53 research outputs found

    The effects of nitric oxide on the immune system during Trypanosoma cruzi infection

    Get PDF
    Trypanosoma cruzi infection triggers substantial production of nitric oxide (NO), which has been shown to have protective and toxic effects on the host's immune system. Sensing of trypomastigotes by phagocytes activates the inducible NO-synthase (NOS2) pathway, which produces NO and is largely responsible for macrophage-mediated killing of T. cruzi. NO is also responsible for modulating virtually all steps of innate and adaptive immunity. However, NO can also cause oxidative stress, which is especially damaging to the host due to increased tissue damage. The cytokines IFN-³ and TNF-±, as well as chemokines, are strong inducers of NOS2 and are produced in large amounts during T. cruzi acute infection. Conversely, TGF-² and IL-10 negatively regulate NO production. Here we discuss the recent evidence describing the mechanisms by which NO is able to exert its antimicrobial and immune regulatory effects, the mechanisms involved in the oxidative stress response during infection and the implications of NO for the development of therapeutic strategies against T. cruzi.FAPESPFRSGTWPMPMMGThe Millennium Institute for Vaccine Development and TechnologyCNP

    Identification of Trypanocidal Activity for Known Clinical Compounds Using a New <i>Trypanosoma cruzi</i> Hit-Discovery Screening Cascade

    Get PDF
    <div><p>Chagas disease is a significant health problem in Latin America and the available treatments have significant issues in terms of toxicity and efficacy. There is thus an urgent need to develop new treatments either via a repurposing strategy or through the development of new chemical entities. A key first step is the identification of compounds with anti-<i>Trypanosoma cruzi</i> activity from compound libraries. Here we describe a hit discovery screening cascade designed to specifically identify hits that have the appropriate anti-parasitic properties to warrant further development. The cascade consists of a primary imaging-based assay followed by newly developed and appropriately scaled secondary assays to predict the cidality and rate-of-kill of the compounds. Finally, we incorporated a cytochrome P450 CYP51 biochemical assay to remove compounds that owe their phenotypic response to inhibition of this enzyme. We report the use of the cascade in profiling two small libraries containing clinically tested compounds and identify Clemastine, Azelastine, Ifenprodil, Ziprasidone and Clofibrate as molecules having appropriate profiles. Analysis of clinical derived pharmacokinetic and toxicity data indicates that none of these are appropriate for repurposing but they may represent suitable start points for further optimisation for the treatment of Chagas disease.</p></div

    Current and future chemotherapy for Chagas disease

    Get PDF
    Luís Gaspar is thankful to FCT for funding (scholarship reference: SFRH/BD/81604/2011). The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED) and No. 603240 (Project NMTrypI).American trypanosomiasis, commonly called Chagas disease, is one of the most neglected illnesses in the world and remains one of the most prevalent chronic infectious diseases of Latin America with thousands of new cases every year. The only treatments available have been introduced five decades ago. They have serious, undesirable side effects and disputed benefits in the chronic stage of the disease – a characteristic and debilitating cardiomyopathy and/or megavisceras. Several laboratories have therefore focused their efforts in finding better drugs. Although recent years have brought new clinical trials, these are few and lack diversity in terms of drug mechanism of action, thus resulting in a weak drug discovery pipeline. This fragility has been recently exposed by the failure of two candidates, posaconazole and E1224, to sterilely cure patients in phase 2 clinical trials. Such setbacks highlight the need for continuous, novel and high quality drug discovery and development efforts to discover better and safer treatments. In this article we will review past and current findings on drug discovery for Trypanosoma cruzi made by academic research groups, industry and other research organizations over the last half century. We will also analyze the current research landscape that is now better placed than ever to deliver alternative treatments for Chagas disease in the near futurePostprintPeer reviewe

    Challenges in Chagas Disease Drug Development.

    Get PDF
    The protozoan parasite Trypanosoma cruzi causes Chagas disease, an important public health problem throughout Latin America. Current therapeutic options are characterised by limited efficacy, long treatment regimens and frequent toxic side-effects. Advances in this area have been compromised by gaps in our knowledge of disease pathogenesis, parasite biology and drug activity. Nevertheless, several factors have come together to create a more optimistic scenario. Drug-based research has become more systematic, with increased collaborations between the academic and commercial sectors, often within the framework of not-for-profit consortia. High-throughput screening of compound libraries is being widely applied, and new technical advances are helping to streamline the drug development pipeline. In addition, drug repurposing and optimisation of current treatment regimens, informed by laboratory research, are providing a basis for new clinical trials. Here, we will provide an overview of the current status of Chagas disease drug development, highlight those areas where progress can be expected, and describe how fundamental research is helping to underpin the process

    Antiproliferative effect and ultrastructural alterations induced by 5-O-methylembelin on Trypanosoma cruzi

    Get PDF
    Background: Embelin (EMB), obtained from Oxalis erythrorhiza Gillies ex Hooker et Arnott (Oxalidaceae), was reported against Trypanosoma cruzi and Leishmania spp. Additionally, antiprotozoan activity against Plasmodium falciparum was reported for its methylated derivative (ME). Purpose: To evaluate the potential anti-Trypanosoma cruzi activity of EMB, ME and 2,5-di-O-methylembelin (DME) and analyze the possible mechanism of action. Study design/Methods: EMB was isolated by a chromatographic method from the air-dried ground whole plant. To evaluate the effects of methylation, ME and DME were synthesized and tested against T. cruzi epimastigotes and trypomastigotes. The most active compound ME was evaluated against amastigotes. Ultrastructural alterations, ROS generation and the effect on mitochondrial activity of ME were measured. Results: Compounds inhibited the proliferation of epimastigotes. ME was also active against intracellular amastigotes. Mitochondrial alterations were observed by TEM. Additionally, ME modified the mitochondrial activity, and induced an increase in ROS levels. These evidences postulate the mitochondrion as a possible target of ME. Conclusion: ME inhibited amastigotes proliferation, thus being a potential lead compound for the treatment of Chagas’ disease.Fil: Spina Zapata, Renata María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Barrera, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Agüero, María Belén. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Tapia, Aníbal Alejandro. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaFil: Feresin, Gabriela Egly. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Sosa Escudero, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    In vitro cytotoxic, antifungal, trypanocidal and leishmanicidal activities of acetogenins isolated from Annona cornifolia A. St. -Hil. (Annonaceae)

    Full text link
    Annona cornifolia A. St. -Hil. is a small annual perennial tree found in the Brazilian savannah; their green fruit is popularly used in the treatment of ulcers. The acetogenins isolated from the seeds of Annona cornifolia previously showed to possess antioxidant activity. In continuation of our investigations on the biological activities of acetogenins, four binary mixtures and ten pure adjacent bis-tetrahydrofuran annonaceous acetogenins were evaluated: the cytotoxic (against three human tumor cell lines), antifungal (against Paracoccidioides brasiliensis), trypanocidal (against Trypanosoma cruzi) and leishmanicidal (against Leishmania amazonensis) activities. Acetogenins presented cytotoxic activity confirming their potential use in anti-cancer therapy. Regarding leishmanicidal and trypanocidal activities, an inhibition of 87% of L. amazonensis amastigotes and 100% of T. cruzi amastigotes and trypomastigotes was observed, when tested at the concentration of 20 μg mL-1. Moreover, six acetogenins showed more activity against all the three tested isolates of P. brasiliensis than trimethoprim-sulfamethoxazole, a drug used for treating paracoccidioidomycosis. Thus, acetogenins may be an alternative in treating a number of diseases that have a huge impact on millions of people worldwide. This paper reports for the first time the antifungal, leishmanicidal and trypanocidal activities for these acetogenin

    Insights into antitrypanosomal drug mode-of-action from cytology-based profiling

    Get PDF
    Chemotherapy continues to have a major impact on reducing the burden of disease caused by trypanosomatids. Unfortunately though, the mode-of-action (MoA) of antitrypanosomal drugs typically remains unclear or only partially characterised. This is the case for four of five current drugs used to treat Human African Trypanosomiasis (HAT); eflornithine is a specific inhibitor of ornithine decarboxylase. Here, we used a panel of T. brucei cellular assays to probe the MoA of the current HAT drugs. The assays included DNA-staining followed by microscopy and quantitative image analysis, or flow cytometry; terminal dUTP nick end labelling to monitor mitochondrial (kinetoplast) DNA replication; antibody-based detection of sites of nuclear DNA damage; and fluorescent dye-staining of mitochondria or lysosomes. We found that melarsoprol inhibited mitosis; nifurtimox reduced mitochondrial protein abundance; pentamidine triggered progressive loss of kinetoplast DNA and disruption of mitochondrial membrane potential; and suramin inhibited cytokinesis. Thus, current antitrypanosomal drugs perturb distinct and specific cellular compartments, structures or cell cycle phases. Further exploiting the findings, we show that putative mitogen-activated protein-kinases contribute to the melarsoprol-induced mitotic defect, reminiscent of the mitotic arrest associated signalling cascade triggered by arsenicals in mammalian cells, used to treat leukaemia. Thus, cytology-based profiling can rapidly yield novel insight into antitrypanosomal drug MoA

    2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses

    Get PDF
    Parasitic diseases are a serious public health problem affecting hundreds of millions of people worldwide. African trypanosomiasis, American trypanosomiasis, leishmaniasis, malaria and toxoplasmosis are the main parasitic infections caused by protozoan parasites with over one million deaths each year. Due to old medications and drug resistance worldwide, there is an urgent need for new antiparasitic drugs. 1,3,4-Thiadiazoles have been widely studied for medical applications. The chemical, physical and pharmacokinetic properties recommend 1,3,4-thiadiazole ring as a target in drug development. Many scientific papers report the antiparasitic potential of 2-amino-1,3,4-thiadiazoles. This review presents synthetic 2-amino-1,3,4-thiadiazoles exhibiting antitrypanosomal, antimalarial and antitoxoplasmal activities. Although there are insufficient results to state the quality of 2-amino-1,3,4-thiadiazoles as a new class of antiparasitic agents, many reported derivatives can be considered as lead compounds for drug synthesis and a promise for the future treatment of parasitosis and provide a valid strategy for the development of potent antiparasitic drugs

    The critical role of mode of action studies in kinetoplastid drug discovery

    Get PDF
    Understanding the target and mode of action of compounds identified by phenotypic screening can greatly facilitate the process of drug discovery and development. Here, we outline the tools currently available for target identification against the neglected tropical diseases, human African trypanosomiasis, visceral leishmaniasis and Chagas’ disease. We provide examples how these tools can be used to identify and triage undesirable mechanisms, to identify potential toxic liabilities in patients and to manage a balanced portfolio of target-based campaigns. We review the primary targets of drugs that are currently in clinical development that were initially identified via phenotypic screening, and whose modes of action affect protein turnover, RNA trans-splicing or signalling in these protozoan parasites.<br/
    corecore