50,753 research outputs found

    Algebraic Aspects of Families of Fuzzy Languages

    Get PDF
    We study operations on fuzzy languages such as union, concatenation, Kleene \star, intersection with regular fuzzy languages, and several kinds of (iterated) fuzzy substitution. Then we consider families of fuzzy languages, closed under a fixed collection of these operations, which results in the concept of full Abstract Family of Fuzzy Languages or full AFFL. This algebraic structure is the fuzzy counterpart of the notion of full Abstract Family of Languages that has been encountered frequently in investigating families of crisp (i.e., non-fuzzy) languages. Some simpler and more complicated algebraic structures (such as full substitution-closed AFFL, full super-AFFL, full hyper-AFFL) will be considered as well.\ud In the second part of the paper we focus our attention to full AFFL's closed under iterated parallel fuzzy substitution, where the iterating process is prescribed by given crisp control languages. Proceeding inductively over the family of these control languages, yields an infinite sequence of full AFFL-structures with increasingly stronger closure properties

    A Fuzzy Approach to Erroneous Inputs in Context-Free Language Recognition

    Get PDF
    Using fuzzy context-free grammars one can easily describe a finite number of ways to derive incorrect strings together with their degree of correctness. However, in general there is an infinite number of ways to perform a certain task wrongly. In this paper we introduce a generalization of fuzzy context-free grammars, the so-called fuzzy context-free KK-grammars, to model the situation of making a finite choice out of an infinity of possible grammatical errors during each context-free derivation step. Under minor assumptions on the parameter KK this model happens to be a very general framework to describe correctly as well as erroneously derived sentences by a single generating mechanism. Our first result characterizes the generating capacity of these fuzzy context-free KK-grammars. As consequences we obtain: (i) bounds on modeling grammatical errors within the framework of fuzzy context-free grammars, and (ii) the fact that the family of languages generated by fuzzy context-free KK-grammars shares closure properties very similar to those of the family of ordinary context-free languages. The second part of the paper is devoted to a few algorithms to recognize fuzzy context-free languages: viz. a variant of a functional version of Cocke-Younger- Kasami's algorithm and some recursive descent algorithms. These algorithms turn out to be robust in some very elementary sense and they can easily be extended to corresponding parsing algorithms

    Controlled Fuzzy Parallel Rewriting

    Get PDF
    We study a Lindenmayer-like parallel rewriting system to model the growth of filaments (arrays of cells) in which developmental errors may occur. In essence this model is the fuzzy analogue of the derivation-controlled iteration grammar. Under minor assumptions on the family of control languages and on the family of fuzzy languages in the underlying iteration grammar, we show (i) regular control does not provide additional generating power to the model, (ii) the number of fuzzy substitutions in the underlying iteration grammar can be reduced to two, and (iii) the resulting family of fuzzy languages possesses strong closure properties, viz. it is a full hyper-AFFL, i.e., a hyper-algebraically closed full Abstract Family of Fuzzy Languages

    Towards Robustness in Parsing - Fuzzifying Context-Free Language Recognition

    Get PDF
    We discuss the concept of robustness with respect to parsing a context-free language. Our approach is based on the notions of fuzzy language, (generalized) fuzzy context-free grammar and parser / recognizer for fuzzy languages. As concrete examples we consider a robust version of Cocke-Younger-Kasami's algorithm and a robust kind of recursive descent recognizer

    Observability and Decentralized Control of Fuzzy Discrete Event Systems

    Full text link
    Fuzzy discrete event systems as a generalization of (crisp) discrete event systems have been introduced in order that it is possible to effectively represent uncertainty, imprecision, and vagueness arising from the dynamic of systems. A fuzzy discrete event system has been modelled by a fuzzy automaton; its behavior is described in terms of the fuzzy language generated by the automaton. In this paper, we are concerned with the supervisory control problem for fuzzy discrete event systems with partial observation. Observability, normality, and co-observability of crisp languages are extended to fuzzy languages. It is shown that the observability, together with controllability, of the desired fuzzy language is a necessary and sufficient condition for the existence of a partially observable fuzzy supervisor. When a decentralized solution is desired, it is proved that there exist local fuzzy supervisors if and only if the fuzzy language to be synthesized is controllable and co-observable. Moreover, the infimal controllable and observable fuzzy superlanguage, and the supremal controllable and normal fuzzy sublanguage are also discussed. Simple examples are provided to illustrate the theoretical development.Comment: 14 pages, 1 figure. to be published in the IEEE Transactions on Fuzzy System

    Supervisory Control of Fuzzy Discrete Event Systems

    Full text link
    In order to cope with situations in which a plant's dynamics are not precisely known, we consider the problem of supervisory control for a class of discrete event systems modelled by fuzzy automata. The behavior of such discrete event systems is described by fuzzy languages; the supervisors are event feedback and can disable only controllable events with any degree. The concept of discrete event system controllability is thus extended by incorporating fuzziness. In this new sense, we present a necessary and sufficient condition for a fuzzy language to be controllable. We also study the supremal controllable fuzzy sublanguage and the infimal controllable fuzzy superlanguage when a given pre-specified desired fuzzy language is uncontrollable. Our framework generalizes that of Ramadge-Wonham and reduces to Ramadge-Wonham framework when membership grades in all fuzzy languages must be either 0 or 1. The theoretical development is accompanied by illustrative numerical examples.Comment: 12 pages, 2 figure
    corecore