2 research outputs found

    3D Localisation of Target using Elevation Angle Algorithm with the use of Ground Radars

    Get PDF
    A new novel method based on elevation angle algorithm (EAA) is proposed in this paper, to obtain 3D position of target using range and azimuth measurements of two ground 2D radars. The EAA estimates optimal target elevation angle wrt contributing radar by solving a non-linear optimisation problem using Levenberg-Marquardt method in geo-centric frame such as earth-centred-earth-fixed. The target position in geodetic frame (WGS84) is then obtained using slant range, azimuth and estimated elevation angle. The proposed method is evaluated using simulated but realistic radar data and accuracy of estimated position is found to be comparable with true position (error within acceptable limit). The method is also evaluated with real data from actual ground 2D radars and estimated target position is found to be comparable with reference navigation data (GPS) on-board of target. For each radar, corresponding Extended Kalman filter (EKF) is used to handle noisy, asynchronous measurements and to provide estimated range and azimuth at common reference time for altitude estimation using proposed EAA method. In case of real data, the estimated altitude is found to be comparable GPS altitude with error less than 5 % of true altitude. From the study, it is found that EAA is suitable to estimate target position using measurements from only two contributing asynchronous 2D radars in real-time as compared to some other techniques such triangulation and Trilateration where at-least three radars are required to get the position of target. This method can be useful to utilise network of vintage long range 2D radars to determine target position and to fill the gap wherever/whenever target is out of detection range of 3D radars. In addition, EAA method is compared with commonly used methodology such range only localisation and results are presented

    Novel maximum likelihood approach for passive detection and localisation of multiple emitters

    Get PDF
    Abstract In this paper, a novel target acquisition and localisation algorithm (TALA) is introduced that offers a capability for detecting and localising multiple targets using the intermittent “signals-of-opportunity” (e.g. acoustic impulses or radio frequency transmissions) they generate. The TALA is a batch estimator that addresses the complex multi-sensor/multi-target data association problem in order to estimate the locations of an unknown number of targets. The TALA is unique in that it does not require measurements to be of a specific type, and can be implemented for systems composed of either homogeneous or heterogeneous sensors. The performance of the TALA is demonstrated in simulated scenarios with a network of 20 sensors and up to 10 targets. The sensors generate angle-of-arrival (AOA), time-of-arrival (TOA), or hybrid AOA/TOA measurements. It is shown that the TALA is able to successfully detect 83–99% of the targets, with a negligible number of false targets declared. Furthermore, the localisation errors of the TALA are typically within 10% of the errors generated by a “genie” algorithm that is given the correct measurement-to-target associations. The TALA also performs well in comparison with an optimistic Cramér-Rao lower bound, with typical differences in performance of 10–20%, and differences in performance of 40–50% in the most difficult scenarios considered. The computational expense of the TALA is also controllable, which allows the TALA to maintain computational feasibility even in the most challenging scenarios considered. This allows the approach to be implemented in time-critical scenarios, such as in the localisation of artillery firing events. It is concluded that the TALA provides a powerful situational awareness aid for passive surveillance operations
    corecore