100 research outputs found

    Algebraic foundations for qualitative calculi and networks

    Full text link
    A qualitative representation ϕ\phi is like an ordinary representation of a relation algebra, but instead of requiring (a;b)ϕ=aϕbϕ(a; b)^\phi = a^\phi | b^\phi, as we do for ordinary representations, we only require that cϕaϕbϕ    ca;bc^\phi\supseteq a^\phi | b^\phi \iff c\geq a ; b, for each cc in the algebra. A constraint network is qualitatively satisfiable if its nodes can be mapped to elements of a qualitative representation, preserving the constraints. If a constraint network is satisfiable then it is clearly qualitatively satisfiable, but the converse can fail. However, for a wide range of relation algebras including the point algebra, the Allen Interval Algebra, RCC8 and many others, a network is satisfiable if and only if it is qualitatively satisfiable. Unlike ordinary composition, the weak composition arising from qualitative representations need not be associative, so we can generalise by considering network satisfaction problems over non-associative algebras. We prove that computationally, qualitative representations have many advantages over ordinary representations: whereas many finite relation algebras have only infinite representations, every finite qualitatively representable algebra has a finite qualitative representation; the representability problem for (the atom structures of) finite non-associative algebras is NP-complete; the network satisfaction problem over a finite qualitatively representable algebra is always in NP; the validity of equations over qualitative representations is co-NP-complete. On the other hand we prove that there is no finite axiomatisation of the class of qualitatively representable algebras.Comment: 22 page

    An Integrated First-Order Theory of Points and Intervals over Linear Orders (Part II)

    Get PDF
    There are two natural and well-studied approaches to temporal ontology and reasoning: point-based and interval-based. Usually, interval-based temporal reasoning deals with points as a particular case of duration-less intervals. A recent result by Balbiani, Goranko, and Sciavicco presented an explicit two-sorted point-interval temporal framework in which time instants (points) and time periods (intervals) are considered on a par, allowing the perspective to shift between these within the formal discourse. We consider here two-sorted first-order languages based on the same principle, and therefore including relations, as first studied by Reich, among others, between points, between intervals, and inter-sort. We give complete classifications of its sub-languages in terms of relative expressive power, thus determining how many, and which, are the intrinsically different extensions of two-sorted first-order logic with one or more such relations. This approach roots out the classical problem of whether or not points should be included in a interval-based semantics. In this Part II, we deal with the cases of all dense and the case of all unbounded linearly ordered sets.Comment: This is Part II of the paper `An Integrated First-Order Theory of Points and Intervals over Linear Orders' arXiv:1805.08425v2. Therefore the introduction, preliminaries and conclusions of the two papers are the same. This version implements a few minor corrections and an update to the affiliation of the second autho

    Online Abelian Pattern Matching

    Get PDF
    Ejaz T, Rahmann S, Stoye J. Online Abelian Pattern Matching. Forschungsberichte der Technischen Fakultät, Abteilung Informationstechnik / Universität Bielefeld. Bielefeld: Technische Fakultät der Universität Bielefeld; 2008.An abelian pattern describes the set of strings that comprise of the same combination of characters. Given an abelian pattern P and a text T [Epsilon] [Sigma]^n, the task is to find all occurrences of P in T, i.e. all substrings S = T_i...T_j such that the frequency of each character in S matches the specified frequency of that character in P. In this report we present simple online algorithms for abelian pattern matching, and give a lower bound for online algorithms which is [Omega](n)

    An Integrated First-Order Theory of Points and Intervals over Linear Orders (Part I)

    Get PDF
    There are two natural and well-studied approaches to temporal ontology and reasoning: point-based and interval-based. Usually, interval-based temporal reasoning deals with points as a particular case of duration-less intervals. A recent result by Balbiani, Goranko, and Sciavicco presented an explicit two-sorted point-interval temporal framework in which time instants (points) and time periods (intervals) are considered on a par, allowing the perspective to shift between these within the formal discourse. We consider here two-sorted first-order languages based on the same principle, and therefore including relations, as first studied by Reich, among others, between points, between intervals, and inter-sort. We give complete classifications of its sub-languages in terms of relative expressive power, thus determining how many, and which, are the intrinsically different extensions of two-sorted first-order logic with one or more such relations. This approach roots out the classical problem of whether or not points should be included in a interval-based semantics

    Temporal reasoning and constraint programming

    Get PDF

    The Complexity of Reasoning about Spatial Congruence

    Get PDF
    In the recent literature of Artificial Intelligence, an intensive research effort has been spent, for various algebras of qualitative relations used in the representation of temporal and spatial knowledge, on the problem of classifying the computational complexity of reasoning problems for subsets of algebras. The main purpose of these researches is to describe a restricted set of maximal tractable subalgebras, ideally in an exhaustive fashion with respect to the hosting algebras. In this paper we introduce a novel algebra for reasoning about Spatial Congruence, show that the satisfiability problem in the spatial algebra MC-4 is NP-complete, and present a complete classification of tractability in the algebra, based on the individuation of three maximal tractable subclasses, one containing the basic relations. The three algebras are formed by 14, 10 and 9 relations out of 16 which form the full algebra

    Cores of Countably Categorical Structures

    Full text link
    A relational structure is a core, if all its endomorphisms are embeddings. This notion is important for computational complexity classification of constraint satisfaction problems. It is a fundamental fact that every finite structure has a core, i.e., has an endomorphism such that the structure induced by its image is a core; moreover, the core is unique up to isomorphism. Weprove that every \omega -categorical structure has a core. Moreover, every \omega-categorical structure is homomorphically equivalent to a model-complete core, which is unique up to isomorphism, and which is finite or \omega -categorical. We discuss consequences for constraint satisfaction with \omega -categorical templates

    Reasoning about temporal relations : a maximal tractable subclass of Allen\u27s interval algebra

    Get PDF
    We introduce a new subclass of Allen\u27s interval algebra we call "ORD-Horn subclass", which is a strict superset of the "pointisable subclass". We prove that reasoning in the ORD-Horn subclass is a polynomial-time problem and show that the path-consistency method is sufficient for deciding satisfiability. Further, using an extensive machine-generated case analysis, we show that the ORD-Horn subclass is a maximal tractable subclass of the full algebra (assuming P neq NP). In fact, it is the unique greatest tractable subclass amongst the subclasses that contain all basic relations
    corecore