-order derivative, Eq. (6.12) can be written 

as 
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 𝑢 = −
𝑘

𝜇
𝛵𝛼

1

Γ(2−𝛼)
[
(1−𝛼)

𝜕𝑝

𝜕𝑥
(𝑡=0)

(𝑡𝑛)𝛼
 

   +∑
𝜕𝑝

𝜕𝑥
(𝑡=𝑡𝑗+1)−

𝜕𝑝

𝜕𝑥
(𝑡=𝑡𝑗)

𝑡𝑗+1−𝑡𝑗

𝑛−1
𝑗=0 {(𝑡𝑛 − 𝑡𝑗)

1−𝛼 − (𝑡𝑛 − 𝑡𝑗+1)
1−𝛼}] .                                (6.13) 

 

Since the pressure gradient is kept constant in the experiment, Eq. (6.13) can be written as 

 

 𝑢 = −
𝑘

𝜇

(1−𝛼)

Γ(2−𝛼)

𝛵𝛼

(𝑡𝑛)𝛼
𝜕𝑝

𝜕𝑥
(𝑡 = 0) .                                                                                                     (6.14) 

 

Substitution of the permeability, viscosity, and pressure gradient with their numerical values in 

Eq. (6.14) gives 

 

 𝑢 = (0.44726)
(1−𝛼)

𝛤(2−𝛼)

𝛵𝛼

(𝑡𝑛)𝛼
 .                                                                                                          (6.15) 

 

Taking the logarithm of both sides of Eq. (6.15), we obtain 

 

 𝑙𝑜𝑔(𝑢) = 𝑙𝑜𝑔 (0.44726
(1−𝛼)

𝛤(2−𝛼)
𝛵𝛼) − 𝛼𝑙𝑜𝑔⁡(𝑡𝑛)                                                          (6.16) 

 

Eq. (6.16) can be written as, 

 

 𝑙𝑜𝑔(𝑢) = 𝑙𝑜𝑔(𝑍) − 𝛼𝑙𝑜𝑔⁡(𝑡𝑛),                                                                                      (6.17) 

 

where 

 

 𝑍 = 0.44726
(1−𝛼)

Γ(2−𝛼)
𝛵𝛼.                                                                                                  (6.18) 

 

We calculate the values of 𝛼 and 𝑍 with least-squares regression analysis using the data obtained 

from the experiments. Using the formula of least-square regression analysis, we get 
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 −𝛼 =
𝑁∑ (𝑙𝑜𝑔(𝑢)∗𝑙𝑜𝑔⁡(𝑡𝑛))𝑗

𝑁
𝑗=1 −∑ 𝑙𝑜𝑔(𝑢)𝑗

𝑁
𝑗=1 ∑ 𝑙𝑜𝑔⁡(𝑡𝑛)𝑗

𝑁
𝑗=1

𝑁∑ (𝑙𝑜𝑔⁡(𝑡𝑛)𝑗)
2𝑁

𝑗=1 −[∑ 𝑙𝑜𝑔⁡(𝑡𝑛)𝑗
𝑁
𝑗=1 ]2

,                                                     (6.19) 

 

where  𝑁 is the number of data points, 

 

and 𝑍 = 10𝛾,                                                                                                                            (6.20) 

 

where 

 

 𝛾 =
∑ log(𝑢)𝑗
𝑁
𝑗=1 [∑ log⁡(𝑡𝑛)𝑗

𝑁
𝑗=1 ]2−∑ log⁡(𝑡𝑛)𝑗

𝑁
𝑗=1 ∑ (log(𝑢)∗log⁡(𝑡𝑛))𝑗

𝑁
𝑗=1

𝑁∑ (log⁡(𝑡𝑛)𝑗)
2𝑁

𝑗=1 −[∑ log⁡(𝑡𝑛)𝑗
𝑁
𝑗=1 ]2

.                                       (6.21) 

 

Eq. (6.18) gives, 

 

 𝛵 = [
𝑍Γ(2−𝛼)

0.44726(1−𝛼)
](
1

𝛼
)
 .                                                                                                    (6.22) 

 

Calculation for 𝛼 and 𝛵 gives the following values tabulated in Table 6.3. The average values of 

𝛼 and 𝛵 are found to be around 0.05 and 730 seconds, respectively. Iaffaldano et al. (2005) 

calculated the value of fractional order in their model to be 0.53. The Caputo fractional derivative 

was used in their article, whereas we used the Riemann-Liouville fractional derivative. In addition, 

the mathematical models used in Iaffaldano et al.’s (2005) article and in this research work are not 

identical. Hence, the value of fractional order calculated in Iaffaldano et al.’s (2005) work is 

different from that calculated in this article. 

 

Table 6.3 Computed values of 𝛼 and 𝛵 

 

Experiment No. Fractional order, 𝛼 Relaxation time, 𝛵 (seconds) 

1 0.050348217 2020.30 

2 0.023771495 0.40 

3 0.038373096 55.10 

4 0.034639443 14.50 

5 0.075865421 1559.60 
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6.8 Simulated and Experimental Flux Values 

 

Figs. 6.14 through 6.18 show the simulated flux values for 𝛼 = 0.05 and 𝛵 = 730 seconds. The 

pressure values in each grid cell in each time step, that are required to calculate flux values, are 

computed using the numerical model that was developed using graded meshes. The length of grid 

cell was taken to be 0.02⁡cm. The length of 𝑛-th time step is calculated as, ∆𝑡𝑛 = ⁡ 𝑡𝑛 − 𝑡𝑛−1, where 

𝑡𝑛 = 𝑇(𝑛/𝑁)𝜔, 𝑛 = 0,1,2, … ,𝑁𝑡, and 𝜔 = (1 + 𝛼)/(1 − 𝛼). Figs. 6.14 through 6.18 compare the 

simulated flux values with those obtained from the experiments. It is found that the simulated 

values are very close to experimental values. The figures also present the flux calculated from 

Darcy’s law without the fractional derivative terms, showing the improved physical accuracy 

gained by including the memory term. 

 

 

 

Figure 6.14 Flux values from the first experiment, simulation, and Darcy’s law for 𝛼 = 0.05. 
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Figure 6.15 Flux values from the second experiment, simulation, and Darcy’s law for 𝛼 = 0.05. 

 

 

 

Figure 6.16 Flux values from the third experiment, simulation, and Darcy’s law for 𝛼 = 0.05. 
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Figure 6.17 Flux values from the fourth experiment, simulation, and Darcy’s law for 𝛼 = 0.05. 

 

 

 

Figure 6.18 Flux values from the fifth experiment, simulation, and Darcy’s law for 𝛼 = 0.05. 
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6.9 Optimum Number of Time Steps 

 

The value of the fractional order, 𝛼 ≈ 0.05, has been found in the previous section. In section 6.6, 

the closest value of 𝛼 that we calculated error for is 0.10. Tables 6.4 and 6.5 show the error values 

computed using graded meshes for the initial conditions 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥) and 𝑝(𝑥, 0) = 𝑥(1 −

𝑥), respectively. The discretization method used in the numerical model is second-order accurate 

in space, and first-order accurate in time. Hence, the relationship between number of grid-points 

in space and number of steps in time should be written as 𝑁𝑡 = 𝛽𝑁𝑥
2. The best value of 𝛽, the 

proportionality constant between 𝑁𝑡 and 𝑁𝑥
2, can be found looking at the computed error values. 

 

For 𝑁𝑥 = 50, the rate of change in error becomes insignificant beyond 𝑁𝑡 = 6400. The optimal 

number of time steps in this case can be taken in the range of 3200-6400. Hence, the optimal value 

of 𝛽 for 𝑁𝑥 = 50 lies in the range of 1 to 3. Similarly, the optimal range of number of time steps 

in unit time for 𝑁𝑥 = 100 is 6400-25600. Therefore, the ideal value of 𝛽 for 𝑁𝑥 = 100 is in the 

range of 1 to 3. 

 

Table 6.4 Error values found using graded meshes for initial condition 𝑝(𝑥, 0) = 𝑠𝑖𝑛⁡(𝜋𝑥). 
 

Total length of space = 1, Total time = 1, 𝛼 = 0.10 

No. of time steps 𝑵𝒙 = 𝟓𝟎 𝑵𝒙 = 𝟏𝟎𝟎 𝑵𝒙 = 𝟐𝟎𝟎 

200 4.604229e-04 4.563393e-04 4.553187e-04 

400 2.392911e-04 2.352417e-04 2.342296e-04 

800 1.255623e-04 1.215300e-04 1.205222e-04 

1600 6.703984e-05 6.301615e-05 6.201050e-05 

3200 3.695421e-05 3.293490e-05 3.193034e-05 

6400 2.151257e-05 1.749547e-05 1.649146e-05 

12800 1.360172e-05 9.585728e-06 8.582000e-06 

25600 9.556525e-06 5.541100e-06  
 

 

 

 

 



142 

 

Table 6.5 Error values found using graded meshes for initial condition 𝑝(𝑥, 0) = 𝑥(1 − 𝑥). 
 

Total length of space = 1, Total time = 1, 𝛼 = 0.10 

No. of time steps 𝑵𝒙 = 𝟓𝟎 𝑵𝒙 = 𝟏𝟎𝟎 𝑵𝒙 = 𝟐𝟎𝟎 

200 1.167251e-04 1.156942e-04 1.154378e-04 

400 6.065559e-05 5.963321e-05 5.937896e-05 

800 3.182051e-05 3.080240e-05 3.054921e-05 

1600 1.698451e-05 1.596855e-05 1.571590e-05 

3200 9.358771e-06 8.343898e-06 8.091521e-06 

6400 5.445493e-06 4.431169e-06 4.178929e-06 

12800 3.441040e-06 2.426993e-06 2.174823e-06 

25600 2.416238e-06 1.402331e-06 1.150195e-06 

51200 1.893230e-06 8.793942e-07  

102400 1.626758e-06 6.129576e -07  
 

 

6.10 Conclusions 

 

Error values calculated for two numerical models developed using uniform and graded meshes for 

a memory-based diffusivity equation have been compared. It has been found that the numerical 

model developed using graded meshes gives smaller errors compared to that using uniform 

meshes. The value of fractional order used in the mathematical model has been computed using 

experimental data collected from literature. The value of fractional order and relaxation time are 

found to be around 0.05 and 730 seconds respectively. Optimal number of time steps in unit time 

for this value of fractional order and for different number of grid-points in unit length has been 

estimated by error analysis. The range of the optimal number of steps in unit time is found to be 

3200-6400 for 𝑁𝑥 = 50 and 6400-25600 for 𝑁𝑥 = 100. The study recommends utilizing graded 

meshes instead of uniform meshes for better accuracy. 
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through Porous Media 

 

 

Co-Authorship 

 

Chapter 7 is prepared according to the Guidelines for Manuscript Format Theses in the Faculty of 

Engineering and Applied Science at Memorial University. This chapter has been prepared for 

submission as a journal article: 

 

T. U. Zaman, S. MacLachlan, and M. E. Hossain (in preparation). “A generalized memory-based 

mathematical and numerical model for flow through porous media.”  

 

The research work presented in this chapter was conducted by Tareq Uz Zaman under the direction 

and supervision of M. Enamul Hossain, and the guidance and close supervision of Scott 

MacLachlan.  The manuscript itself was written by Tareq Uz Zaman and reviewed by M. Enamul 

Hossain and Scott MacLachlan. 

 

7.1 Abstract 

 

Modeling and simulation of porous media flow is crucial to overcome the technological challenges 

associated with petroleum production. Numerous models have been developed over more than the 

past fifty years. Continuum models are the simplest among all the models that are based on Darcy’s 

law, relating the pressure gradient in the direction of flow to the volumetric flux of fluid, through 

the medium permeability and fluid viscosity. Another approach is pore-scale modeling, which 

takes the microscopic description of the pore geometry into consideration. These models cannot 

accurately represent the characteristics of fluid flow, however, as they do not consider the effects 

of history of the rock and fluid, though fluid flow depends on this history. This limitation can be 
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addressed by the inclusion of ‘memory’ in the fluid-flow model. The parameter ‘memory’ stands 

for the effects of history of the rock and fluid. This idea is relatively new and growing in petroleum 

engineering. Several models that incorporate memory have been developed for different purposes, 

but there is no general mathematical model developed yet that will represent fluid flow for all type 

of rocks, fluids and flow phenomena. In this paper, such a general mathematical model is proposed. 

The model is generalized and valid in the sense that all other established memory-based models 

can be derived from this model. Another strength of this model is its consideration of both time 

and space memory. The model can be used to develop a small-scale memory-based reservoir 

simulator.  

 

Keywords: Porous medium, memory, mathematical modeling, numerical modelling, Riemann-

Liouville definition, Caputo definition. 

 

7.2 Introduction 

 

Fluid flow through porous media is studied in many branches of science, e.g., petroleum 

engineering, chemical engineering, and hydrogeology. It is important because it is associated with 

some of the most important technological challenges such as groundwater management, reduction 

of concentration of greenhouse gases in the atmosphere, and petroleum production. 

 

Terzaghi (1923 and 1936) developed the basic equations for fluid diffusion in porous media in 

addition to significant contributions from other researchers (Biot, 1941, 1956, 1956, and 1973; 

Biot et al., 1957; Boley et al., 1962; Nowacki, 1964; McNamee et al., 1960; Booker, 1974; Rice 

et al., 1976; Bell et al., 1978; and Roeloffs, 1988). These authors formulated equations to represent 

the flow of fluid through elastic porous media and obtained solutions for the equations in many 

cases. 

 

Generally, the empirical Darcy law is used to study diffusion problems in porous media. The law 

states that the fluid flux is proportional to the pressure gradient. Many authors extended Darcy’s 

law in different ways to accurately represent the fluid flow through porous media and obtained 

solutions in many interesting cases. 
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Different authors have modified Darcy’s law by incorporating the memory concept (Caputo, 1999, 

2000, and 2003; Caputo et al., 2004; Hossain et al., 2008). In this paper, we review the Caputo 

(1999, 2000, 2003), Caputo et al. (2004), and Hossain et al. (2008) models for fluid flow, modify 

Darcy law, and propose a general diffusivity equation. The modified Darcy law presented in this 

paper is more general than those existing in the literature. 

 

7.2.1 Darcy Equation 

 

Darcy (1856) presented his experimental results by the equation 

 

 𝑄 = 𝑢𝐴 =
𝑘𝐴

𝐿
(𝐻 + 𝐿 − 𝐻0) ,                                                                                           (7.1) 

 

where 𝑢 is the superficial fluid velocity, 𝑘 is defined as the hydraulic conductivity, 𝐿 is the height 

of the sand layer, 𝐴 is the cross-sectional area of the sand layer, and 𝐻 and 𝐻0 are the height of 

liquid in manometer from the top and bottom of the sand layer, respectively.  

 

The hydraulic conductivity, 𝑘, is, in fact, fluid dependent besides being affected by the solid matrix 

of the porous medium. The effects of fluid viscosity are not considered in Darcy’s law. Darcy’s 

law is said to be valid for incompressible and isothermal creeping flow of a Newtonian fluid 

through a relatively long, uniform, and isotropic porous medium of low hydraulic conductivity. 

 

7.2.2 The Hazen-Darcy Equation 

 

Hazen (1893) was the first to include the effect of viscosity indirectly in the Darcy equation. In his 

experiment, he altered the temperature of the water prior to entering the filter and observed the 

influence of water temperature on the hydraulic conductivity in the Darcy equation. The 

experiment was otherwise performed under isothermal conditions. He modified the Darcy equation 

in the form 

 

 𝑢 = (
𝑇+10

60
) 𝑘50

∆𝑃

𝐿
 ,                                                                                                                 (7.2) 
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where 𝑇 is the water temperature in degrees Fahrenheit, 𝑘50 is the reference hydraulic conductivity 

value measured with water flowing isothermally through the permeable medium at a temperature 

equal to 500𝐹, and ∆𝑃 is the pressure difference. Here, the change in hydraulic conductivity with 

temperature actually mimics the hydraulic conductivity dependence on viscosity. 

 

Fluid viscosity was incorporated directly as an individual component in the Darcy equation in 1918 

by Krüger, in 1920 by Zunker, and in 1927 by Kozeny. 

 

Ingham et al. (1998) refer to the equation 

 

 𝑢 = (
𝐾

µ
)
∆𝑃

𝐿
 ,                                                                                                                      (7.3) 

 

as the Hazen-Darcy equation to differentiate it from the original equation (Eq. (7.1)) proposed by 

Darcy.  In this equation, 𝐾 represents the permeability and 𝜇 is the dynamic fluid viscosity. 

 

There is a lack of experimental work validating the Hazen-Darcy equation for non-isothermal flow, 

which is typical in a porous medium (Ingham et al., 1998). 

 

7.3 Memory- Based Modified Darcy’s Laws 

 

Permeability is considered constant with time in the classical form of Darcy’s law. However, due 

to rock and fluid interaction during fluid flow, both rock and fluid properties change with time. 

Consideration of this variation is necessary to accurately represent fluid flow through the porous 

medium. Caputo (1999) modified Darcy’s law by introducing a memory formalism to simulate the 

effect of a decrease of the permeability in time. He proposed the following equation for volumetric 

flux, 

 

 𝑢 = −𝜂𝜌
𝜕𝐶 𝛼

𝜕𝑡𝛼𝐶

𝜕𝑝

𝜕𝑥
 ,                                                                                                                   (7.4) 
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with 0 ≤ 𝛼 < 1. Here, 𝑝 represents pressure, and 
𝜕𝐶 𝛼

𝜕𝐶 𝑡𝛼
 denotes the Caputo fractional derivative 

with respect to time 𝑡 of order 𝛼 and it is defined by 

 

 
𝜕𝐶 𝛼𝑝(𝑥,𝑡)

𝜕𝐶 𝑡𝛼
=

1

Γ(𝑛−𝛼)
∫ (𝑡 − 𝑠)𝑛−𝛼−1

𝑑𝑛𝑝(𝑠)

𝑑𝑠𝑛
𝑑𝑠

𝑡

0
, 𝑛 − 1 < 𝛼 < 𝑛 ,                                             (7.5) 

 

where Γ is the gamma function (Kilbas et al., 2006, pp. 91, Eq. 2.4.1). 𝜂 is defined in this model 

as the ratio of the pseudopermeability of the medium with memory to the fluid viscosity. 

 

The term 
𝜕𝛼

𝜕𝑡𝛼
𝜕𝑝

𝜕𝑥
 in the above equation includes the pressure gradient at the current time as well as 

all the pressure gradients of the previous time steps. Here, fluid flux does not depend only on the 

present pressure gradient, but on the history of the pressure gradient as well. This term arises in 

the equation to represent permeability variation with time depending on the previous pressure 

gradients. This equation uses two parameters, namely 𝛼 and 𝜂, to describe the flow of the fluid, 

instead of the single parameter ‘permeability’ as in Hazen-Darcy equation. Eq. (7.4) infers that ‘K’ 

in Eq. (7.3) is not constant but varies with time. 

 

Caputo (2000) introduced a memory formalism that operates on both of flow and pressure gradient 

to modify Darcy’s law. He proposes that permeability changes with time depending on the 

previous pressure gradient and flow. To simulate the memory formalism, he proposed the 

following equation to substitute for the classical Darcy’s law, 

 

 (𝛾 + 𝜀
𝜕𝐶 𝑛1

𝜕𝑡𝑛1𝐶 ) 𝑢 = (𝑐 + 𝑑
𝜕𝐶 𝑛2

𝜕𝑡𝑛2𝐶 )
𝜕𝑝

𝜕𝑥
 ,                                                                                     (7.6) 

 

where 0 ≤ 𝑛1 < 1, 0 ≤ 𝑛2 < 1, and 
𝜕𝐶 𝑛1𝑝(𝑥,𝑡)

𝜕𝐶 𝑡𝑛1
 and 

𝜕𝐶 𝑛2

𝜕𝑡𝑛2𝐶  denote the Caputo fractional derivative 

with respect to time 𝑡 of order 𝑛1 and 𝑛2, respectively, defined by Eq. (7.5). 

 

Caputo (2000) also took into account the change in physical properties of the fluid due to its 

temperature variations and physical or chemical interactions with the matrix. He represented the 
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relation between the variation of the mass of fluid per unit volume, relative to its value in the 

undisturbed condition, and the pressure in the following form, to consider that the fluid and the 

matrix may be subject to changes in their physical properties, 

 

 (𝑎 + 𝑏
𝜕𝐶 𝑚2

𝜕𝐶 𝑡𝑚2
) 𝑝 = (𝛼 + 𝛽

𝜕𝐶 𝑚1

𝜕𝐶 𝑡𝑚1
) 𝜌𝑣 ,                                                                                     (7.7) 

 

where 𝜌𝑣 is the variation of the mass of fluid per unit volume in the porous medium from the 

undisturbed condition, 0 ≤ 𝑚1 < 1, and 0 ≤ 𝑚2 < 1. 

 

These memory formalisms imply the use of twelve free parameters, namely, 

𝑎, 𝑏, 𝑐, 𝑑, 𝛼, 𝛽, 𝛾, 𝜀,𝑚1, 𝑚2, 𝑛1 and 𝑛2. A very large number of different models can be selected to 

describe diffusion with memory by assigning different values in these free parameters. Eq. (7.6) 

considers the history of the pressure gradient and fluid flux. Eq. (7.7) considers the history of 

pressure and the variation of the mass of fluid per unit volume, relative to its value in the 

undisturbed condition. Assigning appropriate values to twelve free parameters, one can consider 

or neglect the effect of any of these histories.  

 

Hossain et al. (2008) proposed the following relationship between the fluid velocity and pressure 

gradient 

 

 𝑢 = −𝜂
𝜕𝐶 𝛼

𝜕𝑡𝛼𝐶

𝜕𝑝

𝜕𝑥
 ,                                                                                                                          (7.8) 

 

with 0 ≤ 𝛼 < 1. They defined 𝜂 as 

 

 𝜂 =
𝐾

µ
𝛵𝛼 .                                                                                                                              (7.9) 

 

The model proposed by Caputo (1999) and Hossain et al. (2008) look identical, but the models are 

different due to the dissimilar definitions of 𝜂 used in them. 
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The above models consider only time memory, and do not incorporate space memory. To consider 

the observed deviations of the flow from those implied by the classic diffusion equation, Caputo 

(2003) introduced a space memory formalism in the classical Darcy’s law as 

 

 𝑞 = −(
𝛼

𝑏−𝑎
)∫ 𝐴(𝑛)

𝑏

𝑎

𝜕𝐶 𝑛𝑝

𝜕𝐶 𝑥𝑛
𝑑𝑛 − 𝛽

𝜕𝑝

𝜕𝑥
 ,                                                                                   (7.10) 

 

with 0 ≤ 𝑛 < 1. 𝐴(𝑛) represents the weight of the fractional derivative of order 𝑛 in the range 

[𝑎, 𝑏]. 

 

Here, the memory mechanism operates directly on the pressure rather than on the pressure gradient. 

This equation considers the pressure over all the space that the fluid has passed through. Space 

memory can be used flexibly to represent local phenomena, while time memory is more flexible 

to represent variations in space (Caputo, 2003). 

 

Iaffaldano et al.’s (2005) experiment, in which they measured fluid flux through a porous layer 

with constant hydraulic pressure difference between the boundary surfaces, shows that fluid flux 

decreases over time, and that the volume of sand is decreased as well. Their experiment implies 

that mechanical compaction occurring during diffusion causes flux variations, and that mechanical 

compaction is caused by the permeability changes. 

 

Giuseppe et al. (2010) conducted experiments to determine the flow rate through a uniformly 

packed column of porous media. They designed the experimental setup on purpose to determine 

the memory parameters appearing within Eqs. (7.6) and (7.7). They conclude that memory largely 

influences the experiment. Experimental data also show that mechanical compaction decreases 

permeability and, consequently, flux. 

 

7.4 Memory- Based Modified Diffusion Equations 

 

The mathematical model- 
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𝜕𝐶 𝛾𝑝(𝑥,𝑡)

𝜕𝐶 𝑡𝛾
−

𝜕2𝑝(𝑥,𝑡)

𝜕𝑥2
= 𝑞̂(𝑥, 𝑡)                                                                                           (7.11)                                                                                

 

where 𝑞̂(𝑥, 𝑡) is a given source term, is known as a subdiffusion wave equation when 0 < 𝛾 < 1 

and as a diffusion wave equation when 1 < 𝛾 < 2.  

 

The dynamics of physical processes involving anomalous transport mechanisms can be 

represented by this model (Jin et al., 2016). The subdiffusion equation can describe thermal 

diffusion in media with fractal geometry (Nigmatulin, 1986), and highly heterogeneous aquifers 

(Adams et al., 1992, and Hatano et al., 1998). The diffusion equation can model the propagation 

of mechanical waves in viscoelastic media (Mainardi, 1996). 

 

Applying conservation of mass, we have 

 

 
𝜕

𝜕𝑡
(𝜌𝜙) +

𝜕

𝜕𝑥
(𝜌𝑢) = 𝑞̃ ,                                                                                                                (7.12) 

 

where 𝜌 is the density of the fluid, 𝜙 is porosity of the porous medium, and 𝑞̃ is the strength of the 

source. 

 

Writing  

 

 
𝜕

𝜕𝑡
(𝜌𝜙) = 𝜌𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
 ,                                                                                                             (7.13) 

 

where 𝑐𝑡 is the total compressibility, yields 

 

 𝜌𝜙𝑐𝑡
𝜕𝑝

𝜕𝑡
−

𝜕

𝜕𝑥
(𝜌𝜂

𝜕𝐶 𝛼

𝜕𝐶 𝑡𝛼
(
𝜕𝑝

𝜕𝑥
)) = 𝑞̃ .                                                                                       (7.14) 

 

Incorporation of Caputo’s (1999) model (Eq. (7.4)) into Eq. (7.12) also gives the same diffusion 

Eq. (7.14) with a different definition of 𝜂. 



156 

 

7.5 Generalized Darcy’s Law and Diffusion Equation 

 

Caputo (1999, 2000, 2003), Caputo et al. (2004), and Hossain et al.’s (2008) models give the idea 

that permeability and fluid properties might depend on the history of flux, pressure gradient, and 

space memory. To account for the observed deviations of the flow from those implied by the 

classic diffusion equation, we propose the following equation to substitute for the classical Darcy’s 

law 

 

 (𝑒 + 𝑓
𝜕𝐶 𝛾−1

𝜕𝐶 𝑡𝛾−1
) 𝑢 = −(𝑎 + 𝑏

𝜕𝑅𝐿 𝛼

𝜕𝑅𝐿 𝑡𝛼
)
𝜕𝑝

𝜕𝑥
− (𝑐 + 𝑑

𝜕𝑅𝐿 𝛽

𝜕𝑅𝐿 𝑥𝛽
) 𝑝 ,                                          (7.15) 

 

with 0 ≤ 𝛼 < 1, 0 ≤ 𝛽 < 1 and 0 ≤ 𝛾 < 2. 

 

Here, 
𝜕𝑅𝐿 𝛼𝑝(𝑥,𝑡)

𝜕𝑅𝐿 𝑡𝛼
 and 

𝜕𝑅𝐿 𝛽

𝜕𝑅𝐿 𝑡𝛽
(
𝜕𝑝(𝑥,𝑡)

𝜕𝑥
)  denote the Riemann-Liouville fractional derivatives with 

respect to time 𝑡 of order 𝛼  and 𝛽, respectively, defined by (Kilbas et al., 2006, pp. 70, Eq. 2.1.5) 

 

 
𝜕𝑅𝐿 𝛼𝑝(𝑥,𝑡)

𝜕𝑅𝐿 𝑡𝛼
=

1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝑠)𝑛−𝛼−1𝑝(𝑠)𝑑𝑠
𝑡

0
, 𝑛 − 1 < 𝛼 < 𝑛 ,                                 (7.16) 

 

𝜕𝐶 𝛾−1𝑢(𝑥,𝑡)

𝜕𝐶 𝑡𝛾−1
 denotes the Caputo fractional derivative with respect to time 𝑡 of order (𝛾 − 1) and it 

is defined by Eq. (7.5). 

 

Here, we have introduced the memory formalism on the fluid flux and pressure gradient. We have 

also incorporated space memory, operating on the pressure. 

 

The Riemann-Liouville definition has been used for two fractional-order derivatives, and the 

Caputo definition has been used for another fractional-order derivative in Eq. (7.15). The 

definitions are selected based on the solutions allowed by the model for the fractional-order 

derivatives. Solutions of models having only one fractional derivative term and not mixed with the 

spatial derivatives can be derived via separation of variables and the Laplace transform. If the 
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Riemann-Liouville derivative is used there, the only solutions found are constant in time. If, on 

the other hand, the Caputo derivative is used, the solutions are found in terms of the Mittag-Leffler 

functions, and we get solutions for different time. The opposite happens when the model contains 

a first derivative in time and the fractional derivative mixed within the spatial derivatives. In this 

case, the Caputo derivative supports only a constant-in-time solution, while the Riemann-Liouville 

derivative gives solution in terms of the Mittag-Leffler functions. 

 

To consider the relation between the variation of the mass of fluid per unit volume, relative to its 

value in the undisturbed condition, and the pressure, we take the equation from Caputo (2000), 

 

 (𝑔 + 𝑗
𝜕𝐶 𝛿

𝜕𝐶 𝑡𝛿
) 𝑝 = (𝑙 + 𝑚

𝜕𝐶 𝜁

𝜕𝐶 𝑡𝜁
)𝜌 ,                                                                                          (7.17) 

 

with 0 ≤ 𝛿 < 1, 0 ≤ 𝜁 < 1. 

 

This memory formalism implies the use of fifteen free parameters, namely, 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, 𝑗, 𝑙, 𝑚, 𝛼, 𝛽, 𝛾, 𝛿,⁡and 𝜁. These parameters will allow a very large number of 

different models to selectively describe diffusion with memory by assigning different values in 

these free parameters. Eqs. (7.12), (7.15), and (7.17) must be solved collectively to find the 

pressure at different grid-points at different times. However, an analytical solution procedure 

would be very difficult. 

 

To numerically solve Eq. (7.15), we simplify the equation considering 𝑒 = 0 and 𝑓 = 1 and we 

get 

 

 
𝜕𝐶 𝛾−1(𝑢)

𝜕𝐶 𝑡𝛾−1
= −(𝑎 + 𝑏

𝜕𝑅𝐿 𝛼

𝜕𝑅𝐿 𝑡𝛼
)
𝜕𝑝

𝜕𝑥
− (𝑐 + 𝑑

𝜕𝑅𝐿 𝛽

𝜕𝑅𝐿 𝑥𝛽
) 𝑝 .                                                                  (7.18) 

 

Rearranging Eq. (7.18) gives 

 

 𝑢 = −
𝜕𝐶 1−𝛾

𝜕𝐶 𝑡1−𝛾
[(𝑎 + 𝑏

𝜕𝑅𝐿 𝛼

𝜕𝑅𝐿 𝑡𝛼
)
𝜕𝑝

𝜕𝑥
+ (𝑐 + 𝑑

𝜕𝑅𝐿 𝛽

𝜕𝑅𝐿 𝑥𝛽
) 𝑝] .                                                                  (7.19) 
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Also, we consider Eq. (7.13), (and not Eq. (7.17)) and take 𝜌 to be a constant. Substitution of Eq. 

(7.13) and (7.19) in Eq. (7.12) yields 

 

 𝜌𝜙𝑐𝑡
𝜕𝑝

𝜕𝑡
−

𝜕

𝜕𝑥
(𝜌

𝜕𝐶 1−𝛾(𝑢)

𝜕𝐶 𝑡1−𝛾
[(𝑎 + 𝑏

𝜕𝑅𝐿 𝛼

𝜕𝑅𝐿 𝑡𝛼
)
𝜕𝑝

𝜕𝑥
+ (𝑐 + 𝑑

𝜕𝑅𝐿 𝛽

𝜕𝑅𝐿 𝑥𝛽
) 𝑝]) = 𝑞̃ .                               (7.20)       

 

Eq. (7.20) can be written as                                   

 

 𝑤
𝜕𝐶 𝛾𝑝(𝑥,𝑡)

𝜕𝐶 𝑡𝛾
−

𝜕

𝜕𝑥
[(𝑎 + 𝑏

𝜕𝑅𝐿 𝛼

𝜕𝑅𝐿 𝑡𝛼
)
𝜕𝑝

𝜕𝑥
+ (𝑐 + 𝑑

𝜕𝑅𝐿 𝛽

𝜕𝑅𝐿 𝑥𝛽
) 𝑝] = 𝑞̅ ,                                               (7.21) 

 

where 𝑤 = 𝜙𝑐𝑡, and 𝑞̅ =
𝜕𝐶 𝛾−1(𝑞̃)

𝜕𝐶 𝑡𝛾−1
. 

 

If 𝑎 = 𝑐 = 𝑑 = 0, 𝛼 = 0, 𝑤 = 1,⁡⁡and⁡𝑏 = 1, then this gives the time-fractional diffusion or 

subdiffusion equation. For 𝛾 = 1,⁡and⁡𝑎 = 𝑐 = 𝑑 = 0, this equation is converted to Caputo’s 

(1999) and Hossain et al.’s (2008) diffusion Eq. (7.14). 

 

Again, for 𝑐 = 𝑑 = 0, the generalized Darcy’s law (Eq. (7.15)) converts to Eq. (7.6). For 𝛾 =

1,⁡and⁡𝛼 = 0, Eq. (7.15) considers only space memory. 

 

7.6 Conclusions 

 

Models are generally developed for specific flow phenomenon. Developing a general equation 

instead of developing mathematical equation for each specific case is worthy, particularly when 

the general equation can be simplified easily for different cases. However, it is a bigger challenge 

to develop a general mathematical model that will represent fluid flow for all types of rocks, fluids, 

and flow phenomena. In this paper, an attempt has been made to meet this great challenge. A 

general memory-based mathematical model for flow through porous media is proposed. A small-

scale memory-based reservoir simulator, that is called an ‘emulator’ by Islam et al. (2016), might 

be developed based on this generalized model. Numerical experiments using that emulator would 

give the value of different parameters used in the model for different types of rocks, fluids and 
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flow phenomenon. Though simulation based on this memory approach is at an initial stage, 

research is on going to overcome the challenges and to develop a small-scale emulator. This small-

scale emulator will be the basis for a future complete emulator. 
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Chapter 8 

 

A Generalized Model and Dimensionless Number for Fluid Flow in Packed 

Beds and Porous Media 
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8.1 Abstract 

 

A generalized semi-empirical equation is proposed that portrays the flow of fluid in packed beds 

and porous media. The new model is based on the fact that flow regimes in porous media are not 

simply laminar and turbulent. In fact, the characteristic flow regime for porous media lies in-

between. The proposed model calculates total pressure loss from viscous energy loss, local loss, 

and loss due to turbulence following the technique of compact model development from 

asymptotic solutions. It links the pressure drop along a porous medium to the superficial velocity. 

The non-spherical particle diameter is redefined to more accurately represent the wall surface area 

within the pore space. The model gives a new expression for the modified Reynolds number for 
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fluid flow through porous media. The generalized model is reduced for each flow regime. The 

most significant new finding is that the proposed model portrays all the flow regimes that occur in 

porous media. The viscous term is dominant at very low flow rates, turbulence and inertial loss 

occur at very high flow rates, while the viscous and inertial loss occur in-between, which is the 

central flow regime for porous media. The ratio of pressure gradient to superficial fluid velocity 

varies linearly with superficial fluid velocity in both cases of characteristic and turbulent flows, 

but the slopes in the two cases are different. This new equation is also used for modeling the 

physical properties of random porous media. The model provides an innovative way to calculate 

tortuosity of a porous media, the diameter of equivalent volume sphere, and the head-loss 

coefficient. The novelty of the new model is in the ability to describe any flow phenomenon for 

any type of fluid through packed beds and porous media.  

 

Keywords: Packed beds, porous medium, superficial velocity, pressure drop, flow regime, 

tortuosity. 

 

8.2 Introduction 

 

Theoretical analysis and experimental investigation have been carried out for many years to study 

the pressure loss accompanying the flow of fluids through columns packed with granular material 

and underground porous media. Numerous factors come into consideration to determine the 

pressure drop in porous media; however, the effects of some factors are very difficult to quantify. 

Different authors have proposed different models making simplifying assumptions to correlate the 

factors. Some of the models are applicable only at low fluid flow rates, while others are useful at 

high fluid flow rates. There are also models that are proposed for both low and high fluid flow 

rates. 

 

Pressure drop through a granular bed is known to be proportional to the velocity of fluid at low 

flow rates and to the square of the velocity at high flow rates. Osborne Reynolds (1900) first 

expressed the pressure gradient as sum of two terms. He expressed the terms as proportional to the 

first power of the fluid velocity and to the product of the density of the fluid with second power of 

its velocity, respectively, which is written as 
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∆𝑝

𝐿
= 𝑎𝑢 + 𝑏𝜌𝑢2 .                                                                                                                             (8.1) 

 

Blake (1922) first successfully established the dependency of the pressure drop on porosity. He 

obtained two dimensionless groups, which are [{∆𝑝𝑔𝑐⁡𝑑𝑝⁡𝜙
3} {𝜌𝑢2𝐿⁡(1 − 𝜙)}⁄ ] and 

[{𝑑𝑝𝜌𝑢} {𝜇(1 − 𝜙)}⁄ ]. Burke and Plummer (1928) found the viscous energy loss to be 

proportional to [(1 − 𝜙) 𝜙2⁄ ] and kinetic loss to[(1 − 𝜙) 𝜙3⁄ ]. However, they did not combine 

these two losses to calculate the total pressure drop. Kozeny (1927) found the pressure loss to be 

proportional to [(1 − 𝜙)2 𝜙3⁄ ] which is different by a fraction of [(1 − 𝜙) 𝜙⁄ ] from the factor 

derived by Burke and Plummer (1928) for viscous flow. Leva et al. (1947) noted the pressure drop 

to be proportional to [(1 − 𝜙)2 𝜙3⁄ ]  at lower flow rates. They also pointed out that the pressure 

drop is proportional to [(1 − 𝜙) 𝜙3⁄ ]⁡ at higher flow rates. Carman (1937) showed that the method 

of Blake (1922) leads to the Kozeny (1927) equation at low fluid-flow rates and, due to this reason, 

the Kozeny (1927) equation is also referred to as the Blake-Kozeny equation or as the Kozeny-

Carman equation. In addition, Carman (1937) showed that the method of Blake (1922) leads to the 

Burke and Plummer (1928) equation for turbulent flows. Hence, the Kozeny (1927) model serves 

the same purpose for porous media as the Hagen-Poiseuille equation does for circular pipes. 

Similarly, the Burke-Plummer (1928) model is used for turbulent flows in porous media, such as 

the Darcy-Weisbach equation for turbulent flow through a circular pipe. Models used for laminar 

and turbulent flows through circular pipes and porous media are tabulated in Table 8.1.  

 

Ergun et al. (1949) first realized that both viscous and kinetic energy losses would contribute to 

total energy losses. They treated the total pressure losses as a sum of viscous and kinetic energy 

losses, where viscous energy losses are proportional to [(1 − 𝜙)2 𝜙3⁄ ] and kinetic energy losses 

are proportional to [(1 − 𝜙) 𝜙3⁄ ]. In the same direction, Ergun (1952) proposed an equation 

applicable for both laminar and turbulent flow, in which he added the Kozeny (1927) and Burke-

Plummer (1928) equations to calculate the pressure drop. The Ergun (1952) equation is widely 

used by chemical engineers.  
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Table 8.1 Models used for different types of flow through different medium. 

 

Author Model Equation Parameters Type of flow Type of Medium 

Kozeny 

(1927) ∆𝑝 =
150𝜇𝑢(1 − 𝜙)2𝐿

𝑑𝑝2𝜙3
 

𝜇, 𝜙, 𝑑𝑝, 𝐿 Laminar flow Porous medium 

Burke-

Plummer 

(1928) 

∆𝑝 =
1.75𝜌𝑢2(1 − 𝜙)𝐿

𝑑𝑝𝜙3
 

𝜌, 𝜙, 𝑑𝑝, 𝐿 Turbulent 

flow 

Porous medium 

Hagen-

Poiseuille 
∆𝑝 =

32𝜇𝐿𝑢

𝐷2
 

𝜇, 𝐷, 𝐿 Laminar flow Hollow 

cylindrical pipe 

Darcy-

Weisbach ∆𝑝 =
4𝑓𝑓𝜌𝐿𝑢

2

2𝐷
 

𝑓𝑓 , 𝜌, 𝐷, 𝐿 Turbulent 

flow 

Hollow 

cylindrical pipe 

Ergun 

(1952) ∆𝑝 =
150𝜇𝑢(1 − 𝜙)2𝐿

𝑑𝑝2𝜙3
+ 

1.75𝜌𝑢2(1 − 𝜙)𝐿

𝑑𝑝𝜙3
 

𝜌, 𝜇, 𝜙, 𝑑𝑝, 𝐿 Both laminar 

and turbulent 

flow 

Porous medium 

 

 

The Kozeny (1927) and Burke-Plummer (1928) models are two asymptotic solutions for pressure 

drop in case of porous media flow at low and high superficial fluid velocities respectively. The 

development of the Ergun (1952) model, by adding the Kozeny (1927) and Burke-Plummer (1928) 

terms together and Osborne Reynolds’ (1900) way to express the pressure gradient infer that the 

fluid flow system in porous media exhibits a smooth transition between the two asymptotic 

solutions. There are no discontinuities and no sudden changes in slope within the transition region. 

Yovanovich (2003) presented rules to develop a compact model combining such asymptotic 

solutions. Development of a compact model simply by adding the asymptotic solutions, as Ergun 

(1952) did to develop his model, is not the right way. Instead, the behaviour of the asymptotic 

solutions must be examined and, based on their behaviour, proper rules should be followed to 

combine the solutions to develop a compact model. For example, consider the parameter, 𝜓, to 

have two asymptotes corresponding to very small and very large values of the independent 

parameter, 𝜒; 𝜓 → 𝜓0 = 𝐶0𝜒
𝑚 as 𝜒 → 0, and 𝜓 → 𝜓∞ = 𝐶∞𝜒

𝑛 as 𝜒 → ∞ or 𝜒 → 1. If 𝜓0 > 𝜓∞, 

the solution, 𝜓, is concave upwards as 𝜒 → 0, and the asymptotes are combined as 𝜓 =

[𝜓0
𝑗
+𝜓∞

𝑗
]1/𝑗, where 𝑗 is a fitting parameter. If 𝜓0 < 𝜓∞, the solution, 𝜓, is concave downwards 

as 𝜒 → 0, and the asymptotes are combined as, 1/𝜓 = [(1/𝜓0)
𝑗 + (1/𝜓∞)

𝑗]1/𝑗. 
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In packed beds, ‘local’ loss occurs between laminar and turbulent flow (Niven, 2002), which is 

not considered in Ergun (1952) model. The ‘local’ loss occurs due to expansions, contractions, and 

changes in flow direction within the packed bed (Niven, 2002). This loss can also be the result of 

flow separation behind each solid particle. Deviation from laminar flow occurs from local losses, 

rather than the onset of turbulence (Niven, 2002). 

 

In this paper, local losses besides viscous and kinetic energy losses are considered and combined 

following the asymptotic behaviour of total pressure loss with the superficial fluid velocity. The 

proposed model is general, in the sense that the Ergun model can be derived from the model for 

special cases. New parameters arise in the model. However, a novel way to find the parameters is 

devised. Finally, a new dimensionless number for fluid flow through porous media has been 

derived that is analogous to the Reynolds number for fluid flow through hollow media.  

 

8.3 Theoretical Development of the Model 

 

As the velocity approaches zero as a limit, the pressure gradient can be written as (Ergun, 1952) 

 

 lim
𝑢→0

∆𝑝

𝐿
= 𝑎𝑢 .                                                                                                                             (8.2) 

 

When the velocity is large enough to achieve completely turbulent flow, where kinetic energy 

losses constitute the whole resistance, the relationship between the pressure gradient and velocity 

can be expressed as (Ergun, 1952) 

 

 lim
𝑢→∞

∆𝑝

𝐿
= 𝑏𝜌𝑢2 .                                                                                                                      (8.3) 

 

Equations (8.2) and (8.3) can be written together as 

 

 
∆𝑝

𝐿
→ {

(
∆𝑝

𝐿
)0 = 𝑎𝑢, 𝑢 → 0

(
∆𝑝

𝐿
)∞ = 𝑏𝜌𝑢2, 𝑢 → ∞

                                                                                                           (8.4) 
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Here, (∆𝑝/𝐿)0 > (∆𝑝/𝐿)∞ as 𝑢 → 0 and the solution (∆𝑝/𝐿) is concave upwards. Hence the 

correct way of combining the asymptotes, (∆𝑝/𝐿)0 and (∆𝑝/𝐿)∞, would not be the direct addition 

of these terms that was done in Ergun et al. (1949), and Ergun (1952). Instead, the following 

manner (Churchill et al., 1972; Kraus et al., 1983; Churchill, 1988; and Yovanovich, 2003) is used 

to combine the asymptotes 

  

 
∆𝑝

𝐿
= [(

∆𝑝

𝐿
)
0

𝑤

+ (
∆𝑝

𝐿
)
∞

𝑤

]1/𝑤 ,                                                                                                       (8.5) 

 

where the parameter, 𝑤, is a fitting parameter.  

 

The Hagen-Poiseuille equation is applicable for laminar flow through hollow cylindrical pipes. To 

make the equation fit for porous media at lower velocities, its parameters should be replaced by 

expressions to retain the insight of the original equation. To this purpose, the superficial fluid 

velocity or volumetric flux, 𝑢, in the Hagen-Poiseuille equation is replaced by the mean tortuous 

velocity, 𝑢𝑡, which is defined as 𝜏𝑢/𝜙. The pipe length, ∆𝐿, is replaced by the actual flow length 

through a porous bed, 𝜏𝐿, and the pipe diameter, 𝐷, is expressed in terms of the hydraulic radius, 

𝑟𝐻. The diameter of a particle of arbitrary shape and the diameter of the equivalent-volume sphere 

are redefined incorporating a fitting parameter, 𝜆. The hydraulic radius is expressed in terms of the 

diameter of the equivalent-volume sphere. Replacement of the parameters in the Hagen-Poiseuille 

equation yields 

 

 (
∆𝑝

𝐿
)0 =

72𝜇𝜏2𝑢(1−𝜙)2

𝜙3𝑑𝑒
2  ,                                                                                                           (8.6) 

 

which represents the viscous pressure loss during the fluid flow through porous media. 

 

Similarly, the parameters in the Darcy-Weisbach equation are replaced with analogous porous 

media parameters to calculate the pressure drop due to turbulence in packed beds and porous 

media. Substitution with the analogous porous media parameters in the Darcy-Weisbach equation 

gives Eq. (8.7), representing the pressure loss due to turbulence, 

 



169 

 

 (∆𝑝1)∞ =
3𝑓𝑓𝜌𝜏

3𝑢2𝐿(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
 .                                                                                                    (8.7) 

 

 Furthermore, local loss in porous media can be expressed as 

 

 (∆𝑝2)∞ = 𝜌𝐾𝐿
𝜏2𝑢2

2𝜙2  .                                                                                                             (8.8) 

 

Both local and turbulent losses are proportional to 𝑢2 when all the other parameters are kept 

constant. Hence, the local losses are additive with the turbulent losses. The total pressure drop due 

to local and turbulent losses can be written as 

 

 (
∆𝑝

𝐿
)∞ =

3𝑓𝑓𝜌𝜏
3𝑢2(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
+

𝜌𝐾𝐿𝜏
2𝑢2

2𝜙2𝐿
                                                                                           (8.9) 

 

Substitution of Eqs. (8.6) and (8.9) into Eq. (8.5) yields 

 

 
∆𝑝

𝐿
= [(

72𝜇𝜏2𝑢(1−𝜙)2

𝜙3𝑑𝑒
2 )𝑤 + (

3𝑓𝑓𝜌𝜏
3𝑢2(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
+

𝜌𝐾𝐿𝜏
2𝑢2

2𝜙2𝐿
)𝑤]1/𝑤 .                                                    (8.10) 

 

Eq. (8.10) represents the generalized equation for total pressure drop during flow through porous 

media. The equation can be written as 

 

 (
∆𝑝

𝐿
)𝑤 = 𝜖𝑤𝑢𝑤 + (𝜁 + 𝜂)𝑤𝑢2𝑤 ,                                                                                               (8.11) 

 

where 

 

 𝜖 =
72𝜇𝜏2(1−𝜙)2

𝜙3𝑑𝑒
2  ,                                                                                                                     (8.12) 

 

 𝜁 =
3𝑓𝑓𝜌𝜏

3(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
 ,                                                                                                                    (8.13) 
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 𝜂 =
𝜌𝐾𝐿𝜏

2𝑢2

2𝜙2𝐿
 .                                                                                                                          (8.14) 

 

8.4 Significance of the Proposed Generalized Model 

 

The proposed generalized model combines viscous and turbulence pressure losses using the proper 

way of developing compact models, instead of simply adding the pressure losses. In addition, the 

new model incorporates local losses that occur due to expansions, contractions, changes in flow 

direction within the packed bed, and flow separation behind each solid particle. For these reasons, 

the new model is more theoretically sound than the widely used Ergun (1952) model. The new 

model also has the flexibility to represent different flow phenomena through porous media, due to 

the large number of possible values of the fitting parameter, 𝑤. 

 

8.5 Flow Regimes for Porous Media 

 

We divide the flow regimes for porous media into three regions. One is the laminar flow region, 

the second is the intermediate flow region, and the third is the turbulent flow region. 

 

The laminar flow region is defined as the region in which pressure loss is proportional to the 

superficial velocity. For this flow region, Eq. (8.11) becomes 

 

 
∆𝑝

𝐿
= 𝜖𝑢 .                                                                                                                                          (8.15) 

                                 

The intermediate flow regime begins when local losses start to arise. In this flow regime, pressure 

drop deviates from being proportional to the superficial velocity. Here, the pressure loss occurs 

due to both viscous and local loss. For this flow regime, Eq. (8.11) becomes 

 

 (
∆𝑝

𝐿
)𝑤 = 𝜖𝑤𝑢𝑤 + 𝜂𝑤𝑢2𝑤 .                                                                                                       (8.16) 

 

Local losses and turbulent loss occur in the turbulent flow region, but viscous loss is negligible 

here, giving 
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∆𝑝

𝐿
= (𝜁 + 𝜂)𝑢2 .                                                                                                                          (8.17) 

 

8.6 Calculation of Different Parameters from the Pressure Loss and Superficial Velocity 

 

The fitting parameter, 𝑤, can be determined by experiment, making fluid flow through a porous 

bed and measuring the volumetric fluid flux and pressure drop for different flow regimes. Flow 

regimes will be identified roughly by plotting ∆𝑝/𝐿 vs. 𝑢 and drawing asymptotes through the low 

velocity and high velocity portions. Experimental data at low velocity (or the laminar flow regime) 

can be taken and, again, ∆𝑝/𝐿 vs. 𝑢 can be plotted. This will yield a straight line through the origin 

with slope 𝜖.  

 

Then, data for high velocity (or the turbulent flow region) can be used to plot ∆𝑝/𝐿𝑢 vs. 𝑢. This 

will also yield a straight line that goes through the origin with slope (𝜁 + 𝜂). 

 

Data for the intermediate flow region can be used to calculate the values of 𝜁 and 𝜂. The best way 

to interpret Eq. (8.16) would be to plot (∆𝑝/𝐿)𝑤/𝑢2𝑤  as a function of 𝑢−𝑤. The resulting plot 

would be a straight line passing through the point (0, 𝜂𝑤) with slope 𝜖𝑤. From the intercept, 𝜂𝑤, 

the value of 𝜂 can be determined. From (𝜁 + 𝜂) and 𝜂, 𝜁 can be calculated. 𝜏, 𝑑𝑒 and 𝐾𝐿 can then 

be determined from 𝜖, 𝜁 and 𝜂. Once 𝑑𝑒 is known, then 𝜆 can be determined by 𝑑𝑒.  

 

8.7 Development of an Expression for Modified Reynolds Number 

 

At the onset of turbulent flow, the viscous pressure drop and turbulent pressure drop are equal for 

flow through a circular pipe. Therefore, an expression for the Reynolds number can be developed 

by equating the Hagen-Poiseuille and Darcy-Weisbach equations. The intermediate flow regime 

lies between the laminar and turbulent flow regimes in case of flow through a porous bed. Though 

the viscous pressure drop cannot be equated to the turbulent pressure drop in this case, we can use 

the same method to find an appropriate group for the modified Reynolds number. It would be 

useful to determine such an expression for the modified Reynolds number rather than using the 

conventional expression for the Reynolds number since the expressions of viscous and turbulent 
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pressure drops for flow through porous media are different than for flow through circular pipes. 

Therefore, to develop the new expression for the Reynolds number, we write 

 

 
72𝜇𝜏2(1−𝜙)2𝑢

𝜙3𝑑𝑒
2 ≈

3𝑓𝑓𝜌𝜏
3(1−𝜙)𝑢2

⁡𝑔𝑐𝜙3𝑑𝑒
  .                                                                                                              (8.18) 

 

Rearranging Eq. (8.18) yields 

 

 𝑓𝑓 ≈
24

𝜌𝜏𝑢𝑑𝑒
𝜇(1−𝜙)𝑔𝑐

 .                                                                                                                             (8.19) 

 

We thus define the modified Reynolds number for porous media as 

 

 𝑅𝑒𝑚 =
𝜌𝜏𝑢𝑑𝑒

𝜇(1−𝜙)𝑔𝑐
 .                                                                                                                       (8.20) 

 

8.8 Validation of the Model 

 

The proposed model is a more generalized form of the Ergun model. The model can be reduced to 

that of Ergun (1952) in the case of not considering local losses, tortuosity, a fitting parameter to 

define particle shape, and taking a unit value for the fitting parameter, 𝑤. Derivation of the Ergun 

equation from the proposed model (Eq. 8.11) is shown in the Appendix. Though the model is found 

to be valid theoretically, experimental data is needed to validate the model and the derivation of 

the expression for modified Reynolds number. In addition, value of the modified Reynolds number 

for transition from laminar to turbulent flow in porous media can be found from experimental data. 

 

8.9 Conclusions 

 

Viscous, local, and turbulent losses are combined, applying asymptotic analysis to derive a general 

and more accurate equation for calculating total pressure drop. It is general in the sense that it gives 

a similar equation to that given by Ergun (1952) if 𝑤 = 1. The intermediate flow regime between 

laminar and turbulent flows is discussed. The new general equation is reduced for each flow 
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regime. The diameter of the equivalent volume sphere is redefined. A new way is devised to 

calculate tortuosity, the diameter of the equivalent volume sphere, and the head-loss coefficient. 

A new expression is developed for a modified Reynolds number. Determination of the value of 

this modified Reynolds number at the onset of the intermediate flow regime and turbulent flow 

regime is a topic for future research. 
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Appendix 

 

As the velocity approaches zero as a limit, the pressure gradient can be written as (Ergun, 1952) 

 

 lim
𝑢→0

∆𝑝

𝐿
= 𝑎𝑢 .                                                                                                                   (A 8.1) 

 

When the velocity is large enough to yield completely turbulent flow, where kinetic energy losses 

constitute the whole resistance, the relationship between the pressure gradient and velocity can be 

expressed as (Ergun, 1952) 

 

 lim
𝑢→∞

∆𝑝

𝐿
= 𝑏𝜌𝑢2 .                                                                                                              (A 8.2) 

 

The pressure loss in Eq. (A 8.1) is due to viscous energy losses, while that in Eq. (A 8.2) is due to 

kinetic energy losses. 

 

Eq. (A 8.1) and (A 8.2) can be written together as 

 

∆𝑝

𝐿
→ {

(
∆𝑝

𝐿
)0 = 𝑎𝑢, 𝑢 → 0

(
∆𝑝

𝐿
)∞ = 𝑏𝜌𝑢2, 𝑢 → ∞

                                                                                                (A 8.3) 

 

Here, (
∆𝑝

𝐿
)0 > (

∆𝑝

𝐿
)∞ as 𝑢 → 0, so the solution, 

∆𝑝

𝐿
, is concave upwards. The combination of (

∆𝑝

𝐿
)0 

and (
∆𝑝

𝐿
)∞ using asymptotic analysis yields 

 

 
∆𝑝

𝐿
= [(

∆𝑝

𝐿
)
0

𝑤

+ (
∆𝑝

𝐿
)
∞

𝑤

]1/𝑤 ,                                                                                             (A 8.4) 

 

where the parameter, 𝑤, is a fitting parameter. The Hagen-Poiseuille equation for laminar flow 

through a pipe is 
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 (∆𝑝)0 =
32𝜇𝑣∆𝐿

𝐷2
 .                                                                                                              (A 8.5)        

 

Replace the fluid velocity, 𝑣, by the mean tortuous velocity, 𝑢𝑡, defined as (Bear, 1972; Churchill, 

1988) 

 

 𝑢𝑡 = 𝜏
𝑢

𝜙
 ,                                                                                                                         (A 8.6) 

 

where 𝑢/𝜙 is also called as the mean interstitial velocity. The pipe length, ∆𝐿, is replaced by the 

actual flow length through the porous bed, 𝜏𝐿, and the pipe diameter, 𝐷, is expressed by the 

hydraulic radius, the ratio of the volume of voids to their surface area (Leva, 1959; Bird et al., 

1960; and Churchill, 1988). Considering a unit bulk volume as the basis, the hydraulic radius can 

be expressed as 

  

 𝑟𝐻 =
𝜙

𝑎𝑏
 .                                                                                                                           (A 8.7) 

 

Defining 𝑎𝑣 as the surface area per unit grain volume, Eq. (A 8.7) can be written as 

 

 𝑟𝐻 =
𝜙

𝑎𝑣⁡(1−𝜙)
 .                                                                                                                  (A 8.8) 

 

The sphericity is defined as the ratio of the surface area of the equivalent-volume sphere to that of 

the particle (Leva, 1959). Leva (1959) defined the diameter of a particle of arbitrary shape in terms 

of sphericity by 

 

 𝑑𝑝 =
6𝑉𝑝

𝐴𝑝𝜑𝑝
=

6𝑉𝑝

𝐴𝑠𝑝
 ,                                                                                                            (A 8.9) 

 

where  

 

𝑉𝑝 = volume of a single (non-spherical) particle, 
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𝐴𝑠𝑝 = surface area of the equivalent-volume sphere. 

 

Redefine the diameter of a particle of arbitrary shape by incorporating a fitting parameter 𝜆 in Eq. 

(A 8.9) 

 

 𝑑𝑝𝑚 =
6𝑉𝑝

𝐴𝑝𝜑𝑝𝜆
 .                                                                                                                (A 8.10) 

 

The value of 𝜆 can be determined through experiment where better accuracy is required and can 

be considered as 1 where simplicity is needed. Rearranging Eq. (A 8.10) yields 

 

 𝑑𝑝𝑚𝜑𝑝𝜆 =
6

𝐴𝑝
𝑉𝑝

⁄
=

6

𝑎𝑣
 .                                                                                                   (A 8.11) 

 

The term 𝑑𝑝𝑚𝜑𝑝𝜆 is the newly defined diameter of the equivalent-volume sphere. This definition 

differs slightly from that given by Leva (1959). Representation of this term by 𝑑𝑒 gives 

 

 𝑎𝑣 =
6

𝑑𝑒
 .                                                                                                                         (A 8.12) 

 

Substitution of 𝑎𝑣 =
6

𝑑𝑒
 into Eq. (A 8.8) gives 

 

 𝑟𝐻 =
𝜙𝑑𝑒

6⁡(1−𝜙)
 .                                                                                                                 (A 8.13)           

 

Replacement of 𝑣, ∆𝐿, and 𝐷 by 𝜏
𝑢

𝜙
, 𝜏𝐿, and 4𝑟𝐻 in Eq. (A 8.5) then yields 

 

 (∆𝑝)0 =
32𝜇𝜏2𝑢𝐿

16𝑟𝐻
2𝜙

 .                                                                                                          (A 8.14) 

 

Substituting Eq. (A 8.13) into Eq. (A 8.14) yields  
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 (
∆𝑝

𝐿
)0 =

72𝜇𝜏2𝑢(1−𝜙)2

𝜙3𝑑𝑒
2  .                                                                                                    (A 8.15) 

 

This expression represents the viscous pressure loss during fluid flow through a porous media. The 

Darcy-Weisbach equation for pressure loss in a circular pipe during turbulent flow is 

 

 (∆𝑝1)∞ =
2𝑓𝑓𝜌𝑣

2∆𝐿

𝑔𝑐𝐷
 .                                                                                                       (A 8.16) 

 

Again, replacing 𝑣, ∆𝐿,⁡and⁡𝐷 by 𝑢𝑡, 𝜏𝐿 and 4𝑟𝐻, respectively, gives 

 

 (∆𝑝1)∞ =
2𝑓𝑓𝜌𝜏

3𝑢2𝐿

⁡4𝑟𝐻𝑔𝑐𝜙2  .                                                                                                  (A 8.17) 

 

Substituting Eq. (A 8.13) into Eq. (A 8.17) yields 

 

 (∆𝑝1)∞ =
3𝑓𝑓𝜌𝜏

3𝑢2𝐿(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
 .                                                                                             (A 8.18) 

 

This pressure loss is due to turbulence. The head loss through a pipe can be expressed as 

 

 ℎ𝐿 = 𝐾𝐿
𝑣2

2𝑔
 ,                                                                                                                    (A 8.19) 

 

where 𝐾𝐿 is the head loss coefficient. Local loss in porous media can be expressed as 

 

 (∆𝑝2)∞ = 𝜌𝑔ℎ𝐿 .                                                                                                           (A 8.20) 

 

Substitution of Eq. (A 8.19) into Eq. (A 8.20) and replacing 𝑣 with 𝜏
𝑢

𝜙
 gives 

 

 (∆𝑝2)∞ = 𝜌𝐾𝐿
𝜏2𝑢2

2𝜙2  .                                                                                                      (A 8.21) 
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The total pressure drop due to local and turbulent losses can be written as 

 

 (∆𝑝)∞ = (∆𝑝1)∞ + (∆𝑝2)∞ ,                                                                                        (A 8.22) 

 

giving 

 

 (∆𝑝)∞ =
3𝑓𝑓𝜌𝜏

3𝑢2𝐿(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
+ 𝜌𝐾𝐿

𝜏2𝑢2

2𝜙2  .                                                                            (A 8.23) 

 

Dividing both sides by 𝐿 gives 

 

 (
∆𝑝

𝐿
)∞ =

3𝑓𝑓𝜌𝜏
3𝑢2(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
+

𝜌𝐾𝐿𝜏
2𝑢2

2𝜙2𝐿
 .                                                                                 (A 8.24) 

 

Substitution of Eq. (A 8.15) and (A 8.24) into Eq. (A 8.4) gives 

 

 
∆𝑝

𝐿
= [(

72𝜇𝜏2𝑢(1−𝜙)2

𝜙3𝑑𝑒
2 )𝑤 + (

3𝑓𝑓𝜌𝜏
3𝑢2(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
+

𝜌𝐾𝐿𝜏
2𝑢2

2𝜙2𝐿
)𝑤]1/𝑤 .                                         (A 8.25) 

 

Eq. (A 8.25) represents the generalized equation for total pressure drop during flow through a 

porous media. The equation can be written as 

 

 (
∆𝑝

𝐿
)𝑤 = 𝜖𝑤𝑢𝑤 + (𝜁 + 𝜂)𝑤𝑢2𝑤 ,                                                                                   (A 8.26) 

 

where 

 

 𝜖 =
72𝜇𝜏2(1−𝜙)2

𝜙3𝑑𝑒
2  ,                                                                                                            (A 8.27) 

 

 𝜁 =
3𝑓𝑓𝜌𝜏

3(1−𝜙)

⁡𝑔𝑐𝜙3𝑑𝑒
 ,                                                                                                            (A 8.28) 
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 𝜂 =
𝜌𝐾𝐿𝜏

2𝑢2

2𝜙2𝐿
 .                                                                                                                  (A 8.29) 

 

Derivation of Ergun equation from Eq. (A 8.26) 

 

Considering the fitting parameter 𝜆 = 1 in Eq. (A 8.10) yields 

 

 𝑑𝑝𝑚 =
6𝑉𝑝

𝐴𝑝𝜑𝑝
 .                                                                                                                  (A 8.30) 

 

From Eq. (A 8.9) and (A 8.30), 

 

 𝑑𝑝𝑚 = 𝑑𝑝 .                                                                                                                     (A 8.31) 

 

From the definition of the diameter of the equivalent-volume sphere,  

 

 𝑑𝑒 = 𝑑𝑝𝑚𝜑𝑝𝜆 .                                                                                                               (A 8.32) 

 

Replacing 𝜆 and 𝑑𝑝𝑚 by 1 and 𝑑𝑝, respectively, in Eq. (A 8.32) gives 

 

 𝑑𝑒 = 𝑑𝑝𝜑𝑝 .                                                                                                                   (A 8.33) 

 

Substituting Eq. (A 8.33) and 𝜏 = 1 into Eq. (A 8.27) yields 

 

 𝜖 =
72𝜇(1−𝜙)2

𝜑𝑝
2𝑑𝑝

2𝜙3
 .                                                                                                               (A 8.34) 

 

Substituting 𝜏 = 1, 𝑔𝑐 = 1, and Eq. (A 8.33) into Eq. (A 8.28) yields 

 

 𝜁 =
3𝑓𝑓𝜌(1−𝜙)

⁡𝜑𝑝𝑑𝑝𝜙3  .                                                                                                               (A 8.35) 
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Considering 𝐾𝐿 = 0 in Eq. (A 8.29) gives 

 

 𝜂 = 0 .                                                                                                                            (A 8.36) 

 

Taking 𝑤 = 1 in Eq. (A 8.26) gives 

 

 
∆𝑝

𝐿
= 𝜖𝑢 + (𝜁 + 𝜂)𝑢2 .                                                                                                   (A 8.37) 

 

Substitution of Eq. (A 8.34), (A 8.35), and (A 8.36) into Eq. (A 8.37) yields 

 

 
∆𝑝

𝐿
=

72𝜇(1−𝜙)2

𝜑𝑝
2𝑑𝑝

2𝜙3 𝑢 +
3𝑓𝑓𝜌(1−𝜙)

⁡𝜑𝑝𝑑𝑝𝜙3 𝑢2 .                                                                                  (A 8.38) 

  

There is no difference between Eq. (A 8.38) and the Ergun (1952) model, except the numerical 

coefficients. However, the numerical coefficients in the Ergun (1952) model are not rigid. 

Different numerical values are found in the literature, such as 150 and 1.75 (Ergun, 1952), 200 and 

1.75 (Leva, 1959), and 180 and the range 1.8-4.0 (Macdonald et al., 1979). 
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Chapter 9 

 

Conclusions and Future Recommendations 

 

9.1 Conclusions 

 

The model of Hossain et al. (2008) is solved numerically using the Caputo, Riemann-Liouville, 

and Grünwald-Letnikov definitions for the fractional-order derivative. The model is first solved 

for uniform meshes. Analytical solutions of the model are obtained for the Caputo, Riemann-

Liouville, and Grünwald-Letnikov definition of fractional order derivative, and the numerical 

solutions are validated by comparing with the analytical solution of the model. Error results are 

analyzed. The error analysis show that the discretization method used in the numerical model is 

consistent, and (1 − 𝛼)th-order accurate in time. Error values increase with the increase of the 

fractional order. The numerical solutions found from different definitions of the fractional-order 

derivative are compared. It is found that the Caputo definition gives the largest value of pressure, 

and that the Riemann-Liouville definition gives lower values compared to the numerical values 

found using other definitions. Pressure values from the Grünwald-Letnikov definition lie in 

between. It is also found that the differences among the solutions increase with the fractional order, 

𝛼. 

 

The model of Hossain et al. (2008) is also solved numerically using non-uniform meshes. In this 

case, only the Riemann-Liouville definition for the fractional-order derivative has been used. The 

L1 algorithm for non-uniform mesh grading is derived. Numerical solutions are obtained for both 

linear and non-linear cases of the model. Numerical solutions are compared with analytical 

solutions, and the numerical model is found to be valid. Numerical solutions attained using non-

uniform meshes are found to be closer to the analytical solutions than the numerical values found 

using uniform meshes. A new small-scale reservoir simulator has been developed to capture the 

memory effect. The simulator is validated comparing the pressure values found as output of the 

simulator with analytical solutions for different values of fractional order in the linear case and to 
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manufactured solutions in the non-linear cases. The simulator can be used to investigate the effects 

of memory on fluid flow through porous media. 

 

A general memory-based mathematical model for flow through porous media is proposed. 

Memory-based models found in the literature can be derived from this generalized model. The 

fractional-order differential equation is approximated numerically using uniform meshes in space 

and non-uniform meshes in time. A small-scale memory-based reservoir simulator, that is called 

an ‘emulator’ by Islam et al. (2016), might be developed based on this generalized model. 

 

A new general and more accurate equation for calculating total pressure drop through packed beds 

and porous media is established. Viscous, local, and turbulent losses are combined applying 

asymptotic analysis to develop the model. The intermediate flow regime between laminar and 

turbulent flow is discussed. For each flow regime, the model is reduced. The diameter of the 

equivalent volume sphere is redefined. Here, a new way is proposed to calculate tortuosity, 

diameter of the equivalent volume sphere, and the head loss coefficient. The study gives a new 

expression for a modified Reynolds number.  

 

9.2 Future Recommendations 

 

The simulator developed in this study is of very small scale. This research initiates a first step 

towards development of a large-scale memory-based reservoir simulator. A lot of research work 

is still required to develop a complete memory-based reservoir simulator. This simulator would be 

general and could act as a conventional simulator, as well as incorporating the effects of memory. 

 

Code to solve a generalized memory-based reservoir simulator is not written and validated. A 

general code for the generalized model can be written and solution for different memory-based 

equation can be found using such a general code for different cases.  

 

Values of the modified Reynolds number at the onset of the intermediate flow regime and the 

turbulent flow regime are not determined. Experimental studies are required to determine the 
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values. Determination of the value of this modified Reynolds number at the onset of the 

intermediate flow and turbulent flow regimes might be a good topic for future research. 

 


