1,673 research outputs found

    A self-learning particle swarm optimizer for global optimization problems

    Get PDF
    Copyright @ 2011 IEEE. All Rights Reserved. This article was made available through the Brunel Open Access Publishing Fund.Particle swarm optimization (PSO) has been shown as an effective tool for solving global optimization problems. So far, most PSO algorithms use a single learning pattern for all particles, which means that all particles in a swarm use the same strategy. This monotonic learning pattern may cause the lack of intelligence for a particular particle, which makes it unable to deal with different complex situations. This paper presents a novel algorithm, called self-learning particle swarm optimizer (SLPSO), for global optimization problems. In SLPSO, each particle has a set of four strategies to cope with different situations in the search space. The cooperation of the four strategies is implemented by an adaptive learning framework at the individual level, which can enable a particle to choose the optimal strategy according to its own local fitness landscape. The experimental study on a set of 45 test functions and two real-world problems show that SLPSO has a superior performance in comparison with several other peer algorithms.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grants EP/E060722/1 and EP/E060722/2

    An adaptive learning particle swarm optimizer for function optimization

    Get PDF
    This article is posted here with permission of the IEEE - Copyright @ 2009 IEEETraditional particle swarm optimization (PSO) suffers from the premature convergence problem, which usually results in PSO being trapped in local optima. This paper presents an adaptive learning PSO (ALPSO) based on a variant PSO learning strategy. In ALPSO, the learning mechanism of each particle is separated into three parts: its own historical best position, the closest neighbor and the global best one. By using this individual level adaptive technique, a particle can well guide its behavior of exploration and exploitation. A set of 21 test functions were used including un-rotated, rotated and composition functions to test the performance of ALPSO. From the comparison results over several variant PSO algorithms, ALPSO shows an outstanding performance on most test functions, especially the fast convergence characteristic.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1

    Adaptive learning particle swarm optimizer-II for global optimization

    Get PDF
    Copyright @ 2010 IEEE.This paper presents an updated version of the adaptive learning particle swarm optimizer (ALPSO), we call it ALPSO-II. In order to improve the performance of ALPSO on multi-modal problems, we introduce several new major features in ALPSO-II: (i) Adding particle's status monitoring mechanism, (ii) controlling the number of particles that learn from the global best position, and (iii) updating two of the four learning operators used in ALPSO. To test the performance of ALPSO-II, we choose a set of 27 test problems, including un-rotated, shifted, rotated, rotated shifted, and composition functions in comparison of the ALPSO algorithm as well as several state-of-the-art variant PSO algorithms. The experimental results show that ALPSO-II has a great improvement of the ALPSO algorithm, it also outperforms the other peer algorithms on most test problems in terms of both the convergence speed and solution accuracy.This work was sponsored by the Engineering and Physical Sciences research Council (EPSRC) of UK under grant number EP/E060722/1

    A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems

    Get PDF
    Copyright @ 2011 Taylor & Francis.Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant no. 70931001, the Funds for Creative Research Groups of China under Grant no. 71021061, the National Natural Science Foundation (NNSF) of China under Grant 71001018, Grant no. 61004121 and Grant no. 70801012 and the Fundamental Research Funds for the Central Universities Grant no. N090404020, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant no. EP/E060722/01 and Grant EP/E060722/02, and the Hong Kong Polytechnic University under Grant G-YH60

    Chaotic Quantum Double Delta Swarm Algorithm using Chebyshev Maps: Theoretical Foundations, Performance Analyses and Convergence Issues

    Full text link
    Quantum Double Delta Swarm (QDDS) Algorithm is a new metaheuristic algorithm inspired by the convergence mechanism to the center of potential generated within a single well of a spatially co-located double-delta well setup. It mimics the wave nature of candidate positions in solution spaces and draws upon quantum mechanical interpretations much like other quantum-inspired computational intelligence paradigms. In this work, we introduce a Chebyshev map driven chaotic perturbation in the optimization phase of the algorithm to diversify weights placed on contemporary and historical, socially-optimal agents' solutions. We follow this up with a characterization of solution quality on a suite of 23 single-objective functions and carry out a comparative analysis with eight other related nature-inspired approaches. By comparing solution quality and successful runs over dynamic solution ranges, insights about the nature of convergence are obtained. A two-tailed t-test establishes the statistical significance of the solution data whereas Cohen's d and Hedge's g values provide a measure of effect sizes. We trace the trajectory of the fittest pseudo-agent over all function evaluations to comment on the dynamics of the system and prove that the proposed algorithm is theoretically globally convergent under the assumptions adopted for proofs of other closely-related random search algorithms.Comment: 27 pages, 4 figures, 19 table

    Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima

    Get PDF
    Copyright @ Elsevier Inc. All rights reserved.Multimodal optimization problems pose a great challenge of locating multiple optima simultaneously in the search space to the particle swarm optimization (PSO) community. In this paper, the motion principle of particles in PSO is extended by using the near-neighbor effect in mechanical theory, which is a universal phenomenon in nature and society. In the proposed near-neighbor effect based force-imitated PSO (NN-FPSO) algorithm, each particle explores the promising regions where it resides under the composite forces produced by the “near-neighbor attractor” and “near-neighbor repeller”, which are selected from the set of memorized personal best positions and the current swarm based on the principles of “superior-and-nearer” and “inferior-and-nearer”, respectively. These two forces pull and push a particle to search for the nearby optimum. Hence, particles can simultaneously locate multiple optima quickly and precisely. Experiments are carried out to investigate the performance of NN-FPSO in comparison with a number of state-of-the-art PSO algorithms for locating multiple optima over a series of multimodal benchmark test functions. The experimental results indicate that the proposed NN-FPSO algorithm can efficiently locate multiple optima in multimodal fitness landscapes.This work was supported in part by the Key Program of National Natural Science Foundation (NNSF) of China under Grant 70931001, Grant 70771021, and Grant 70721001, the National Natural Science Foundation (NNSF) of China for Youth under Grant 61004121, Grant 70771021, the Science Fund for Creative Research Group of NNSF of China under Grant 60821063, the PhD Programs Foundation of Ministry of Education of China under Grant 200801450008, and in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO
    corecore