6 research outputs found

    Non-Markovian Momentum Computing: Universal and Efficient

    Full text link
    All computation is physically embedded. Reflecting this, a growing body of results embraces rate equations as the underlying mechanics of thermodynamic computation and biological information processing. Strictly applying the implied continuous-time Markov chains, however, excludes a universe of natural computing. We show that expanding the toolset to continuous-time hidden Markov chains substantially removes the constraints. The general point is made concrete by our analyzing two eminently-useful computations that are impossible to describe with a set of rate equations over the memory states. We design and analyze a thermodynamically-costless bit flip, providing a first counterexample to rate-equation modeling. We generalize this to a costless Fredkin gate---a key operation in reversible computing that is computation universal. Going beyond rate-equation dynamics is not only possible, but necessary if stochastic thermodynamics is to become part of the paradigm for physical information processing.Comment: 6 pages, 3 figures; Supplementary Material, 1 page; http://csc.ucdavis.edu/~cmg/compmech/pubs/cbdb.ht

    Balancing Error and Dissipation in Computing

    Get PDF
    Modern digital electronics support remarkably reliable computing, especially given the challenge of controlling nanoscale logical components that interact in fluctuating environments. However, we demonstrate that the high-reliability limit is subject to a fundamental error-energy-efficiency tradeoff that arises from time-symmetric control: Requiring a low probability of error causes energy consumption to diverge as logarithm of the inverse error rate for nonreciprocal logical transitions. The reciprocity (self-invertibility) of a computation is a stricter condition for thermodynamic efficiency than logical reversibility (invertibility), the latter being the root of Landauer's work bound on erasing information. Beyond engineered computation, the results identify a generic error-dissipation tradeoff in steady-state transformations of genetic information carried out by biological organisms. The lesson is that computation under time-symmetric control cannot reach, and is often far above, the Landauer limit. In this way, time-asymmetry becomes a design principle for thermodynamically efficient computing.Comment: 19 pages, 8 figures; Supplementary material 7 pages, 1 figure; http://csc.ucdavis.edu/~cmg/compmech/pubs/tsp.ht

    Thermodynamic Machine Learning through Maximum Work Production

    Full text link
    Adaptive systems -- such as a biological organism gaining survival advantage, an autonomous robot executing a functional task, or a motor protein transporting intracellular nutrients -- must model the regularities and stochasticity in their environments to take full advantage of thermodynamic resources. Analogously, but in a purely computational realm, machine learning algorithms estimate models to capture predictable structure and identify irrelevant noise in training data. This happens through optimization of performance metrics, such as model likelihood. If physically implemented, is there a sense in which computational models estimated through machine learning are physically preferred? We introduce the thermodynamic principle that work production is the most relevant performance metric for an adaptive physical agent and compare the results to the maximum-likelihood principle that guides machine learning. Within the class of physical agents that most efficiently harvest energy from their environment, we demonstrate that an efficient agent's model explicitly determines its architecture and how much useful work it harvests from the environment. We then show that selecting the maximum-work agent for given environmental data corresponds to finding the maximum-likelihood model. This establishes an equivalence between nonequilibrium thermodynamics and dynamic learning. In this way, work maximization emerges as an organizing principle that underlies learning in adaptive thermodynamic systems.Comment: 29 pages, 10 figures, 6 appendices; http://csc.ucdavis.edu/~cmg/compmech/pubs/tml.ht
    corecore