204 research outputs found

    A Review of Smart Materials in Tactile Actuators for Information Delivery

    Full text link
    As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery

    Dual sensing-actuation artificial muscle based on polypyrrole-carbon nanotube composite

    Get PDF
    Dual sensing artificial muscles based on conducting polymer are faradaic motors driven by electrochemical reactions, which announce the development of proprioceptive devices. The applicability of different composites has been investigated with the aim to improve the performance. Addition of carbon nanotubes may reduce irreversible reactions. We present the testing of a dual sensing artificial muscle based on a conducting polymer and carbon nanotubes composite. Large bending motions (up to 127 degrees) in aqueous solution and simultaneously sensing abilities of the operation conditions are recorded. The sensing and actuation equations are derived for incorporation into a control system.The research was supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 641822

    A Review of Cooperative Actuator and Sensor Systems Based on Dielectric Elastomer Transducers

    Get PDF
    This paper presents an overview of cooperative actuator and sensor systems based on dielectric elastomer (DE) transducers. A DE consists of a flexible capacitor made of a thin layer of soft dielectric material (e.g., acrylic, silicone) surrounded with a compliant electrode, which is able to work as an actuator or as a sensor. Features such as large deformation, high compliance, flexibility, energy efficiency, lightweight, self-sensing, and low cost make DE technology particularly attractive for the realization of mechatronic systems that are capable of performance not achievable with alternative technologies. If several DEs are arranged in an array-like configuration, new concepts of cooperative actuator/sensor systems can be enabled, in which novel applications and features are made possible by the synergistic operations among nearby elements. The goal of this paper is to review recent advances in the area of cooperative DE systems technology. After summarizing the basic operating principle of DE transducers, several applications of cooperative DE actuators and sensors from the recent literature are discussed, ranging from haptic interfaces and bio-inspired robots to micro-scale devices and tactile sensors. Finally, challenges and perspectives for the future development of cooperative DE systems are discussed

    Analysis of Product Architectures of Pin Array Technologies for Tactile Displays

    Get PDF
    Refreshable tactile displays based on pin array technologies have a significant impact on the education of children with visual impairments, but they are prohibitively expensive. To better understand their design and the reason for the high cost, we created a database and analyzed the product architectures of 67 unique pin array technologies from literature and patents. We qualitatively coded their functional elements and analyzed the physical parts that execute the functions. Our findings highlight that pin array surfaces aim to achieve three key functions, i.e., raise and lower pins, lock pins, and create a large array. We also contribute a concise morphological chart that organises the various mechanisms for these three functions. Based on this, we discuss the reasons for the high cost and complexity of these surface haptic technologies and infer why larger displays and more affordable devices are not available. Our findings can be used to design new mechanisms for more affordable and scalable pin array display systems

    Perspectives on the Evolution of Tactile, Haptic, and Thermal Displays

    Get PDF

    Development of a Tactile Thimble for Augmented and Virtual Reality Applications

    Get PDF
    The technologies that have gained a renewed interest during the recent years are Virtual Reality (VR) and Augmented Reality (AR), as they become more accessible and affordable for mass-production. The input device which allows us to interact with the virtual environment is a very crucial aspect. One of the main barriers to immerse ourselves in virtual reality is the lack of realistic feedback. The user has to almost rely entirely on visual feedback without any haptic feedback, and this increases the user's workload and decreases the performance. In this thesis, a functional demonstrator of a tactile feedback device which conveys compelling interactions with not just VR, but also AR is presented. The device is designed such that there is realistic feedback for virtual touches and least obstruction during contact of a real object in AR applications. New design principle of introducing small actuators allows the device to be compact and increases its portability. In contrast to actuators that are placed on the finger pad in most of the available input devices for VR, a tactile device with two actuators that are arranged laterally on the finger, so that the underside of the fingertip is free is proposed. The output from these actuators generate a tactile stimulus by stimulating a sense of touch, which helps the user to manipulate virtual objects. The actuators are designed to independently generate vibrations and this coupled tactile feedback enhances the stimulation resulting in a wide variety of stimulation patterns for the sense of touch. Preliminary experimental evaluation for design and location of actuators has been carried out to measure the vibration intensity. In addition, user experiments for design evaluation of the two actuators based on different vibration patterns have also been conducted

    The role of printed electronics and related technologies in the development of smart connected products

    Get PDF
    The emergence of novel materials with flexible and stretchable characteristics, and the use of new processing technologies, have allowed for the development of new connected devices and applications. Using printed electronics, traditional electronic elements are being combined with flexible components and allowing for the development of new smart connected products. As a result, devices that are capable of sensing, actuating, and communicating remotely while being low-cost, lightweight, conformable, and easily customizable are already being developed. Combined with the expansion of the Internet of Things, artificial intelligence, and encryption algorithms, the overall attractiveness of these technologies has prompted new applications to appear in almost every sector. The exponential technological development is currently allowing for the ‘smartification’ of cities, manufacturing, healthcare, agriculture, logistics, among others. In this review article, the steps towards this transition are approached, starting from the conceptualization of smart connected products and their main markets. The manufacturing technologies are then presented, with focus on printing-based ones, compatible with organic materials. Finally, each one of the printable components is presented and some applications are discussed.This work has been supported by NORTE-06-3559- FSE-000018, integrated in the invitation NORTE59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF), and by the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, financed by FCT—Fundação para a Ciência e Tecnologia, Portugal

    New generation of interactive platforms based on novel printed smart materials

    Get PDF
    Programa doutoral em Engenharia Eletrónica e de Computadores (área de Instrumentação e Microssistemas Eletrónicos)The last decade was marked by the computer-paradigm changing with other digital devices suddenly becoming available to the general public, such as tablets and smartphones. A shift in perspective from computer to materials as the centerpiece of digital interaction is leading to a diversification of interaction contexts, objects and applications, recurring to intuitive commands and dynamic content that can proportionate more interesting and satisfying experiences. In parallel, polymer-based sensors and actuators, and their integration in different substrates or devices is an area of increasing scientific and technological interest, which current state of the art starts to permit the use of smart sensors and actuators embodied within the objects seamlessly. Electronics is no longer a rigid board with plenty of chips. New technological advances and perspectives now turned into printed electronics in polymers, textiles or paper. We are assisting to the actual scaling down of computational power into everyday use objects, a fusion of the computer with the material. Interactivity is being transposed to objects erstwhile inanimate. In this work, strain and deformation sensors and actuators were developed recurring to functional polymer composites with metallic and carbonaceous nanoparticles (NPs) inks, leading to capacitive, piezoresistive and piezoelectric effects, envisioning the creation of tangible user interfaces (TUIs). Based on smart polymer substrates such as polyvinylidene fluoride (PVDF) or polyethylene terephthalate (PET), among others, prototypes were prepared using piezoelectric and dielectric technologies. Piezoresistive prototypes were prepared with resistive inks and restive functional polymers. Materials were printed by screen printing, inkjet printing and doctor blade coating. Finally, a case study of the integration of the different materials and technologies developed is presented in a book-form factor.A última década foi marcada por uma alteração do paradigma de computador pelo súbito aparecimento dos tablets e smartphones para o público geral. A alteração de perspetiva do computador para os materiais como parte central de interação digital levou a uma diversificação dos contextos de interação, objetos e aplicações, recorrendo a comandos intuitivos e conteúdos dinâmicos capazes de tornarem a experiência mais interessante e satisfatória. Em simultâneo, sensores e atuadores de base polimérica, e a sua integração em diferentes substratos ou dispositivos é uma área de crescente interesse científico e tecnológico, e o atual estado da arte começa a permitir o uso de sensores e atuadores inteligentes perfeitamente integrados nos objetos. Eletrónica já não é sinónimo de placas rígidas cheias de componentes. Novas perspetivas e avanços tecnológicos transformaram-se em eletrónica impressa em polímeros, têxteis ou papel. Neste momento estamos a assistir à redução da computação a objetos do dia a dia, uma fusão do computador com a matéria. A interatividade está a ser transposta para objetos outrora inanimados. Neste trabalho foram desenvolvidos atuadores e sensores e de pressão e de deformação com recurso a compostos poliméricos funcionais com tintas com nanopartículas (NPs) metálicas ou de base carbónica, recorrendo aos efeitos capacitivo, piezoresistivo e piezoelétrico, com vista à criação de interfaces de usuário tangíveis (TUIs). Usando substratos poliméricos inteligentes tais como fluoreto de polivinilideno (PVDF) ou politereftalato de etileno (PET), entre outos, foi possível a preparação de protótipos de tecnologia piezoelétrica ou dielétrica. Os protótipos de tecnologia piezoresistiva foram feitos com tintas resistivas e polímeros funcionais resistivos. Os materiais foram impressos por serigrafia, jato de tinta, impressão por aerossol e revestimento de lâmina doctor blade. Para terminar, é apresentado um caso de estudo da integração dos diferentes materiais e tecnologias desenvolvidos sob o formato de um livro.This project was supported by FCT – Fundação para a Ciência e a Tecnologia, within the doctorate grant with reference SFRH/BD/110622/2015, by POCH – Programa Operacional Capital Humano, and by EU – European Union

    Electroactive polymers for sensing.

    Get PDF
    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer-metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units.This is the final version of the article. It first appeared from The Royal Society Publishing via https://doi.org/10.1098/rsfs.2016.002
    corecore