2 research outputs found

    Complex oscillations with multiple timescales - Application to neuronal dynamics

    Get PDF
    The results gathered in this thesis deal with multiple time scale dynamical systems near non-hyperbolic points, giving rise to canard-type solutions, in systems of dimension 2, 3 and 4. Bifurcation theory and numerical continuation methods adapted for such systems are used to analyse canard cycles as well as canard-induced complex oscillations in three-dimensional systems. Two families of such complex oscillations are considered: mixed-mode oscillations (MMOs) in systems with two slow variables, and bursting oscillations in systems with two fast variables. In the last chapter, we present recent results on systems with two slow and two fast variables, where both MMO-type dynamics and bursting-type dynamics can arise and where complex oscillations are also organised by canard solutions. The main application area that we consider here is that of neuroscience, more precisely low-dimensional point models of neurons displaying both sub-threshold and spiking behaviour. We focus on analysing how canard objects allow to control the oscillatory patterns observed in these neuron models, in particular the crossings of excitability thresholds

    Numerical continuation techniques for planar slow-fast systems

    No full text
    International audienceContinuation techniques have been known to successfully describe bifurcation diagrams appearing in slow-fast systems with more than one slow variable (see, e.g., [M. Desroches, B. Krauskopf, and H. M. Osinga, Nonlinearity, 23 (2010), pp. 739--765]). In this paper we investigate the usefulness of numerical continuation techniques dealing with some solved and some open problems in the study of planar singular perturbations. More precisely, we first verify known theoretical results (thereby showing the reliability of this numerical tool) on the appearance of multiple limit cycles of relaxation-oscillation type and on the existence of multiple critical periods in well-chosen annuli of slow-fast periodic orbits in the plane. We then apply the technique to study the period function in detail
    corecore