2 research outputs found

    three different approaches for localization in a corridor environment by means of an ultrasonic wide beam

    Get PDF
    In this paper the authors present three methods to detect the position and orientation of an observer, such as a mobile robot, with respect to a corridor wall. They use an inexpensive sensor to spread a wide ultrasonic beam. The sensor is rotated by means of an accurate servomotor in order to propagate ultrasonic waves towards a regular wall. Whatever the wall material may be the scanning surface appears to be an acoustic reflector as a consequence of low air impedance. The realized device is able to give distance information in each motor position and thus permits the derivation of a set of points as a ray trace-scanner. The dataset contains points lying on a circular arc and relating to strong returns. Three different approaches are herein considered to estimate both the slope of the wall and its minimum distance from the sensor. Slope and perpendicular distance are the parameters of a target plane, which may be calculated in each observer's position to predict its new location. Experimental tests and simulations are shown and discussed by scanning from different stationary locations. They allow the appreciation of the effectiveness of the proposed approaches

    Novel Sonar Salient Feature Structure for Extended Kalman Filter-Based Simultaneous Localization and Mapping of Mobile Robots

    No full text
    Not all line or point features capable of being extracted by sonar sensors from a cluttered home environment are useful for simultaneous localization and mapping ( SLAM) of a mobile robot. This is due to unfavorable conditions such as environmental ambiguity and sonar measurement uncertainty. We present a novel sonar feature structure suitable for a cluttered environment and the extended Kalman filter (EKF)-based SLAM scheme. The key concept is to extract circle feature clouds on salient convex objects by sonar data association called convex saliency circling. The centroid of each circle cloud, called a sonar salient feature, is used as a natural landmark for EKF-based SLAM. By investigating the environmental inherent feature locality, cylindrical objects are augmented conveniently at the weak SLAM-able area as a natural supplementary saliency to achieve consistent SLAM performance. Experimental results demonstrate the validity and robustness of the proposed sonar salient feature structure for EKF-based SLAM. (C) Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2012X1199sciescopu
    corecore