8 research outputs found

    Validation of foot pitch angle estimation using inertial measurement unit against marker-based optical 3D motion capture system

    Get PDF
    Gait analysis is relevant to a broad range of clinical applications in areas of orthopedics, neurosurgery, rehabilitation and the sports medicine. There are various methods available for capturing and analyzing the gait cycle. Most of gait analysis methods are computationally expensive and difficult to implement outside the laboratory environment. Inertial measurement units, IMUs are considered a promising alternative for the future of gait analysis. This study reports the results of a systematic validation procedure to validate the foot pitch angle measurement captured by an IMU against Vicon Optical Motion Capture System, considered the standard method of gait analysis. It represents the first phase of a research project which aims to objectively evaluate the ankle function and gait patterns of patients with dorsiflexion weakness (commonly called a “drop foot”) due to a L5 lumbar radiculopathy pre- and post-lumbar decompression surgery. The foot pitch angle of 381 gait cycles from 19 subjects walking trails on a flat surface have been recorded throughout the course of this study. Comparison of results indicates a mean correlation of 99.542% with a standard deviation of 0.834%. The maximum root mean square error of the foot pitch angle measured by the IMU compared with the Vicon Optical Motion Capture System was 3.738° and the maximum error in the same walking trail between two measurements was 9.927°. These results indicate the level of correlation between the two systems

    Measuring highly accurate foot position and angle trajectories with foot-mounted IMUs in clinical practice

    Get PDF
    Background: Gait analysis using foot-mounted IMUs is a promising method to acquire gait parameters outside of laboratory settings and in everyday clinical practice. However, the need for precise sensor attachment or calibration, the requirement of environments with a homogeneous magnetic field, and the limited applicability to pathological gait patterns still pose challenges. Furthermore, in previously published work, the measurement accuracy of such systems is often only validated for specific points in time or in a single plane. Research question: This study investigates the measurement accuracy of a gait analysis method based on foot-mounted IMUs in the acquisition of the foot motion, i.e., position and angle trajectories of the foot in the sagittal, frontal, and transversal plane over the entire gait cycle. Results: A comparison of the proposed method with an optical motion capture system showed an average RMSE of 0.67° for pitch, 0.63° for roll and 1.17° for yaw. For position trajectories, an average RMSE of 0.51 cm for vertical lift and 0.34 cm for lateral shift was found. The measurement error of the IMU-based method is found to be much smaller than the deviations caused by the shoes. Significance: The proposed method is found to be sufficiently accurate for clinical practice. It does not require precise mounting, special calibration movements, or magnetometer data, and shows no difference in measurement accuracy between normal and pathological gait. Therefore, it provides an easy-to-use alternative to optical motion capture and facilitates gait analysis independent of laboratory settings

    The Effect Of Toe-In/Toe-Out Variation On Locomotion: A Comprehensive Review

    Get PDF
    Gait modifications can alter energy demands and cost of transport. Specifically, alterations in toe-in and toe-out alignment have been found to affect force production abilities during gait. However, the terminology used when describing alterations in toe-in/toe-out alignment is somewhat differential. The aims of this thesis were to conduct a literature review to define terminology associated with toe-in/toe-out gait as well as determine implications on force production, injury, disability, trainability, performance, and analyze possibilities for further investigations. Reference articles were collected from journal databases such as PubMed,Web of Science, Google Scholar, and SPORTDiscuss, by searching for studies related to intoeing gait, foot progression angle, and metatarsophalangeal joint during running. After reviewing the literature it was concluded that toe-in/toe-out modification could alter the gear ratio of the foot and result in a more mechanically advantageous gait pattern. Further inquiries are necessary to determine the exact parameters for degrees of intoeing and outtoeing that are beneficial, as well as its impact on performance during different phases of gait movement patterns

    Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept

    Full text link
    Abstract Background Postural balance and gait training is important for treating persons with functional impairments, however current systems are generally not portable and are unable to train different types of movements. Methods This paper describes a proof-of-concept design of a configurable, wearable sensing and feedback system for real-time postural balance and gait training targeted for home-based treatments and other portable usage. Sensing and vibrotactile feedback are performed via eight distributed, wireless nodes or “Dots” (size: 22.5 × 20.5 × 15.0 mm, weight: 12.0 g) that can each be configured for sensing and/or feedback according to movement training requirements. In the first experiment, four healthy older adults were trained to reduce medial-lateral (M/L) trunk tilt while performing balance exercises. When trunk tilt deviated too far from vertical (estimated via a sensing Dot on the lower spine), vibrotactile feedback (via feedback Dots placed on the left and right sides of the lower torso) cued participants to move away from the vibration and back toward the vertical no feedback zone to correct their posture. A second experiment was conducted with the same wearable system to train six healthy older adults to alter their foot progression angle in real-time by internally or externally rotating their feet while walking. Foot progression angle was estimated via a sensing Dot adhered to the dorsal side of the foot, and vibrotactile feedback was provided via feedback Dots placed on the medial and lateral sides of the mid-shank cued participants to internally or externally rotate their foot away from vibration. Results In the first experiment, the wearable system enabled participants to significantly reduce trunk tilt and increase the amount of time inside the no feedback zone. In the second experiment, all participants were able to adopt new gait patterns of internal and external foot rotation within two minutes of real-time training with the wearable system. Conclusion These results suggest that the configurable, wearable sensing and feedback system is portable and effective for different types of real-time human movement training and thus may be suitable for home-based or clinic-based rehabilitation applications.https://deepblue.lib.umich.edu/bitstream/2027.42/138819/1/12984_2017_Article_313.pd

    Human Gait Model Development for Objective Analysis of Pre/Post Gait Characteristics Following Lumbar Spine Surgery

    Get PDF
    Although multiple advanced tools and methods are available for gait analysis, the gait and its related disorders are usually assessed by visual inspection in the clinical environment. This thesis aims to introduce a gait analysis system that provides an objective method for gait evaluation in clinics and overcomes the limitations of the current gait analysis systems. Early identification of foot drop, a common gait disorder, would become possible using the proposed methodology

    Gait modifications for medial knee osteoarthritis

    Get PDF
    corecore