275 research outputs found

    Moccasin: Efficient Tensor Rematerialization for Neural Networks

    Full text link
    The deployment and training of neural networks on edge computing devices pose many challenges. The low memory nature of edge devices is often one of the biggest limiting factors encountered in the deployment of large neural network models. Tensor rematerialization or recompute is a way to address high memory requirements for neural network training and inference. In this paper we consider the problem of execution time minimization of compute graphs subject to a memory budget. In particular, we develop a new constraint programming formulation called \textsc{Moccasin} with only O(n)O(n) integer variables, where nn is the number of nodes in the compute graph. This is a significant improvement over the works in the recent literature that propose formulations with O(n2)O(n^2) Boolean variables. We present numerical studies that show that our approach is up to an order of magnitude faster than recent work especially for large-scale graphs

    Interleaving Allocation, Planning, and Scheduling for Heterogeneous Multi-Robot Coordination through Shared Constraints

    Get PDF
    In a wide variety of domains, such as warehouse automation, agriculture, defense, and assembly, effective coordination of heterogeneous multi-robot teams is needed to solve complex problems. Effective coordination is predicated on the ability to solve the four fundamentally intertwined questions of coordination: what (task planning), who (task allocation), when (scheduling), and how (motion planning). Owing to the complexity of these four questions and their interactions, existing approaches to multi-robot coordination have resorted to defining and solving problems that focus on a subset of the four questions. Notable examples include Task and Motion Planning (what and how), Multi-Agent Planning (what and who), and Multi-Agent Path Finding (who and how). In fact, a holistic problem formulation that fully integrates the four questions lies beyond the scope of prior literature. This dissertation focuses on examining the use of shared constraints on tasks and robots to interleave algorithms for task planning, task allocation, scheduling, and motion planning and investigating the hypothesis that a framework that interleaves algorithms to these four sub-problems will lead to solutions with lower makespans, greater computational efficiency, and the ability to solve larger problems. To support this claim, this dissertation contributes: (i) a novel temporal planner that interleaves task planning and scheduling layers, (ii) a trait-based time-extended task allocation framework that interleaves task allocation, scheduling, and motion planning, (iii) the formulation of holistic heterogeneous multi-robot coordination problem that simultaneously considers all four questions, (iv) a framework that interleaves layers for all four questions to solve this holistic heterogeneous multi-robot coordination problem, (v) a scheduling algorithm that reasons about temporal uncertainty, provides a theoretical guarantee on risk, and can be utilized within our framework, and (vi) a learning-based scheduling algorithm that reasons about deadlines and can be utilized within our framework.Ph.D

    A risk management model for commercial property development and investment in Ghana

    Get PDF
    Commercial property development and investment provide many benefits to individuals and governments around the globe; these include the generation of income for investors, employment, tax revenues, and contributions to a country‘s GDP. Yet commercial property development and investment projects involve construction, economic and management risks. A lack of effective risk assessment and management tools may lead to developers and investors incurring losses. To curtail such losses, this study sought to create a credible management model that can be used to assess and manage risks in Ghana‘s commercial property development and investment industry. An extensive literature review was done, covering all 12 identified study constructs: real estate trends and cycle, construction project management, outside advice/mentorship, spatial development, strategic factors, business management skills, PMBOK, PESTEL analysis, general management skills, governance structures, financial feasibility, professional feasibility, and risk management. Each construct was defined and operationalised. A positivistic philosophical approach was used, and quantitative approach was used to solicit data from the main respondents through the distribution of questionnaires to the target population sample. CB-SEM and SPSS version 24 were used to analyse data, SEM to test the positive relationships hypothesised between the identified variables and SPSS to analyse the demographic data. The major findings are that there is a lack of financial and professional feasibility analysis among respondents along the following factors: the PMBOK, real estate trends and cycles, general management, business management, strategic factors, spatial development, and PESTEL analysis. It was found that these factors have positive and favourable influences on CPDI projects. The study recommends that developers and investors do financial and professional feasibility studies before they embark on projects. This could improve project viability in commercial property development and investment. The study has contributed to the body of knowledge in CPDI sector by developing a new risk assessment/risk management model.Thesis (PhD) -- Faculty of Engineering Built Environment and Technology, School of the built Environment, 202

    An Integrated Model for Multi-Mode Resource-Constrained Multi-Project Scheduling Problems Considering Supply Management with Sustainable Approach in the Construction Industry under Uncertainty Using Evidence Theory and Optimization Algorithms

    Get PDF
    In this study, the multi-mode resource-constrained multi-project scheduling problems (MMRCMPSPs) considering supply management and sustainable approach in the construction industry under uncertain conditions have been investigated using evidence theory to mathematical modeling and solving by multi-objective optimization algorithms. In this regard, a multi-objective mathematical model has been proposed, in which the first objective function aims to maximize a weighted selection of projects based on economic, environmental, technical, social, organizational, and competitive factors; the second objective function is focused on maximizing profit, and the third objective function is aimed at minimizing the risk of supply management. Moreover, various components, such as interest rates, carbon penalties, and other implementation limitations and additional constraints, have also been considered in the modeling and mathematical relationships to improve the model’s performance and make it more relevant to real-world conditions and related issues, leading to better practical applications. In the mathematical modeling adopted, the processing time of project activities has been considered uncertain, and the evidence theory has been utilized. This method can provide a flexible and rational approach based on evidence and knowledge in the face of uncertainty. In addition, to solve the proposed multi-objective mathematical model, metaheuristic optimization algorithms, such as the differential evolution (DE) algorithm based on the Pareto archive, have been used, and for evaluating the results, the non-dominated sorting genetic algorithm II (NSGA-II) has also been employed. Furthermore, the results have been compared based on multi-objective evaluation criteria, such as quality metric (QM), spacing metric (SM), and diversity metric (DM). It is worth noting that to investigate the performance and application of the proposed model, multiple evaluations have been conducted on sample problems with different dimensions, as well as a case study on residential apartment construction projects by a contracting company. In this respect, the answers obtained from solving the model using the multi-objective DE algorithm were better and superior to the NSGA-II algorithm and had a more favorable performance. Generally, the results indicate that using the integrated multi-objective mathematical model in the present research for managing and scheduling multi-mode resource-constrained multi-project problems, especially in the construction industry, can lead to an optimal state consistent with the desired objectives and can significantly improve the progress and completion of projects

    Evolutionary Algorithms for Resource Constrained Project Scheduling Problems

    Full text link
    The resource constrained project scheduling problems (RCPSPs) are well-known challenging research problems that require efficient solutions to meet the planning need of many practical high-value projects. RCPSPs are usually solved using optimization problem-solving approaches. In recent years, evolutionary algorithms (EAs) have been extensively employed to solve optimization problems, including RCPSPs. Despite that numerous EAs have been developed for solving various RCPSPs, there is no single algorithm that is consistently effective across a wide range of problems. In this context, this thesis aims to propose a few new algorithms for solving different RCPSPs that include singular-resource and multiple-resource problems with single and multiple objectives. In general, RCPSPs are solved with an assumption that its activities are homogeneous, where all activities require all resource types. However, many activities are often singular, requiring only a single resource to complete an activity. Even though the existing algorithms that were developed for multi-resource problems, can solve this RCPSP variant with minor modifications, they are computationally expensive because they include some unnecessary resource constraints in the optimization process. In this thesis, at first, a problem with singular resource and single objective is considered. A heuristic-embedded genetic algorithm (GA) has been proposed for solving this problem, and it's effectiveness has been investigated. To enhance the performance of this algorithm, three heuristics are proposed and integrated with it. As there are no test problems available for singular resource problems, new benchmark problems are generated by modifying the existing multi-resource RCPSPs test set. As compared with experimental results of one of the modified algorithms and an exact solver, it was shown that the proposed algorithm achieved a better quality of solution while requiring a significantly smaller computational budget. The proposed algorithm is then extended to make it suitable for solving multi-resource cases with a single objective, which are known as traditional RCPSPs. A self-adaptive GA is developed for this problem. The proposed self-adaptive component of the algorithm selects an appropriate genetic operator based on their performance as the evolution progresses and increases. To judge the performance of this algorithm, small to large-scale problem instances have been solved from the PSP Library and the results are compared with state-of-the-art algorithms. Based on the experimental results, it was found that the proposed algorithm was able to obtain much better solutions than the non-self-adaptive GA. Furthermore, the proposed approach outperformed the state-of-the-art algorithms. In practice, cost of some resources varies with the day of the week or specific days in the month or year. To consider these day dependent costs, a new cost function is developed that is integrated with the usual cost fitness function in a multi-objective version of RCPSPs. Completion time is considered as the second objective. A heuristic-embedded self-adaptive multi-objective GA is proposed for both singular and multi-resource problems. In this algorithm, the selection mechanism is based on crowding distance and a reference point. A customized mutation operator is also introduced. The experimental results show that the proposed variant, with reference points-based selection, outperformed the variant, with crowding distance-based selection. In many situations, resource availability varies with time, such as time of the day and in some particular days. A dynamic multi-operators-based GA is proposed to deal with this variant. Along with the genetic operators, two local search methods are also included in the self-adaptive mechanism. The proposed approach has been validated using both large-scale singular and multi-resource problem instances with a single objective. Its experimental results demonstrate the efficiency of the proposed dynamic multi-operator-based approach. In summary, the proposed algorithms can solve different variants of RCPSPs that cover a broad spectrum of project scheduling problems, with significantly less computational tim

    A Robotic Construction Simulation Platform for Light-weight Prefabricated Structures

    Get PDF

    Operational Research: methods and applications

    Get PDF
    This is the final version. Available on open access from Taylor & Francis via the DOI in this recordThroughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied to a wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first summarises the up-to-date knowledge and provides an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion and used as a point of reference by a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    Adaptive Control of Resource Flow to Optimize Construction Work and Cash Flow via Online Deep Reinforcement Learning

    Full text link
    Due to complexity and dynamics of construction work, resource, and cash flows, poor management of them usually leads to time and cost overruns, bankruptcy, even project failure. Existing approaches in construction failed to achieve optimal control of resource flow in a dynamic environment with uncertainty. Therefore, this paper introducess a model and method to adaptive control the resource flows to optimize the work and cash flows of construction projects. First, a mathematical model based on a partially observable Markov decision process is established to formulate the complex interactions of construction work, resource, and cash flows as well as uncertainty and variability of diverse influence factors. Meanwhile, to efficiently find the optimal solutions, a deep reinforcement learning (DRL) based method is introduced to realize the continuous adaptive optimal control of labor and material flows, thereby optimizing the work and cash flows. To assist the training process of DRL, a simulator based on discrete event simulation is also developed to mimic the dynamic features and external environments of a project. Experiments in simulated scenarios illustrate that our method outperforms the vanilla empirical method and genetic algorithm, possesses remarkable capability in diverse projects and external environments, and a hybrid agent of DRL and empirical method leads to the best result. This paper contributes to adaptive control and optimization of coupled work, resource, and cash flows, and may serve as a step stone for adopting DRL technology in construction project management
    corecore