50 research outputs found

    Nowhere-zero integral chains and flows in bidirected graphs

    Get PDF
    AbstractGeneral results on nowhere-zero integral chain groups are proved and then specialized to the case of flows in bidirected graphs. For instance, it is proved that every 4-connected (resp. 3-connected and balanced triangle free) bidirected graph which has at least an unbalanced circuit and a nowhere-zero flow can be provided with a nowhere-zero integral flow with absolute values less than 18 (resp. 30). This improves, for these classes of graphs, Bouchet's 216-flow theorem (J. Combin. Theory Ser. B 34 (1982), 279–292). We also approach his 6-flow conjecture by proving it for a class of 3-connected graphs. Our method is inspired by Seymour's proof of the 6-flow theorem (J. Combin. Theory Ser. B 30 (1981), 130–136), and makes use of new connectedness properties of signed graphs

    The Number of Nowhere-Zero Flows on Graphs and Signed Graphs

    Get PDF
    A nowhere-zero kk-flow on a graph Ξ“\Gamma is a mapping from the edges of Ξ“\Gamma to the set \{\pm1, \pm2, ..., \pm(k-1)\} \subset \bbZ such that, in any fixed orientation of Ξ“\Gamma, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an \emph{integral flow polynomial} that counts nowhere-zero kk-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.Comment: 17 pages, to appear in J. Combinatorial Th. Ser.

    Flows on Bidirected Graphs

    Full text link
    The study of nowhere-zero flows began with a key observation of Tutte that in planar graphs, nowhere-zero k-flows are dual to k-colourings (in the form of k-tensions). Tutte conjectured that every graph without a cut-edge has a nowhere-zero 5-flow. Seymour proved that every such graph has a nowhere-zero 6-flow. For a graph embedded in an orientable surface of higher genus, flows are not dual to colourings, but to local-tensions. By Seymour's theorem, every graph on an orientable surface without the obvious obstruction has a nowhere-zero 6-local-tension. Bouchet conjectured that the same should hold true on non-orientable surfaces. Equivalently, Bouchet conjectured that every bidirected graph with a nowhere-zero Z\mathbb{Z}-flow has a nowhere-zero 6-flow. Our main result establishes that every such graph has a nowhere-zero 12-flow.Comment: 24 pages, 2 figure
    corecore