2,955 research outputs found

    An improved bound on the number of point-surface incidences in three dimensions

    Get PDF
    We show that mm points and nn smooth algebraic surfaces of bounded degree in R3\mathbb{R}^3 satisfying suitable nondegeneracy conditions can have at most O(m2k3k−1n3k−33k−1+m+n)O(m^{\frac{2k}{3k-1}}n^{\frac{3k-3}{3k-1}}+m+n) incidences, provided that any collection of kk points have at most O(1) surfaces passing through all of them, for some k≥3k\geq 3. In the case where the surfaces are spheres and no three spheres meet in a common circle, this implies there are O((mn)3/4+m+n)O((mn)^{3/4} + m +n) point-sphere incidences. This is a slight improvement over the previous bound of O((mn)3/4β(m,n)+m+n)O((mn)^{3/4} \beta(m,n)+ m +n) for β(m,n)\beta(m,n) an (explicit) very slowly growing function. We obtain this bound by using the discrete polynomial ham sandwich theorem to cut R3\mathbb{R}^3 into open cells adapted to the set of points, and within each cell of the decomposition we apply a Turan-type theorem to obtain crude control on the number of point-surface incidences. We then perform a second polynomial ham sandwich decomposition on the irreducible components of the variety defined by the first decomposition. As an application, we obtain a new bound on the maximum number of unit distances amongst mm points in R3\mathbb{R}^3.Comment: 17 pages, revised based on referee comment

    Greedy Search for Descriptive Spatial Face Features

    Full text link
    Facial expression recognition methods use a combination of geometric and appearance-based features. Spatial features are derived from displacements of facial landmarks, and carry geometric information. These features are either selected based on prior knowledge, or dimension-reduced from a large pool. In this study, we produce a large number of potential spatial features using two combinations of facial landmarks. Among these, we search for a descriptive subset of features using sequential forward selection. The chosen feature subset is used to classify facial expressions in the extended Cohn-Kanade dataset (CK+), and delivered 88.7% recognition accuracy without using any appearance-based features.Comment: International Conference on Acoustics, Speech and Signal Processing (ICASSP), 201

    Casimir effect for parallel plates in de Sitter spacetime

    Full text link
    The Wightman function and the vacuum expectation values of the field squared and of the energy-momentum tensor are obtained, for a massive scalar field with an arbitrary curvature coupling parameter, in the region between two infinite parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. For the calculation, a mode-summation method is used, supplemented with a variant of the generalized Abel-Plana formula. This allows to explicitly extract the contributions to the expectation values which come from each single boundary, and to expand the second-plate-induced part in terms of exponentially convergent integrals. Several limiting cases of interest are then studied. Moreover, the Casimir forces acting on the plates are evaluated, and it is shown that the curvature of the background spacetime decisively influences the behavior of these forces at separations larger than the curvature scale of de Sitter spacetime. In terms of the curvature coupling parameter and the mass of the field, two very different regimes are realized, which exhibit monotonic and oscillatory behavior of the vacuum expectation values, respectively. The decay of the Casimir force at large plate separation is shown to be power-law (monotonic or oscillating), with independence of the value of the field mass.Comment: 22 pages, 4 figures, added figures for a massless field, added reference, added discussions and comments on thermal effect

    Fermionic Casimir effect for parallel plates in the presence of compact dimensions with applications to nanotubes

    Full text link
    We evaluate the Casimir energy and force for a massive fermionic field in the geometry of two parallel plates on background of Minkowski spacetime with an arbitrary number of toroidally compactified spatial dimensions. The bag boundary conditions are imposed on the plates and periodicity conditions with arbitrary phases are considered along the compact dimensions. The Casimir energy is decomposed into purely topological, single plate and interaction parts. With independence of the lengths of the compact dimensions and the phases in the periodicity conditions, the interaction part of the Casimir energy is always negative. In order to obtain the resulting force, the contributions from both sides of the plates must be taken into account. Then, the forces coming from the topological parts of the vacuum energy cancel out and only the interaction term contributes to the Casimir force. Applications of the general formulae to Kaluza-Klein type models and carbon nanotubes are given. In particular, we show that for finite length metallic nanotubes the Casimir forces acting on the tube edges are always attractive, whereas for semiconducting-type ones they are attractive for small lengths of the nanotube and repulsive for large lengths.Comment: 20 pages, 3 figure

    Fermionic Casimir densities in anti-de Sitter spacetime

    Full text link
    The fermionic condensate and vacuum expectation value of the energy-momentum tensor, for a massive fermionic field on the background of anti-de Sitter spacetime, in the geometry of two parallel boundaries with bag boundary conditions, are investigated. Vacuum expectation values, expressed as series involving the eigenvalues of the radial quantum number, are neatly decomposed into boundary-free, single-boundary-induced, and second-boundary-induced parts, with the help of the generalized Abel-Plana summation formula. In this way, the renormalization procedure is very conveniently reduced to the one corresponding to boundary-free AdS spacetime. The boundary-induced contributions to the fermionic condensate and to the vacuum expectation value of the energy density are proven to be everywhere negative. The vacuum expectation values are exponentially suppressed at distances from the boundaries much larger than the curvature radius of the AdS space. Near the boundaries, effects related with the curvature of the background spacetime are shown to be subdominant and, to leading order, all known results for boundaries in the Minkowski bulk are recovered. Zeta function techniques are successfully used for the evaluation of the total vacuum energy in the region between the boundaries. It is proven that the resulting interaction forces between them are attractive and that, for large separations, they also decay exponentially. Finally, our results are extended and explicitly translated to fermionic Casimir densities in braneworld scenarios of Randall-Sundrum type.Comment: 22 pages, 2 figure
    • …
    corecore