3 research outputs found

    Modeling and simulation of the two-tank system within a hybrid framework

    Get PDF
    Most real-world dynamical systems are often involving continuous behaviors and discrete events, in this case, they are called hybrid dynamical systems (HDSs). To properly model this kind of systems, it is necessary to consider both the continuous and the discrete aspects of its dynamics. In this paper, a modeling framework based on the hybrid automata (HA) approach is proposed. This hybrid modeling framework allows combining the multi-state models of the system, described by nonlinear differential equations, with the system’s discrete dynamics described by finite state machines. To attest to the efficiency of the proposed modeling framework, its application to a two-tank hybrid system (TTHS) is presented. The TTHS studied is a typical benchmark for HDSs with four operating modes. The MATLAB Simulink and Stateflow tools are used to implement and simulate the hybrid model of the TTHS. Different simulations results demonstrate the efficiency of the proposed modeling framework, which allows us to appropriately have a complete model of an HDS

    Classical and metaheuristic optimizations performance in an electro-hydraulic control system

    Get PDF
    Electro-Hydraulic Actuator (EHA) system is a prevalent mechanism in industrial sectors. This system commonly involving works that required high force such as steel, automotive and aerospace industries. It is a challenging task to acquire precision when dealing with a system that can produce high force. Besides, since most of the mechanical actuator performance varies with time, it is even difficult to ensure its robustness characteristic towards time. Therefore, this paper proposed the industrial’s wellknown controller, which is the Proportional-Integral-Derivative (PID) controller that can improve the precision of the EHA system. Then, an enhanced PID controller, which is the fractional order PID (FOPID) controller will be applied. A classical and metaheuristic optimization methods, which are gradient descent (GD) and particle swarm optimization (PSO) algorithm are used to obtaining the optimal gains of both controllers. In addition, to examine the tracking performance of the designed controllers, the performance of the proposed optimization algorithms is analysed. As a result, in a practical point of view, it can be inferred that the PSO algorithm is capable to generate more practical sense of gains compared with GD, and the precision characteristic of the FOPID is greater than the PID controller

    Research on vibration mechanism and control technology of building structure under earthquake action

    Get PDF
    The large engineering building structures are costly and thus complex to maintain due to their chances of failure under various hazardous conditions. These buildings are needed to be protected against the damage due to the hazards like earthquake, wind, seismic waves, etc. This article focuses on the investigation of vibration mechanism and control strategies for protection of buildings from the hazardous situations. The article presents a robust solution of utilization of magnetorheological dampers for vibration control applications in complex structures. It aims at developing a reliable decentralized model to track and monitor the building structures and control them before the earthquake actions are encountered. This article develops a novel dynamically optimized and decentralized mechanism using the PID controller for the self-regulation of conventional PID controller-based method. The major goal of decentralization is to ensure that each of the subsystem is compatible with one another and can also work independently with a higher efficiency at the time of fault. The combination of decentralization and self-regulation is tested for a tall building structural model with 10 floors. The proposed approach is compared with the conventional PID based mechanism under the faulty condition in order to illustrate its dynamism and usefulness for practical implementation. The proposed simulated model provides 95.54 % earthquake tracking precision and can be used for developing the earthquake protective schemes for the adequate survivability of tall building structures as well as to safeguard the human occupant in it
    corecore