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ABSTRACT 

 

 American trypanosomiasis, commonly called Chagas disease, is one of the most neglected 

illnesses in the world and remains one of the most prevalent chronic infectious diseases of Latin 

America with thousands of new cases every year. The only treatments available have been introduced 

five decades ago. They have serious, undesirable side effects and disputed benefits in the chronic stage 

of the disease – a characteristic and debilitating cardiomyopathy and/or megavisceras. Several 

laboratories have therefore focused their efforts in finding better drugs. Although recent years have 

brought new clinical trials, these are few and lack diversity in terms of drug mechanism of action, thus 

resulting in a weak drug discovery pipeline. This fragility has been recently exposed by the failure of 

two candidates, posaconazole and E1224, to sterilely cure patients in phase 2 clinical trials. Such 

setbacks highlight the need for continuous, novel and high quality drug discovery and development 

efforts to discover better and safer treatments. 

 In this article we will review past and current findings on drug discovery for Trypanosoma cruzi 

made by academic research groups, industry and other research organizations over the last half century. 
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We will also analyze the current research landscape that is now better placed than ever to deliver 

alternative treatments for Chagas disease in the near future. 
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INTRODUCTION 

 

 Chagas disease is named after the Brazilian physician Carlos Chagas who first described the 

disease in 1909 1. Chagas disease is caused by the parasite Trypanosoma cruzi and is considered to be 

the parasitic infirmity with the biggest social and economic burden in Latin America 2. There is an 

estimate of 7-8 million people currently infected with T. cruzi, while there are approximately 25 

million people at risk of acquiring the disease 3. Every year, Chagas disease claims 10,000 deaths in 

endemic countries 4. The parasite has a complex life cycle, alternating between the mammalian host 

and the hematophagous triatomine insect vector. The infection begins when the infected bug feeds on 

the host, which can be a wild or domestic mammal or a human. Infective metacyclic trypomastigote 

forms of T. cruzi are found in the feces of the bug which are released during the blood meal, and gain 

access through the lesion to infect dendritic cells 5. Once inside a cell, the parasite breaks free of its 

entering organelle, the endosome/lysosome, and differentiates into a replicative amastigote form. The 

amastigote divides several times and maturates into bloodstream trypomastigotes that rupture the host 

cell and are released into the bloodstream or lymph, free to infect a wide range of cells or be ingested 

by the transmitting vector, thus closing the cycle. In the triatomine gut, the parasite transforms once 

again into a replicative stage called the epimastigote and after clonal divisions it migrates to the final 

portion of the intestine and differentiates again into infectious metacyclic trypomastigote. 

 Although vectorial transmission has been greatly reduced due to vector control campaigns carried 

out by the World Health Organization (WHO), the Pan-American Health Organization (PAHO) and 

national health ministries of participating countries, there are still about 41,000 6 new cases each year 

due to vectorial transmission. Many thousands of cases can be also attributed to secondary infection 

routes like transfusion of contaminated whole blood and derivate products, transplant of organs from 

chronically infected patients, congenital and oral transmissions. Oral transmission is a growing 

concern, with 138 outbreaks responsible for the appearance of 776 new cases in the period of 2000 – 

2010. Oral infection is usually acquired through ingestion of food, sugar cane and other juices, water or 

soup contaminated with infected triatomines or their feces 7. Human migration in recent years have 
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increased the incidence of new cases in non-endemic countries, making Chagas a health and medical 

problem in North America, Europe, Japan and Australia, requiring governments to implement 

screenings for blood and organs donations, as well as implement infrastructures to treat infected 

patients 8. 

Due to the huge vertebrate reservoir and the variety of triatomine insects, the eradication of this 

zoonotic parasite is practically impossible 9. 

 The symptomatology of Chagas disease may vary according to the route of infection: while 

vectorial transmission is usually asymptomatic or presents nonspecific symptoms, oral infection may 

increase the chance of acute cardiomyopathy because of the higher parasite loads associated.   About 

20 to 30% of acute cases develop serious chagasic cardiomyopathy with evolving symptoms and the 

risk of sudden death 10. Fifteen to 20% develop digestive tract manifestations. The remaining infected 

individuals are considered to have the indeterminate form of the disease and the majority may not have 

symptoms or signs of the disease for all their life 10. 

 To treat new acute cases, intermediate phase patients or reactivations from chronic patients, the 

only drugs available were introduced more than four decades ago, with no alternatives. Benznidazole 

and nifurtimox (figure 1) are effective in treating acute infections, but efficacy is thought to decrease 

with the disease progression, with little to no effect in the chronic phase. Additionally, they must be 

administrated for long periods of time and display numerous side effects. Some of the most serious 

side effects require monitoring and ultimately, treatment interruption.  

 For the above reasons, new drugs to fight this disease are a dire need. New formulations of old 

drugs, old drugs with new applications as well as innovative drugs are feeding the pipeline for the 

treatment of Chagas disease 11. 

In the following sections we will discuss the therapies available today and their limitations 

followed by the advances in the drug discovery and the candidates currently in preclinical and clinical 

studies to treat Chagas disease. 

 

CURRENT THERAPIES 

 

BENZNIDAZOLE 

 Benznidazole is a nitroimidazole (N-benzyl-2-(2-nitro-1H-imidazol-1-yl)acetamide) discovered 

in 1972 at Roche Laboratories, was and originally marketed as RochaganTM or RodanilTM. Despite its 

age, it is still the front-line treatment for the disease, although it is not approved by FDA 12. 
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Benznidazole is considered to be effective in reducing symptom severity and to shorten the clinical 

course and the duration of detectable parasitemia. Clinical cures are thought to be achieved in 60 to 

85% of the acute cases and in more than 90% of congenitally infected infants, if treated in their first 

year of life 13. Efficacy of benznidazole in chronic Chagas disease is still debatable, with reports 

varying from 15 - 35% of cure rates 14. The benefits of the drug in preventing cardiac and/or 

megacolon and megaesophagus manifestations are not yet clear 15. To address this uncertainty, a large, 

multicenter, double-blind, randomized, placebo-controlled clinical trial called BENEFIT (The 

Benznidazole Evaluation For Interrupting Trypanosomiasis, ClinicalTrials.gov, ID: NCT00123916) 

with 3,000 patients in several endemic countries is underway and will evaluate the efficacy of a daily 

dose during 40 to 80 days of treatment in reducing mortality and morbidity in patients with chronic 

Chagas cardiomyopathy 16. Problems with precise dosing in young children and the adverse effects 

observed has led to the development of a new pediatric formulation of benznidazole. This lower dose, 

easily dispersible tablet that should improve dosing accuracy, safety, and adherence to treatment is 

currently in clinical trials (Population Pharmacokinetics Study of Benznidazole in Children With 

Chagas'Disease - Pop PK Chagas, ClinicalTrials.gov, ID: NCT01549236) 17. 

 The mechanism of action of benznidazole is thought to require the reduction of its nitro group by 

parasite nitroreductases, and in the process originate free radical intermediates and electrophilic 

metabolites that react with proteins, lipids and DNA that disrupt normal cell function and metabolism. 

It is also thought that T. cruzi NADH-fumarate reductase inhibition, phagocytosis improvement and 

death by INF-γ are additional mechanisms involved in parasite killing by benznidazole 18. On the other 

hand, reduction by human liver NADPH, cytochrome P-450 reductase, P450, xanthine oxidase and 

aldehyde oxidase are thought to be responsible by the adverse side effects in patients 19.  

 Benznidazole is very toxic, but remains one of the few drugs with nitroaromatic groups still in 

use today 20 from where it derives its major toxicity. This toxicity is the main reason why benznidazole 

is far from an optimal drug and why new drugs are urgently needed.  The most common side effect is 

dermatitis from hypersensitivity to the drug, the later appearing in 20 to 25% of the patients, usually 

after 10 days on the treatment, and for this reason, onwards weekly monitoring is recommended 21. 

Digestive intolerance, peripheral neuropathy, depression of bone marrow, toxic hepatitis and 

lymphomas are other occurring side effects. Treatment interruption is most frequently due to dermatitis 

and digestive intolerance, although studies reveal that low-fat and hypoallergenic diet and daily dose 

administrations can reduce their incidence 21. In addition, benznidazole should not be administered to 

pregnant women nor patients with severe renal or hepatic dysfunction, because of drug metabolization 

by these organs 22. 
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 Strains resistant to benznidazole have been reported and are a major and increasing concern. An 

example is the Colombian strain, with benznidazole only being able to cure up to 16% of the mice 

infected with different clones 23. In vitro results using real-time PCR suggest nitroreductases (NTRs) as 

the main mechanism of resistance in vitro, probably due to loss of a NTR gene copy 24. A recent study 

warns of the relative ease in which benznidazole can develop resistance in vitro by a couple of 

different mechanisms such as chromosome loss and different point mutations in the NTR gene, all 

arising from a single population 25. 

 

NIFURTIMOX 

 Nifurtimox (N-(3-methyl-1,1-dioxo-1,4-thiazinan-4-yl)-1-(5-nitrofuran-2-yl)methanimine) a 5-

nitrofuran derivative, constitutes the second and only alternative to benznidazole for the treatment of 

Chagas disease. Its use is also not approved by the FDA either. Also known as Bayer 2502, the drug, 

marketed as LampitTM, was originally discovered in that pharmaceutical company in 1965, exactly 50 

years ago and provided, for the first time, a treatment for Chagasic patients. It is also used in 

combination therapy with eflornithine to treat second stage African trypanosomiasis caused by the 

parasite strain Trypanosoma brucei gambiense 26. 

 Nifurtimox efficacy is similar to benznidazole, but it has a much higher frequency of adverse 

effects. There is a frequency of adverse effects in 98% of patients, with only 56% of them completing 

the 60-day course treatment and 29% not tolerating it for more than 30 days. Digestive symptoms are 

predominant and neurological alterations the most persistent. An estimated 7% of patients had severe 

adverse effects like angioedema, myocarditis and grade-3 anaphylactic reactions 27. 

Recently, a study highlighted the possible biochemical mechanisms that may be associated with 

some of nifurtimox adverse side effects and as well as from other nitro-aromatic derived drugs 28. 

 Similar to benznidazole, nifurtimox also acts through a mechanism of intracellular nitro reduction 

with the generation of the nitro radical, followed by redox cycling. In contrast, there is a greater role 

for oxygen reactive species, like superoxide ion and hydrogen peroxide, that are toxic to T. cruzi. This 

parasite is sensitive to oxidative stress due to weak detoxification mechanisms due to the absence of 

catalase or peroxidase activity and reduced superoxide dismutase activity 18, 29. RNA interference 

studies on Trypanosoma brucei, responsible for Human African Trypanosomiasis, show that besides 

NTR, other proteins linked to ubiquinone synthesis are also involved in nifurtimox mechanism of 

action in that species, and it is likely that the same mechanism is also present in T. cruzi 30. 

 Resistance to nifurtimox is readily obtainable in vitro and it seems parasite nitroreductases play a 

major role in its resistance, mounting up evidence that cross-resistance with benznidazole can occur as 
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has been reported 31, increasing the pressure to find alternative drugs to treat patients refractive to the 

only available therapies. 

 The renewed interest in nitro-heterocycles has spurred research into finding alternative nitro-

heterocycles, these include heteroallyl-containing 5-nitrofuranes, 5-nitrofuryl containing 

thiosemicarbazones and 2- or 3-nitro-1H-imidazole-based amides and sulfonamides. Despite some of 

these compounds being 10-50 times more potent than nifurtimox, they too seem to have the same 

issues of cross-resistance 32. However, some recently synthesized novel nitrofuran amides, which are 

up to a 1000-fold more potent than nifurtimox, with excellent selectivity, have a trypanocidal activity 

that seems to be independent of nitroreductase activity 33. 

 

DRUG DISCOVERY AND DEVELOPMENT FOR CHAGAS DISEASE 

 

DRUG DISCOVERY STRATEGIES 

  

 Various approaches can be adopted when considering developing drugs for neglected diseases 

Nwaka and Hudson 34: (i) “De novo synthesis” is the classical way that focuses on the identification of 

new chemical entities through target discovery and compound screening. Although this is a very 

important strategy in the discovery of novel drugs for neglected diseases, it is a long-term approach 

and usually has constrains like high risk, high attrition rate of candidate compounds and needs high 

human and financial resources. Because of that and the perspectives of low market return and profits, 

the majority of companies do not make neglected tropical diseases a priority 35. Populations affected by 

neglected diseases, and Chagas disease in particularly, are very poor and don’t have the means to pay 

for expensive medication 36. (ii) “Piggy-back” discovery is the process that takes advantage of the 

development of drugs for other diseases that may share some mechanistic identity in terms of 

molecular target, providing strong chemical start points to be followed and developed in the next 

phases. An example is the use of kinase inhibitors research data from cancer treatment to provide 

shortcuts for the development of a kinase inhibitor versus a parasitic target (iii). Label extension or 

drug repurposing is the approach that has some of the most immediate results, in that it uses already 

approved drugs for some pathologies, and repurposes them to be used in neglected diseases, saving 

considerable time and costs for approval processes after efficacy confirmation. Most of the 

toxicological data and sometimes clinical tests are already available. An example of successful 

application of this strategy is the case of praziquantel for schistosomiasis and ivermectin for 
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filariasis/onchcocersiasis 34, 37. More recently, Auranofin, an approved drug for rheumatoid arthritis, 

has been identified as an amebacide 38 and a clinical trial is being launched in Bangladesh. 

 Independently of the strategy used, an essential feature of the drug discovery process that plays a 

guiding role is the target product profile (TPP). TPPs are a set of criteria to be followed through the 

development process and describe the needs and characteristic that the new candidate has to meet in 

order to constitute an improvement over the current available therapies. Drugs for Neglected Diseases 

initiative (DNDi), a non-profiting drug research and development organization founded with the 

objective to develop therapies for neglected diseases, has recently updated a TPP for Chagas disease 39. 

 

STARTING POINTS: SCREENING FOR HITS 

 

 Hits is the name given to the compounds that are first identified in a screening as interesting 

molecules able to yield a positive read or specific phenotype, usually in a similar way to a positive 

control or reference drug. Two different approaches can be taken to identify these starting points for 

drug discovery: a molecular target or target-based approach, and a phenotypic approach, also known as 

untargeted drug discovery. Target-based drug discovery relies on the previous discovery and 

characterization of a given molecular target and subsequent target validation by chemical or genetic 

means. Each has advantages and disadvantages 40. Ideally, a target should be validated by more than 

one method. Chemical and biochemical validation is the proof that a molecular target, usually a 

protein, is able to be inhibited by a small molecule and that the use of such molecule in the parasite 

and/or in vitro and in vivo models of the disease leads to deficient parasite grow or ability to establish a 

normal infection. Genetic validation implies the reduction or elimination of the molecular target at the 

cellular level and the consequent observation of the interference in the parasite fitness/survival. The 

only reliable way to genetically validate a protein target in T. cruzi is by gene-knockout. A selection 

marker - a coding sequence of a gene that confers resistance to a given antibiotic used to select 

parasites - is cloned between two homologous regions of the locus to eliminate, in a way that when the 

DNA is electroporated into the parasite, homologous recombination occurs with the substitution of the 

endogenous gene by the exogenous selection marker. Because of the low recombinogenic potential of a 

parasite and slow growth kinetics, these transgenic techniques are extremely hard and time consuming 

to perform, with high failure rates and many weeks just to select stable transfected cells 41. There are 

only two genes, which code to oligopetidase B and N-myristoyltransferase that have been properly 

genetically validated and only the later seems to be interesting to explore as a drug target 42. 
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Unfortunately and unlike the related species Trypanosoma brucei, T. cruzi does not have functional 

RNAi machinery. Apparently some of its components have been lost or mutated during evolution 43. 

Most recently, and in the wake of a revolution in genome editing technology, CRISPR-Cas9 

technology has been successfully applied to T. cruzi with major breakthroughs like expression 

knocking down of an enzyme gene family consisting of 65 members 44. 

After proper drug target validation, biochemical assays can be set up to screen for inhibitors. 

These assays usually make use of proteins, frequently of recombinant origin. In the past, many of the 

labs working with T. cruzi have screened only a small quantity of compounds, from either synthetic or 

natural origin, because of the limited access to large compound collections. As a consequence, the 

small, scattered and independent scale of the efforts greatly reduces the chances of discovering 

interesting compounds.  

The scenario changed dramatically with the development of high throughput technology based on 

assay miniaturization and automation of protocols, from procedure to analysis, thus opening the door 

to large scale screening campaigns for this parasite. Among the improvements are time saving, since 

many compounds are tested in simultaneous, assay cost reduction, and data reproducibility. As an 

example, one high-throughput screen of 200 000 compounds against cruzipain, yielded 921 hit 

compounds that were subsequently screened by computational docking analysis and revealed 5 

chemical scaffolds of common hits. These scaffolds are good starting points for further optimization 

and evidentiate the advantages of combining biological and bioinformatics analysis for priorization of 

molecules after an high-throughput screening campaign has been performed 45. In another example of 

target-based drug discovery, CYP51 from Mycobacterium tuberculosis was screened against a library 

of 20 000 organic compounds and resulted in two very active compounds 46, of which one (ChemDiv 

C155-0123) later showed selective inhibitory activity against the T. cruzi orthologous enzyme 47. 

The big limitations of molecular target approaches are the possibility of poor disease linkage, low 

or impossible druggability of the target, risk of off-target effects that may translate into significant 

toxicity and the chance of overlapping research by different groups since there are so few targets 

characterized 48. 

To circumvent such limitations, phenotypic base approaches have been developed. Instead of a 

single molecular target, whole cells are tested directly with the compounds and selection is made based 

on the observance of the required phenotype. This allows the selection of only those compounds that 

are active against the parasite, despite their mechanism of action. Also, it readily selects those 

compounds with the minimal pharmacodynamic and pharmacokinetic properties needed: proper 

intracellular distribution and accumulation, physiological binding and inhibition to target, etc., that are 

very difficult to predict with target-based strategies. However, this method requires that the target must 
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be elucidated in the discovery process, a task not always easy but achievable 49. The most recent trend 

in whole-cell assays has employed the use of high-content screening analyzers – automated 

microscopes that can image many conditions (compounds) in clear bottom culture microplates. When 

the technology appeared one assay was developed that made use of mammalian cells expressing GFP 

and parasites stained with DAPI, and both manual and automated data analysis was performed 50. With 

critics of genetically modified parasites/host cells and the further development of technology an 

improved assay was developed that used whole unmodified cells and parasites. This assay was 

validated with a small library of FDA-approved drugs 51. The development of analysis software further 

automates the campaigns and allows the additional mining of important data, for example, the toxicity 

for host cells 52. The first multi-thousand screening campaign described in the literature has been 

recently published 53.  

 Balancing the benefits and disadvantages of both strategies in hit identification for parasitic 

diseases such as Chaga, experts lean towards phenotypic approaches as the most promising 

methodologies 34 in which hits are selected for their ability to kill or not the parasite, coupled with 

cytotoxicity evaluation. In fact, when we take a look at the recent first-in-class new drugs with 

innovative molecular mechanism of action, we see that many of these drugs were discovered by 

phenotypic screening (28 vs. 17) 54. The development of such high-throughput, high-quality, cheap and 

reliable assays like the described above is considered one of the biggest contributions to the advance of 

the Chagas disease drug discovery effort. 

 

FROM HIT TO LEAD AND BEYOND 

  

 Once hits have been obtained, the most promising are further confirmed with the same assay in a 

dose response-curve to confirm activity and interpolate the EC50 value, a measure of the potency of the 

compound that is the concentration of a compound where 50% of its maximal effect is observed. Most 

guidelines indicate an EC50 lower than 10 µM as a good starting value, although recommendations can 

vary if other criteria are met, like a high selectivity index, for instance. The confirmed hits can also be 

subject to complementary activity assays. These can be of a different configuration, employ a different 

readout, or even access activity against other strains. A recent paper shows that a set of compounds in 

clinical trials have significantly different activity profiles depending on the strain they are tested on 55. 

As has been discussed above, it is a requisite of the TPP for Chagas disease that a future drug is active 

against a large set of different DTUs. Another key unanswered question is whether a compound must 

clear the infection totally, as the reference compound, benznidazole, does. Does total clearance of 
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infected cells, or parasites in animals or humans correlate with multistrain activity or, more 

importantly, with the clinical course of disease in the subsequent 20 years? Compounds that still meet 

an agreed upon pharmacological and biological properties are called lead compounds. Leads are at the 

end of the screening campaign, but are the starting points of yet another phase in the drug discovery 

and development called lead optimization. In this phase, compounds enter a cycle of further testing, 

commonly with in vivo testing of activity and toxicity, and are in parallel modified and optimized with 

medicinal chemistry to try to improve potency, selectivity, reduce toxicity and enhance 

pharmacokinetic parameters 35. The medicinal chemistry necessary for lead optimization is very costly 

and constitutes a bottleneck for many drug discovery efforts. Few in academia have the resources or 

access to the synthetic chemistry capacity necessary to produce the tens to hundreds of compounds 

usually required for lead optimization. Organizations such as DNDi and recently launched consortia-

based projects like the FP7  (Seventh Framework Program supported by the European Commission) 

KINDReD (Kinetoplastid Drug Development), NMTrypI (New Medicines for Trypanosomatidic 

Infections), PDE4NPD (Phosphodiasterase Inhibitors for Neglected Parasitic Disease) and A-

PARADISE (Anti-Parasitic Drug Discovery in Epigenetics) have attempted to address this issue by 

coordination or outsourcing. 

 The optimized lead compound is one which can be called a pre-clinical candidate and enter the 

pre-clinical phase. 

 

 

ANIMAL MODELS 

 

Animal models are used to extract the maximum possible information on drug efficacy and 

toxicity before testing the drug candidates in humans. Since the translation of data is of the utmost 

importance, several animal models have been studied to reproduce the physiopathology of Chagas 

disease. Models like mouse, rat, rabbit, dogs and non-human primates have been tried, but none of 

them completely mimics what happens in the human host 56. The rat has been used in the past, but early 

observations concluded that it is somewhat resistant to T. cruzi infection, developing a mild and slow 

pathology 57. Rabbits proved to be capable of developing some of the chronic alterations such as focal 

myocarditis with a fibrous nature, but did not show more severe forms of chronic myocarditis or severe 

histological lesions in digestive track and skeletal muscles found in typical infections 58. The Syrian 

hamster has also been proposed as an animal model for chronic Chagas cardiomyopathy. It was not 

able to display all the characteristics findings of human cases 59. Dogs, on the other hand, develop most 

of the clinical aspects of the disease found in humans, in particular the indeterminate form 
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characterized by a latent infection, without disease symptoms and with normal electrocardiograms; just 

a fraction of the animals develop chronic phase symptoms 60. However, this is a disadvantageous 

characteristic of the dog model when the larger amount of time and number of animals needed to 

obtain enough chronically infected dogs is considered in terms of the discovery process. Monkeys are 

phylogenetically the closest related species to be used to study Chagas disease. Similarly to other 

pathologies like Leishmaniasis and HIV, Chagas disease findings in these animals are easily 

extrapolated to the humans 60b, 61. 

 For the above reasons, the mouse has remained the preferred animal model. Mice are easy to 

handle, house and are cheaper. Additionally, mouse models resemble many immunological, 

pathological and physiological aspects of human Chagas disease. One of the commonly used strains in 

chemotherapy is Swiss mice, an outbred strain very sensitive to diverse T. cruzi genotypes 62. 

Regarding inbreed strains, Balb/C has also been extensively used and is considered one of the most 

susceptible to parasite infection in general 63. C3H are a mildly resistant mouse strain commonly used 

to obtain chronic-like infection in these animals 64. C57BL/6 are considered to be among the most 

resistant strains, although susceptibility can vary widely depending on the strain of trypanosome used 

65. This genetic background is frequently used to obtain chronically infected mice in attempts to 

reproduce the pathophysiology of the human disease. 

 The obtention of a valid model for chronic Chagas disease remains one of the biggest challenges 

in research. Current chronically infected mouse models develop an anti-inflammatory infiltrate and 

fibrosis in the heart, hallmarks of the disease in humans, but development of a model closely 

resembling human chronic Chagas cardiomyopathy with extensive fibrosis, segmental myocardial 

abnormalities and macroscopic ventricle dilatation after a period of absence of signs is still to report 59. 

According to current protocols, four strategies have been employed to try to mimic chronic Chagas 

disease in mice: (a) a combination of susceptible mice strain, pathogenic T. cruzi DTU, age of animals 

and inoculation route that guarantees the survival of the animals to the acute phase; (b) infection of 

mice with a lethal dose of T. cruzi followed by the treatment with a reference drug that assures animal 

survival, but not parasite clearance; (c) infection of resistant strains of mice with sub lethal inoculum of 

low pathogenic DTU; (d) infection of animals immunized by attenuated strains with a pathogenic DTU 

66. 

 There are also dozens of different T. cruzi strains that have been used in animal models of the 

disease. Each research group works with a limited set of biological specimens that may reflect the 

history of the lab. An illustrative example of this variability is the case of A/J and C3H/HePAS mice 

infected with the same clone of Sylvio X10/4. Distinct histopathological findings are reported, 
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suggesting a host genetic role in the manifestations and progress of the disease 67. This variability 

hinders the extrapolation of results to other animal models and ultimately, to humans. 

 Recent guidelines for in vivo testing of compounds in Chagas disease drug discovery have been 

elaborated. One protocol suggests three independent and consecutive in vivo evaluations of drug 

candidates: (1) testing for the effect of the compound on parasitemia reduction using Swiss female 

mice infected with Y strain, three doses of compound with the highest one set at the maximum 

tolerated dose, orally or intraperitonially, and after five days of infection for a duration of five 

consecutive days; (2) analysis of parasitological cure during the acute phase using Swiss female mice 

infected with Y strain, with the dose established in the previous stage; (3) cure the acute phase of 

parasitemia caused by Colombian strain, which is benznidazole resistant 68. Parasitemia is analyzed at 

5, 8 and 10 days post infection (dpi) for (1) and (2) and at 20, 25 and 30 dpi for (3). Mortality is 

evaluated for all the three phases at 30 days and PCR, after immunosuppression with 

cyclophosmamide, to detect “latent” parasites. This technique was employed because it was proved to 

be more sensitive and time-efficient than haemoculture. All the tests are done against a positive control 

of 100 mg benznidazole per kilogram of weight per day 68. 

 The effectiveness in the chronic and indeterminate stage comes further on the development 

process, and the lack of it does not invalidate the drug since, if the TPP is followed, it should be 

already an advance over existing therapies. 

 

BIOMARKERS 

 

Another obstacle in the drug discovery for Chagas has been the lack of reliable biomarkers of 

cure. Traditionally, the definitive test of cure relies on conventional serology methods that have the 

limitation that it can take many years for the seroconversion to take place. Also, the majority of 

currently used methods employ crude antigen preparations from parasite life-cycle stages not present in 

the mammalian host. Polymerase chain reaction is the standard method of cure in the current clinical 

trials and although useful, there is no proof of efficacy and it is only an indication of sterile cure for a 

given therapy 69. Newer tests using recombinant proteins or peptides may be an improvement, but 

results are often inconsistent 70. A recent a promising discovery in the field has been the identification 

of unusual fragments of human apolipoprotein A1 (APOA1) that are specifically present in chagasic 

patients and seem to disappear after treatment with nifurtimox 71. In mouse models, different 

methodologies to access parasitological cures were used after treatment with benznidazole and found 

out that even mice considered cured by hematological criteria still showed positive PCR tissues, either 

indicating a residual infection or residential parasite nucleic acid 72.  
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TARGET CANDIDATES IN THE PIPELINE 

 

ERGOSTEROL BIOSYNTHESIS INHIBITORS 

 Inhibitors of sterol 14 α-demethylase (CYP51) constitute a major fraction of all the drugs in the 

Chagas disease pipeline 11. This enzyme is involved in the de novo synthesis of sterols in T. cruzi. 

Sterols are membrane lipids present in eukaryotes and have essential functions such as control of 

membrane fluidity and permeability, signal transduction and modulation of membrane-bound enzyme 

activity 73. While in mammals the major sterol is cholesterol, in plants, fungi and protozoa the major 

sterol present is ergosterol. The difference consists of a second double bond at the B ring and a fully 

saturated side chain with a methyl group at C24 in cholesterol 74. CYP51 catalyzes a critical step of this 

biosynthetic pathway, removing the C14 methyl group from the sterol intermediate eburicol and 

originating 14α-demethyl-14dihydroeburicol 75. 

 Ergosterol biosynthesis inhibitors are among the most common drugs used to treat fungal 

infections, and after the validation of this pathway in T. cruzi, compounds that were originally 

developed as antifungals were tested against the parasite. While some of the early generations 

imidazoles (e.g. miconazole, ketoconazole) and triazole (e.g. itraconazole, fluconazole) sterol 

biosynthesis inhibitors have some attenuating effect on the infection, they failed in achieving 

parasitological cures 76.  However, as newer azoles to treat fungi infections are still an ongoing interest 

for pharmaceutical companies, latest generations drugs have also been tested for anti-T. cruzi activity. 

 One of the most promising molecules of the past decade was posaconazole (figure 2). This 

triazole originally marketed as Noxafil by Schering-Plough pharmaceutical and active against Candida 

spp. and Aspergilus spp. is one example of the previously described drug repurposing strategy. Early 

assays demonstrated its potent and specific in vitro activity against T. cruzi, especially against the 

amastigote stage. Moreover, the effect on murine acute and chronic models was curative, rather than 

suppressive, as some earlier tested antifungal compounds demonstrated 77. Later, posaconazole also 

proved to be an efficient trypanocidal against benznidazole and nifurtimox resistant strains, even in 

immunosuppressed mouse models, where the parasite would have a favorable environment to multiply 

78. A comparative study between posaconazole and benznidazole in a mouse model of Chagas disease 

showed both drugs led to 100% survival rates, suppression of parasitemia and negative T. cruzi 

antibodies. Only posaconazole-treated mice had completely negative haemocultures 54 dpi, whilst 50% 

of the benznidazole-treated had positive results. Also, plasma enzymatic assessment of cardiac lesion 
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was indistinguishable from uninfected control for posaconazole, but significantly higher for 

benznidazole 79. These promising results led to two clinical trials: one phase 2 trial sponsored by 

Hospital Universitari Vall d'Hebron Research Institute (ClinicalTrials.gov, ID: NCT00349271, 

CHAGASOL) that evaluated posaconazole and benznidazole for the treatment of Chagas disease 

chronic infection 80 and a phase 2 trial by Schering-Plough (now merged with Merck & Co.) for the 

treatment of asymptomatic Chagas disease, comparing a posaconazole with a placebo regimen and a 

combination of posaconazole with benznidazole (ClinicalTrials.gov, ID: NCT01377480, STOP 

CHAGAS) 81. When evaluating posaconazole in patients, it is noteworthy that a woman with chronic 

Chagas disease and systemic lupus erythematous requiring immunosuppression, was treated with 

posaconazole eliminating T. cruzi completely, whereas benznidazole treatment failed in this patient 82. 

Unfortunately, the first clinical trial of posaconazole in humans did not replicate the results reported for 

the first patient. The treatment, consisting of two doses delivered orally for 60 days, had initial marked 

antitrypanosomal activity in chronic Chagas disease affected patients, but follow-up at the end of 

treatment suggested reactivation of infection, as documented by PCR. All but one patient treated with 

benznidazole showed negative PCR. The second clinical trial has finished in January 2015 and the 

final results should be published soon thereafter. 

The activity of posaconazole is attributed in part to its pharmacokinetic characteristics, with a 

large volume of distribution and long terminal half-life, coupled with the fact that this lipophilic drug 

accumulates in cell membranes. This is expected to give high local concentrations of the drug to 

interact with the membrane-bound CYP51 target 83. A drawback is the difficult synthesis of 

posaconazole and the associated costs of about €8,000 per treatment, a value that clearly is 

incompatible with the economical impoverished majority of the population affected 82.  

Another ergosterol biosynthesis inhibitor in the recent pipeline was E1224 from Eisai Co. E1224 

is the monolysine salt of ravuconazole, thus a pro-drug of an antifungal with a short half-life. In this 

trial, which began in Bolivia in July 2011 as a partnership of DNDi and Eisai, adults with chronic 

“intermediate” Chagas disease were given placebo, E1124 or benznidazole (ClinicalTrials.gov, ID: 

NCT01489228). A series of examinations were then carried out in the following months in order to 

evaluate parasitological cures 84. According to DNDi, the drug failed to maintain sustained efficacy 1 

year after the end of treatment. The advantage of E1224, was that the structure of this compound was 

simpler and synthesis should be less expensive.  

 A third ergosterol biosynthesis inhibitor in clinical trials is Tak-187, a triazole synthetized in the 

1990’s and the property of Japanese Takeda Chemical Industries. There was 100% survival in the acute 

model of Chagas disease in mice treated with Tak-187 as well as a very high parasitological cure 

(80%). In the chronic model, not all mice survived, but those that did there was 100% parasitological 
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cures even with benznidazole and nifurtimox resistant T. cruzi strains 85. Subsequent studies confirmed 

that the drug could produce reductions of parasitemia similar to benznidazole, but at 10 times less 

dosage. Furthermore, it was superior to benznidazole in reducing inflammatory infiltrates and tissue 

damage in the heart and skeletal muscle of infected mice. The superior efficacy was attributable to 

higher intrinsic activity and long terminal half-life 86. Tak-187 has completed phase I trials 11.  

 The fungicide fenarimol, another inhibitor of CYP51, has been found to affect T. cruzi growth. 

After synthesis of analogues, the most promising compounds were tested in vivo in a Swiss mouse 

model with three dosing regimen. One analogue was effective in the 20 days regimen, reducing 

parasitemia to negligible levels that only reactivated after three cycles of immunosuppression 87. 

 While remaining controversial as to long term clinical effects, the failure of repurposed 

antifungals in Chagas disease clinical trials has focused attention to drug leads targeting the T. cruzi 

CYP51 (TcCYP51) itself 88. TcCYP51 is one of the most studied enzymes of T. cruzi as represented by 

crystallographic data for 18 structures of the protein with 16 different ligands in the protein databank 

(ww.rcsb.org). Three structural features make this protein particularly interesting for a rational drug 

design approach: (i) high structure rigidity, particularly in its substrate binding cavity; (ii) a substrate 

access channel in both ligand-free and bound structures that remains open and well defined; (iii) a 

substrate binding cavity that extends deeper inside the molecule than in other CYP structures 89. Figure 

3 depicts the key structural regions of TcCYP51: the active site residues within the BC-region that 

close the active site and isolate the substrate from solvent; the substrate tunnel through which substrate 

and ligands enter the active site; and the deeper substrate regions occupied by smaller ligands such as 

VNF and LFT (figure 4A-B) 90. Some novel compounds designed to target TcCYP51 possess a 

nitrogen atom as a warhead, included in an azole or pyridine heterocycle, that are able to form a 

coordination bond with the CYP51 catalytic heme iron and are represented in figure 4A-C. These 

compounds are simple and easy to synthetize and demonstrated strong inhibitory potential of 

intracellular amastigote growth of T. cruzi 90a, 91. VNI, in particular, was able to cure infected mice, has 

oral bioavailability and low toxicity, making it an excellent drug candidate 91a. 

 Other enzymes of the ergosterol biosynthesis pathway may be targeted as potential drug targets 

for Chagas disease, including squalene synthase. This enzyme is responsible for the first step of 

ergosterol biosynthesis and was suggested as target in the parasites Leishmania mexicana and T. cruzi 

92. The effective and potent squalene synthase inhibitor 4-phenoxyphenoxyethyl thiocyanate effective 

against epimastigote proliferation producing an accumulation of mevalonate pathway intermediates is 

an example of compound targeting this enzyme 93. E5700, a drug from the Esai Company in 

development as human cholesterol lowering agent, is efficacious against T. cruzi 94. Amiodarone also 

inhibits ergosterol biosynthesis and is currently in clinical trials (as well as dronedarone) against the 
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chronic phase of the disease 11. This antiarrhythmic drug is used in the treatment of cardiac failure in 

chronic chagasic patients and has been found to act on a synergistic manner with azoles in disrupting 

T. cruzi biology. Amiodarone interferes with the calcium hemostasis but also inhibits ergosterol 

biosynthesis, while posaconazole or itraconazole also affects calcium hemostasis, suggesting a viable 

and advantageous drug combination 95. Allylamine terbinafine, a squalene epoxidase inhibitor, and 

mevinolin inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are antiproliferative against T. 

cruzi and both have been shown to be synergistic with ketoconazole against cultures of the parasite 96, 

suggesting they could be used in the treatment of human Chagas disease 97. 

 

CRUZIPAIN INHIBITORS 

 K-777, a vinyl sulfone cysteine protease inhibitor was originally synthesized at Khepri 

Pharmaceuticals as an anti-inflamatory lead. It is an irreversible inhibitor of cruzipain, also known as 

cruzain or gp51/57. Cruzipain is a cathepsin L-like cysteine protease responsible for the majority of 

proteolytic activity in all the stages of T. cruzi. It may be essential for metabolism, metacyclogenesis, 

immune evasion, and invasion of host cells. 98 It has been suggested not only as a drug target but also 

as a vaccine target. 

Early experiments with mouse models of Chagas disease showed that cysteine protease inhibitors 

were able to rescue mouse from lethal infection, displaying repetitive negative haemocultures and so 

indicating parasitological cure 99. K-777 was able to rescue mice from an acute and lethal T. cruzi 

infection even with a non-functional immune system, as seen in immunocompromised patients (e.g. 

HIV/AIDS) or immunosuppressed individuals (e.g. transplantation patients) 100. K-777 also abrogated 

myocardial damage in beagle dogs treated orally for seven days 101. 

 Several other classes of inhibitors of cruzipain have been reported as potential drug leads, 

including selenosemicarbazones 102, amidines bearing benzofuroxan or benzimidazole 103, and others 

scaffolds 104. Effective nitrile inhibitors of cruzipain have also been identified and serve to chemically 

validate this target 105. 

A variety of approaches has been considered to rationally design inhibitors for cruzipain. Most of 

the compounds synthesized were originally designed to target the catalytic cysteine (Cys) of the 

enzyme in order to obtain irreversible inhibitors. The protein databank reports 24 crystallographic 

structures of cruzipain in complexes with inhibitors. They show that cruzipain is composed of one 

polypeptide chain folded into two domains: one mainly α-helix and the other with an extended 

antiparallel β-sheet. The catalytic triad is composted by Cysteine25, Histidine162 and Asparagine182 

and together with the extended substrate-binding site, they are found in the cleft between the two 

domains 106. Within the substrate binding site, different regions (S1’, S1, S2 and S3), each devoted to 
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the interaction with and binding of a residues of the peptidic substrate, have been recognized (figure 5) 

107. Region S2 in particular residue Glutamine208 at its bottom is the key determinant for substrate 

specificity. These residues adopt a substrate-directed conformation in case that the S2 site is occupied 

by a basic or uncharged hydrogen bonding residues (such as Arginine and Tyrosine, respectively) 

whereas it assumes a solvent-directed conformation when an hydrophobic residue (such as 

Phenylalanine) is present 108. Examples scaffolds designed to inhibit cruzipain are acylhydrazones, 

thiosemicarbazones and methoxyphenyl ketone derivatives. The discovery of acylhydrazone 

compounds as antiparasitic Cys protease inhibitors originated from an high throughput screening 

against brucipain, the major Cys protease of T. brucei 109. Optimized scaffolds of this class of 

compounds have since been synthesized and also showed to inhibit cruzipain (figure 4-D)110. 

Interestingly, acylhydrazones share some similarity with chalchones, in which the unsaturated 

arylketone subunit can act as a Michael acceptor (figure 6). Chalchones possess anti T. cruzi activity, 

but few studies are associated with cruzipain inhibitory activity 111. 

After the initial discovery of a peptide vinyl sulfone as an irreversible (Michael acceptor) 

cruzipain inhibitor able to cure parasitic infections in animal models, but with low oral bioavailability 

owing to its peptidic nature, an optimized compound derived from a methoxyphenyl ketone scaffold 

and with desirable physicochemical properties has been reported (figure 4-E). It’s mechanism of 

action, supported by the crystal structure of the complex, is depicted in figure 7 112. 

Thiosemicarbazones are another class of covalent inhibitors originated from a screening of 

compounds able to inhibit cruzipain. Thiosemicarbazones inhibit Cys proteases through the formation 

of a reversible tetrahedral adduct by attack of the Cys thiolate to the carbon of the thiocarbonyl group 

113(figure 4-F). However, several members of this class of compounds, inactive on the enzyme, were 

shown to be active on T. cruzi parasites 114, suggesting that cruzipain could not be the main target for at 

least some of these compounds. This class of compounds was further modified according to the 

strategy represented in figure 8 115 and led to compounds that could act in a way that differs from a 

simple cruzipain inhibition. Compound G from figure 4 inhibits cruzipain whereas its derivatives, as 

exemplified by compound in figure 4-H , did not, but exhibited strong antiparasitic activity. 

 

PURINE SALVAGE INHIBITORS 

 Allopurinol is an analogue of hypoxanthine that is used to treat gout, a condition characterized by 

deposits of uric acid in bone joints. The mechanism of action for this drug involves the inhibition of 

xanthine oxidase, an enzyme responsible for the consecutive conversion of hypoxanthine to xanthine 

and xanthine to uric acid. T. cruzi is not able to perform de novo synthesis of purines and needs to 

acquire them from the host. Since the microorganism does not possess xanthine oxidase, allopurinol is 
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incorrectly sensed as a purine substrate and is directly incorporated in the parasite DNA by 

hypoxanthine-guanine phosphorybosyltransferase, disrupting DNA-related processes. Previous assays 

showed the potential of the drug in arresting infection in cultured tissues 116, and a later study with 

other purine and pyrimidine analogues confirmed this activity 117. In an animal model, allopurinol was 

able to reduce parasite blood levels, but with mild cardiac inflammatory infiltrates at the heart. 

Altogether, the results demonstrated the drug modified the evolution of the infection and prevented the 

acute phase from evolving into chronic cardiac disease 118. A comparative study between itraconazole 

and allopurinol in preventing chronic Chagas disease in Chile showed similar results in preventing 

cardiomyopathy, but itraconazole was preferred due to the fewer adverse effects 119. A combination of 

allopurinol with clomipramine to treat Chagas disease in an acute mouse model was found to be no 

better than the use of clomipramine alone 120. Although there has been an interest in the label extension 

of this drug, early clinical evidence have discouraged the development of allopurinol as a drug to treat 

Chagas 121. There is an interest in exploiting this pathway for Chagas chemotherapy, but to our 

knowledge no other compounds have been recently tested in vivo 122. Several 4'-substituted and 3',4'-

disubstituted 5-benzyl-2,4-diaminopyrimidines are selective inhibitors of T. cruzi dihydrofolate 

reductase and showed good in vitro activity against the parasite 123. 

 

INHIBITORS OF PYROPHOSPHATE METABOLISM 

 Another pathway that has gained attention is the one responsible for pyrophosphate metabolism. 

This process does not take place in the cytosol but rather at acidocalcisomes, parasite-specific 

organelles that are also involved in calcium hemostasis, response to cell stress, osmoregulation, and 

energy transduction 124. It has been demonstrated that bisphosphonates, drugs currently used to treat 

osteoporosis, accumulate in the acidocalcisomes and can inhibit a key enzyme of pyrophosphate 

metabolism – farnesyl pyrophosphate synthase 125. 

 The first report of this activity in animal models demonstrated that risedronate could reduce 

parasitemia with reductions in mortality, but no complete parasitological cures were achieved 126. In 

another study, a significant reduction in mortality was observed when CD-1 mice were treated with 

risedronate, but myocardial pathology and ventricular dilatation was unchanged in comparison with 

control. On the other hand, Tulahuen strain infected C57BL/6 mice had no improvement in mortality 

127. 

 More recently, metal complexes of the bioactive, bisphosphonates alendronate 128 pamidronate 128 

and risendronate 129 were synthetized and showed activity against amastigotes, with no toxicity for the 

mammalian host cells tested.  These complexes are thought to protect phosphonate groups from 

ionization at physiological pH, increasing bioavailability to target the parasitic farnesyl diphosphate 
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synthase 128. Newly synthesized bisphosphonates also proved to be potent inhibitors of T. cruzi farnesyl 

diphosphate synthase 130. 

 

TRYPANOTHIONE BIOSYNTHESIS INHIBITORS 

 Instead of the glutathione and glutathione reductase, trypanosomatids produce trypanothione and 

trypanothione reductase for thiol-dependent redox metabolism. This is essential in detoxification of 

free radicals and maintenance of the intracellular reducing environment. As this parasite-specific 

system does not exist in the humans, it is considered a potential target 131. Recently, a study validated 

the trypanothione pathway as drug target with a metabolic modeling approach, suggesting that all the 

constituent enzymes and transporters present are essential for proper pathway function, but not all of 

them have therapeutic potential 132. Many inhibitors have been found for this enzyme, inlcuding 

polyamine derivatives, crystal violet, acridine-based tricyclics, phenothiazine, benzoazepine, 

isoalloxazine, pyridoquinoline and many more have been synthetized 133. In vivo testing of a 

trypanothione reductase inhibitor, thioridazina, promoted heart protection but failed to completely 

eradicate the parasite 134. 

 

LIPID BIOSYNTHESIS INHIBITORS 

Alkyllysophospholipids and lysophospholipid analogues, such as miltefosine and edelfosine have 

been shown to be active against proliferation and differentiation of T. cruzi, in vitro and in vivo with 

good oral activity and low toxicity 135. 

Surprisingly little is known about the role of glycosphingolipids in trypanosomatids, however, 

various glycosphingolipids inhibitors have shown antiproliferative activity lysing 79 to 95.5% of 

parasite in an in vitro assay and showed cytostatic activity in mouse model 136. 

Although T. cruzi glycophosphatidylinositol GPI anchors share the same conserved core as other 

eukaryotes, many often contain a fourth mannose on which resides a galactofuranosyl (Galf) linked to 

the O-3 and an obligatory 2-aminoethylphosphonate (2AEP), also known as ciliatine, linked to O-6 of 

the glucosamine of all T. cruzi GIPLs and GPI-anchored mucins 137. 

Enzymes common to the biosynthesis of the T. cruzi GPI have been shown to have sensitivities to 

various inhibitors in different organisms 138. A recent work identified the orthologous sequences of all 

genes involved in the biosynthesis of the T. cruzi GPI and three sequences showed they acted to 

complement yeast conditional mutants of genes of this pathway. Unsuccessful attempts to generate T. 

cruzi knockouts for three of these genes further suggested that the GPI is an essential component of the 

organism 139. 
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Although the role of 2AEP in T. cruzi has not yet been identified, it has been shown to be a 

virulence factor in human pathogenic organisms such as Bacteroides fragilis 140. The absence of the 

2AEP biosynthetic enzymes (phosphoenolpyruvate mutase, phosphoenolpyruvate decarboxylase & 2- 

aminoethylphosphonate transaminase) in humans make the pathway an excellent candidate for drug 

targeting. Recent investigations by Coron and Smith (unpublished) have genetically validated the AEP 

biosynthetic pathway and identified compounds with potent in vitro activity against the recombinant 

enzymes of the AEP pathway as well as epimastigotes. 

 

CONCLUDING REMARKS 

 

 Since the discovery of the etiological agent of Chagas disease more than 100 years ago, a cure 

has been pursued. It took 50 years to discover a specific drug to treat this neglected disease. However, 

apart from the discovery and development of benznidazole some years later, no improvements in 

chemotherapy have been made compared to these highly toxic compounds despite a half century of 

intense research.  Nevertheless, there are reasons to be optimistic. The global nature of the disease and 

the information about the pathology, has brought new researchers to the field. Novel basic and applied 

research is constantly feeding our knowledge of the disease. New partnerships, including with 

pharmaceutical companies, are accelerating efforts traditionally made solely by academia. Clinical 

trials for some candidates have been recently completed, some are under way and a few more are 

planned to begin shortly. But we should not ignore the still long way and challenges to find a better 

treatment for Chagas: resources and funding are scarce, and there is a critical need to define beneficial 

intellectual property agreements and improve data sharing. 
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Figure 1. Current drugs for Chagas disease: (A) benznidazole and (B) nifurtimox.  
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Figure 2. Drugs on the pipeline for Chagas disease: (A) posaconazole, (B) E-1224, (C) Tak-187, (D) 

amiodarone, (E) K-777. 
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Figure 3: TcCYP51 crystallographic structure (PDB ID: 3KSW). The protein is represented as a gray 

ribbon, the BC-region that close the active site and includes residues important of the catalytic activity 

is colored in red, residues surrounding the entrance of the substrate channel are colored in blue. Inside 

the enzyme, the heme group is colored in green with atoms represented as sphere; the binding cavity is 

occupied by ligands (POZ (PDB ID: 3K1O) and VNF (PDB ID: 3KSW)), whose atoms are represented 

by sphere and colored as follow: purples the moieties that occupy the substrate channel; orange the 

moieties that occupy the deeper binding region; cyan the moieties involved in the interaction with the 

heme group. 
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Figure 4 – Molecular structure of scaffolds currently being in study for Chagas Disease. 
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Figure 5. Crystallographic structure of cruzipain in complex with a non-peptidic vinylsulfone 

derivative (PDB-ID: 3HD3). The protein is represented as a surface colored in gray, specific sites are 

colored as follow: S1’ in cyan, S1 in purple, S2 in yellow, S3 in green. The ligand in represented in 

stick, colored by-atom as follow: C in black, O in red, N in blue, S in yellow. 
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Figure 7: mechanism of inactivation of cruzipain by a tetrafluorophenoxymethyl ketone derivative. 
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Figure 8: mechanism of inactivation of Cys proteases by thiosemicarbazones 
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Figure 9: design of hydrazones as anti T. cruzi parasites. 

 

 

  

 


