473 research outputs found

    Persona-Coded Poly-Encoder: Persona-Guided Multi-Stream Conversational Sentence Scoring

    Full text link
    Recent advances in machine learning and deep learning have led to the widespread use of Conversational AI in many practical applications. However, it is still very challenging to leverage auxiliary information that can provide conversational context or personalized tuning to improve the quality of conversations. For example, there has only been limited research on using an individuals persona information to improve conversation quality, and even state-of-the-art conversational AI techniques are unable to effectively leverage signals from heterogeneous sources of auxiliary data, such as multi-modal interaction data, demographics, SDOH data, etc. In this paper, we present a novel Persona-Coded Poly-Encoder method that leverages persona information in a multi-stream encoding scheme to improve the quality of response generation for conversations. To show the efficacy of the proposed method, we evaluate our method on two different persona-based conversational datasets, and compared against two state-of-the-art methods. Our experimental results and analysis demonstrate that our method can improve conversation quality over the baseline method Poly-Encoder by 3.32% and 2.94% in terms of BLEU score and HR@1, respectively. More significantly, our method offers a path to better utilization of multi-modal data in conversational tasks. Lastly, our study outlines several challenges and future research directions for advancing personalized conversational AI technology.Comment: The 35th IEEE International Conference on Tools with Artificial Intelligence (ICTAI

    Interactional Slingshots: Providing Support Structure to User Interactions in Hybrid Intelligence Systems

    Full text link
    The proliferation of artificial intelligence (AI) systems has enabled us to engage more deeply and powerfully with our digital and physical environments, from chatbots to autonomous vehicles to robotic assistive technology. Unfortunately, these state-of-the-art systems often fail in contexts that require human understanding, are never-before-seen, or complex. In such cases, though the AI-only approaches cannot solve the full task, their ability to solve a piece of the task can be combined with human effort to become more robust to handling complexity and uncertainty. A hybrid intelligence system—one that combines human and machine skill sets—can make intelligent systems more operable in real-world settings. In this dissertation, we propose the idea of using interactional slingshots as a means of providing support structure to user interactions in hybrid intelligence systems. Much like how gravitational slingshots provide boosts to spacecraft en route to their final destinations, so do interactional slingshots provide boosts to user interactions en route to solving tasks. Several challenges arise: What does this support structure look like? How much freedom does the user have in their interactions? How is user expertise paired with that of the machine’s? To do this as a tractable socio-technical problem, we explore this idea in the context of data annotation problems, especially in those domains where AI methods fail to solve the overall task. Getting annotated (labeled) data is crucial for successful AI methods, and becomes especially more difficult in domains where AI fails, since problems in such domains require human understanding to fully solve, but also present challenges related to annotator expertise, annotation freedom, and context curation from the data. To explore data annotation problems in this space, we develop techniques and workflows whose interactional slingshot support structure harnesses the user’s interaction with data. First, we explore providing support in the form of nudging non-expert users’ interactions as they annotate text data for the task of creating conversational memory. Second, we add support structure in the form of assisting non-expert users during the annotation process itself for the task of grounding natural language references to objects in 3D point clouds. Finally, we supply support in the form of guiding expert and non-expert users both before and during their annotations for the task of conversational disentanglement across multiple domains. We demonstrate that building hybrid intelligence systems with each of these interactional slingshot support mechanisms—nudging, assisting, and guiding a user’s interaction with data—improves annotation outcomes, such as annotation speed, accuracy, effort level, even when annotators’ expertise and skill levels vary. Thesis Statement: By providing support structure that nudges, assists, and guides user interactions, it is possible to create hybrid intelligence systems that enable more efficient (faster and/or more accurate) data annotation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163138/1/sairohit_1.pd

    Assessing the Impact of Prompting Methods on ChatGPT's Mathematical Capabilities

    Full text link
    This study critically evaluates the efficacy of prompting methods in enhancing the mathematical reasoning capability of large language models (LLMs). The investigation uses three prescriptive prompting methods - simple, persona, and conversational prompting - known for their effectiveness in enhancing the linguistic tasks of LLMs. We conduct this analysis on OpenAI's LLM chatbot, ChatGPT-3.5, on extensive problem sets from the MATH, GSM8K, and MMLU datasets, encompassing a broad spectrum of mathematical challenges. A grading script adapted to each dataset is used to determine the effectiveness of these prompting interventions in enhancing the model's mathematical analysis power. Contrary to expectations, our empirical analysis reveals that none of the investigated methods consistently improves over ChatGPT-3.5's baseline performance, with some causing significant degradation. Our findings suggest that prompting strategies do not necessarily generalize to new domains, in this study failing to enhance mathematical performance

    How an artificially intelligent virtual assistant helps students navigate the road to college

    Get PDF
    Comprend des références bibliographiquesDeep reinforcement learning using convolutional neural networks is the technology behind autonomous vehicles. Could this same technology facilitate the road to college? During the summer between high school and college, college-related tasks that students must navigate can hinder successful matriculation. We employ conversational artificial intelligence (AI) to efficiently support thousands of would-be college freshmen by providing personalized, text message–based outreach and guidance for each task where they needed support. We implemented and tested this system through a field experiment with Georgia State University (GSU). GSU-committed students assigned to treatment exhibited greater success with pre-enrollment requirements and were 3.3 percentage points more likely to enroll on time. Enrollment impacts are comparable to those in prior interventions but with substantially reduced burden on university staff. Given the capacity for AI to learn over time, this intervention has promise for scaling personalized college transition guidance

    Entertaining and Opinionated but Too Controlling: A Large-Scale User Study of an Open Domain Alexa Prize System

    Full text link
    Conversational systems typically focus on functional tasks such as scheduling appointments or creating todo lists. Instead we design and evaluate SlugBot (SB), one of 8 semifinalists in the 2018 AlexaPrize, whose goal is to support casual open-domain social inter-action. This novel application requires both broad topic coverage and engaging interactive skills. We developed a new technical approach to meet this demanding situation by crowd-sourcing novel content and introducing playful conversational strategies based on storytelling and games. We collected over 10,000 conversations during August 2018 as part of the Alexa Prize competition. We also conducted an in-lab follow-up qualitative evaluation. Over-all users found SB moderately engaging; conversations averaged 3.6 minutes and involved 26 user turns. However, users reacted very differently to different conversation subtypes. Storytelling and games were evaluated positively; these were seen as entertaining with predictable interactive structure. They also led users to impute personality and intelligence to SB. In contrast, search and general Chit-Chat induced coverage problems; here users found it hard to infer what topics SB could understand, with these conversations seen as being too system-driven. Theoretical and design implications suggest a move away from conversational systems that simply provide factual information. Future systems should be designed to have their own opinions with personal stories to share, and SB provides an example of how we might achieve this.Comment: To appear in 1st International Conference on Conversational User Interfaces (CUI 2019

    Towards Autonomous Testing Agents via Conversational Large Language Models

    Full text link
    Software testing is an important part of the development cycle, yet it requires specialized expertise and substantial developer effort to adequately test software. The recent discoveries of the capabilities of large language models (LLMs) suggest that they can be used as automated testing assistants, and thus provide helpful information and even drive the testing process. To highlight the potential of this technology, we present a taxonomy of LLM-based testing agents based on their level of autonomy, and describe how a greater level of autonomy can benefit developers in practice. An example use of LLMs as a testing assistant is provided to demonstrate how a conversational framework for testing can help developers. This also highlights how the often criticized hallucination of LLMs can be beneficial while testing. We identify other tangible benefits that LLM-driven testing agents can bestow, and also discuss some potential limitations

    Conversational Agents for Energy Awareness and Efficiency: A Survey

    Get PDF
    The need to reduce greenhouse gas emissions and promote energy efficiency is crucial to achieve the energy transition and sustainable development goals. The availability of tools that provide clear information on energy consumption plays a key role in this transition, enabling users to monitor, manage, and optimize their energy use. This process, commonly referred to as energy feedback or eco-feedback, involves delivering information regarding energy usage and potentially suggesting more sustainable practices. Within the range of available tools, conversational agents can represent a valuable channel to receive detailed information about energy consumption and tailored advice for improving energy efficiency. The aim of this article is thus to explore the application of conversational agents, focusing on eco-feedback, as these tools are primarily devised to foster user awareness of energy usage and enhance more participatory conservation strategies. To this end, we conducted a keyword-based search of major scientific article databases, applying strict criteria to select relevant studies. The results of the collection showed that there is a very diverse landscape with respect to this topic. The surveyed works exhibit a high versatility in feedback goals. Furthermore, while predominantly applied domestically, they also show potential in commercial and industrial settings. Implementation choices also vary to a great extent, while evaluation practices lack a systematic approach and highlight the need for greater consistency. In light of these remarks, we also outline possible future extensions of this type of application, exploring in particular the emerging challenges associated with the increased use of renewable sources and the rise of local decentralized energy communities
    • …
    corecore