29,814 research outputs found

    Bisimilarity and refinement for hybrid(ised) logics

    Get PDF
    The complexity of modern software systems entails the need for reconfiguration mechanisms governing the dynamic evolution of their execution configurations in response to both external stimulus or internal performance measures. Formally, such systems may be represented by transition systems whose nodes correspond to the different configurations they may assume. Therefore, each node is endowed with, for example, an algebra, or a first-order structure, to precisely characterise the semantics of the services provided in the corresponding configuration. Hybrid logics, which add to the modal description of transition structures the ability to refer to specific states, offer a generic framework to approach the specification and design of this sort of systems. Therefore, the quest for suitable notions of equivalence and refinement between models of hybrid logic specifications becomes fundamental to any design discipline adopting this perspective. This paper contributes to this effort from a distinctive point of view: instead of focussing on a specific hybrid logic, the paper introduces notions of bisimilarity and refinement for hybridised logics, i.e. standard specification logics (e.g. propositional, equational, fuzzy, etc) to which modal and hybrid features were added in a systematic way.FC

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Tau Be or not Tau Be? - A Perspective on Service Compatibility and Substitutability

    Get PDF
    One of the main open research issues in Service Oriented Computing is to propose automated techniques to analyse service interfaces. A first problem, called compatibility, aims at determining whether a set of services (two in this paper) can be composed together and interact with each other as expected. Another related problem is to check the substitutability of one service with another. These problems are especially difficult when behavioural descriptions (i.e., message calls and their ordering) are taken into account in service interfaces. Interfaces should capture as faithfully as possible the service behaviour to make their automated analysis possible while not exhibiting implementation details. In this position paper, we choose Labelled Transition Systems to specify the behavioural part of service interfaces. In particular, we show that internal behaviours (tau transitions) are necessary in these transition systems in order to detect subtle errors that may occur when composing a set of services together. We also show that tau transitions should be handled differently in the compatibility and substitutability problem: the former problem requires to check if the compatibility is preserved every time a tau transition is traversed in one interface, whereas the latter requires a precise analysis of tau branchings in order to make the substitution preserve the properties (e.g., a compatibility notion) which were ensured before replacement.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Language-based Abstractions for Dynamical Systems

    Get PDF
    Ordinary differential equations (ODEs) are the primary means to modelling dynamical systems in many natural and engineering sciences. The number of equations required to describe a system with high heterogeneity limits our capability of effectively performing analyses. This has motivated a large body of research, across many disciplines, into abstraction techniques that provide smaller ODE systems while preserving the original dynamics in some appropriate sense. In this paper we give an overview of a recently proposed computer-science perspective to this problem, where ODE reduction is recast to finding an appropriate equivalence relation over ODE variables, akin to classical models of computation based on labelled transition systems.Comment: In Proceedings QAPL 2017, arXiv:1707.0366

    Approximately bisimilar symbolic models for nonlinear control systems

    Full text link
    Control systems are usually modeled by differential equations describing how physical phenomena can be influenced by certain control parameters or inputs. Although these models are very powerful when dealing with physical phenomena, they are less suitable to describe software and hardware interfacing the physical world. For this reason there is a growing interest in describing control systems through symbolic models that are abstract descriptions of the continuous dynamics, where each "symbol" corresponds to an "aggregate" of states in the continuous model. Since these symbolic models are of the same nature of the models used in computer science to describe software and hardware, they provide a unified language to study problems of control in which software and hardware interact with the physical world. Furthermore the use of symbolic models enables one to leverage techniques from supervisory control and algorithms from game theory for controller synthesis purposes. In this paper we show that every incrementally globally asymptotically stable nonlinear control system is approximately equivalent (bisimilar) to a symbolic model. The approximation error is a design parameter in the construction of the symbolic model and can be rendered as small as desired. Furthermore if the state space of the control system is bounded the obtained symbolic model is finite. For digital control systems, and under the stronger assumption of incremental input-to-state stability, symbolic models can be constructed through a suitable quantization of the inputs.Comment: Corrected typo

    Specifying Reusable Components

    Full text link
    Reusable software components need expressive specifications. This paper outlines a rigorous foundation to model-based contracts, a method to equip classes with strong contracts that support accurate design, implementation, and formal verification of reusable components. Model-based contracts conservatively extend the classic Design by Contract with a notion of model, which underpins the precise definitions of such concepts as abstract equivalence and specification completeness. Experiments applying model-based contracts to libraries of data structures suggest that the method enables accurate specification of practical software
    corecore