1,015 research outputs found

    Memcapacitive Devices in Logic and Crossbar Applications

    Get PDF
    Over the last decade, memristive devices have been widely adopted in computing for various conventional and unconventional applications. While the integration density, memory property, and nonlinear characteristics have many benefits, reducing the energy consumption is limited by the resistive nature of the devices. Memcapacitors would address that limitation while still having all the benefits of memristors. Recent work has shown that with adjusted parameters during the fabrication process, a metal-oxide device can indeed exhibit a memcapacitive behavior. We introduce novel memcapacitive logic gates and memcapacitive crossbar classifiers as a proof of concept that such applications can outperform memristor-based architectures. The results illustrate that, compared to memristive logic gates, our memcapacitive gates consume about 7x less power. The memcapacitive crossbar classifier achieves similar classification performance but reduces the power consumption by a factor of about 1,500x for the MNIST dataset and a factor of about 1,000x for the CIFAR-10 dataset compared to a memristive crossbar. Our simulation results demonstrate that memcapacitive devices have great potential for both Boolean logic and analog low-power applications

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Hierarchical Composition of Memristive Networks for Real-Time Computing

    Get PDF
    Advances in materials science have led to physical instantiations of self-assembled networks of memristive devices and demonstrations of their computational capability through reservoir computing. Reservoir computing is an approach that takes advantage of collective system dynamics for real-time computing. A dynamical system, called a reservoir, is excited with a time-varying signal and observations of its states are used to reconstruct a desired output signal. However, such a monolithic assembly limits the computational power due to signal interdependency and the resulting correlated readouts. Here, we introduce an approach that hierarchically composes a set of interconnected memristive networks into a larger reservoir. We use signal amplification and restoration to reduce reservoir state correlation, which improves the feature extraction from the input signals. Using the same number of output signals, such a hierarchical composition of heterogeneous small networks outperforms monolithic memristive networks by at least 20% on waveform generation tasks. On the NARMA-10 task, we reduce the error by up to a factor of 2 compared to homogeneous reservoirs with sigmoidal neurons, whereas single memristive networks are unable to produce the correct result. Hierarchical composition is key for solving more complex tasks with such novel nano-scale hardware

    A CMOS Spiking Neuron for Dense Memristor-Synapse Connectivity for Brain-Inspired Computing

    Get PDF
    Neuromorphic systems that densely integrate CMOS spiking neurons and nano-scale memristor synapses open a new avenue of brain-inspired computing. Existing silicon neurons have molded neural biophysical dynamics but are incompatible with memristor synapses, or used extra training circuitry thus eliminating much of the density advantages gained by using memristors, or were energy inefficient. Here we describe a novel CMOS spiking leaky integrate-and-fire neuron circuit. Building on a reconfigurable architecture with a single opamp, the described neuron accommodates a large number of memristor synapses, and enables online spike timing dependent plasticity (STDP) learning with optimized power consumption. Simulation results of an 180nm CMOS design showed 97% power efficiency metric when realizing STDP learning in 10,000 memristor synapses with a nominal 1M{\Omega} memristance, and only 13{\mu}A current consumption when integrating input spikes. Therefore, the described CMOS neuron contributes a generalized building block for large-scale brain-inspired neuromorphic systems.Comment: This is a preprint of an article accepted for publication in International Joint Conference on Neural Networks (IJCNN) 201

    Neuromorphic, Digital and Quantum Computation with Memory Circuit Elements

    Full text link
    Memory effects are ubiquitous in nature and the class of memory circuit elements - which includes memristors, memcapacitors and meminductors - shows great potential to understand and simulate the associated fundamental physical processes. Here, we show that such elements can also be used in electronic schemes mimicking biologically-inspired computer architectures, performing digital logic and arithmetic operations, and can expand the capabilities of certain quantum computation schemes. In particular, we will discuss few examples where the concept of memory elements is relevant to the realization of associative memory in neuronal circuits, spike-timing-dependent plasticity of synapses, digital and field-programmable quantum computing
    corecore