1,878 research outputs found

    Leptonic origin of the 100 MeV gamma-ray emission from the Galactic Centre

    Full text link
    The Galactic centre is a bright gamma-ray source with the GeV-TeV band spectrum composed of two distinct components in the 1-10 GeV and 1-10 TeV energy ranges. The nature of these two components is not clearly understood. We investigate the gamma-ray properties of the Galactic centre to clarify the origin of the observed emission. We report imaging, spectral, and timing analysis of data from 74 months of observations of the Galactic centre by FERMI/LAT gamma-ray telescope complemented by sub-MeV data from approximately ten years of INTEGRAL/PICsIT observations. We find that the Galactic centre is spatially consistent with the point source in the GeV band. The tightest 3 sigma upper limit on its radius is 0.13 degree in the 10-300 GeV energy band. The spectrum of the source in the 100 MeV energy range does not have a characteristic turnover that would point to the pion decay origin of the signal. Instead, the source spectrum is consistent with a model of inverse Compton scattering by high-energy electrons. In this a model, the GeV bump in the spectrum originates from an episode of injection of high-energy particles, which happened ~300 years ago. This injection episode coincides with the known activity episode of the Galactic centre region, previously identified using X-ray observations. The hadronic model of source activity could be still compatible with the data if bremsstrahlung emission from high-energy electrons was present in addition to pion decay emission.Comment: To match the accepted versio

    Basic studies in microwave remote sensing

    Get PDF
    Scattering models were developed in support of microwave remote sensing of earth terrains with particular emphasis on model applications to airborne Synthetic Aperture Radar measurements of forest. Practically useful surface scattering models based on a solution of a pair of integral equations including multiple scattering effects were developed. Comparisons of these models with controlled scattering measurements from statistically known random surfaces indicate that they are valid over a wide range of frequencies. Scattering models treating a forest environment as a two and three layered media were also developed. Extensive testing and comparisons were carried out with the two layered model. Further studies with the three layered model are being carried out. A volume scattering model valid for dense media such as a snow layer was also developed that shows the appropriate trend dependence with the volume fraction of scatterers

    Uncertainty Estimates for Theoretical Atomic and Molecular Data

    Get PDF
    Sources of uncertainty are reviewed for calculated atomic and molecular data that are important for plasma modeling: atomic and molecular structure and cross sections for electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model uncertainties due to approximations to the fundamental many-body quantum mechanical equations and we aim to provide guidelines to estimate uncertainties as a routine part of computations of data for structure and scattering.Comment: 65 pages, 18 Figures, 3 Tables. J. Phys. D: Appl. Phys. Final accepted versio

    Consequences of hot gas in the broad line region of active galactic nuclei

    Get PDF
    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed

    The Canonical Function Method and its applications in Quantum Physics

    Get PDF
    The Canonical Function Method (CFM) is a powerful method that solves the radial Schr\"{o}dinger equation for the eigenvalues directly without having to evaluate the eigenfunctions. It is applied to various quantum mechanical problems in Atomic and Molecular physics with presence of regular or singular potentials. It has also been developed to handle single and multiple channel scattering problems where the phaseshift is required for the evaluation of the scattering cross-section. Its controllable accuracy makes it a valuable tool for the evaluation of vibrational levels of cold molecules, a sensitive test of Bohr correspondance principle and a powerful method to tackle local and non-local spin dependent problems.Comment: 30 pages, 12 figures- To submit to Reviews of Modern Physic

    Fluorescence Correlation Spectroscopy analysis of segmental dynamics in Actin filaments

    Full text link
    We adapt Fluorescence Correlation spectroscopy (FCS) formalism to the studies of the dynamics of semi-flexible polymers and derive expressions relating FCS correlation function to the longitudinal and transverse mean square displacements of polymer segments. We use the derived expressions to measure the dynamics of actin filaments in two experimental situations: filaments labeled at distinct positions and homogeneously labeled filaments. Both approaches give consistent results and allow to measure the temporal dependence of the segmental mean-square displacement (MSD) over almost five decades in time, from ~0.04ms to 2s. These noninvasive measurements allow for a detailed quantitative comparison of the experimental data to the current theories of semi-flexible polymer dynamics. Good quantitative agreement is found between the experimental results and theories explicitly accounting for the hydrodynamic interactions between polymer segments
    corecore