429 research outputs found

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    On the Complexity of Recognizing S-composite and S-prime Graphs

    Full text link
    S-prime graphs are graphs that cannot be represented as nontrivial subgraphs of nontrivial Cartesian products of graphs, i.e., whenever it is a subgraph of a nontrivial Cartesian product graph it is a subgraph of one the factors. A graph is S-composite if it is not S-prime. Although linear time recognition algorithms for determining whether a graph is prime or not with respect to the Cartesian product are known, it remained unknown if a similar result holds also for the recognition of S-prime and S-composite graphs. In this contribution the computational complexity of recognizing S-composite and S-prime graphs is considered. Klav{\v{z}}ar \emph{et al.} [\emph{Discr.\ Math.} \textbf{244}: 223-230 (2002)] proved that a graph is S-composite if and only if it admits a nontrivial path-kk-coloring. The problem of determining whether there exists a path-kk-coloring for a given graph is shown to be NP-complete even for k=2k=2. This in turn is utilized to show that determining whether a graph is S-composite is NP-complete and thus, determining whether a graph is S-prime is CoNP-complete. Many other problems are shown to be NP-hard, using the latter results

    A New Game Invariant of Graphs: the Game Distinguishing Number

    Full text link
    The distinguishing number of a graph GG is a symmetry related graph invariant whose study started two decades ago. The distinguishing number D(G)D(G) is the least integer dd such that GG has a dd-distinguishing coloring. A distinguishing dd-coloring is a coloring c:V(G)→{1,...,d}c:V(G)\rightarrow\{1,...,d\} invariant only under the trivial automorphism. In this paper, we introduce a game variant of the distinguishing number. The distinguishing game is a game with two players, the Gentle and the Rascal, with antagonist goals. This game is played on a graph GG with a set of d∈N∗d\in\mathbb N^* colors. Alternately, the two players choose a vertex of GG and color it with one of the dd colors. The game ends when all the vertices have been colored. Then the Gentle wins if the coloring is distinguishing and the Rascal wins otherwise. This game leads to define two new invariants for a graph GG, which are the minimum numbers of colors needed to ensure that the Gentle has a winning strategy, depending on who starts. These invariants could be infinite, thus we start by giving sufficient conditions to have infinite game distinguishing numbers. We also show that for graphs with cyclic automorphisms group of prime odd order, both game invariants are finite. After that, we define a class of graphs, the involutive graphs, for which the game distinguishing number can be quadratically bounded above by the classical distinguishing number. The definition of this class is closely related to imprimitive actions whose blocks have size 22. Then, we apply results on involutive graphs to compute the exact value of these invariants for hypercubes and even cycles. Finally, we study odd cycles, for which we are able to compute the exact value when their order is not prime. In the prime order case, we give an upper bound of 33
    • …
    corecore