4 research outputs found

    Explainable reinforcement learning for broad-XAI: a conceptual framework and survey

    Get PDF
    Broad-XAI moves away from interpreting individual decisions based on a single datum and aims to provide integrated explanations from multiple machine learning algorithms into a coherent explanation of an agent’s behaviour that is aligned to the communication needs of the explainee. Reinforcement Learning (RL) methods, we propose, provide a potential backbone for the cognitive model required for the development of Broad-XAI. RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems. However, these algorithms operate as black-box problem solvers, where they obfuscate their decision-making policy through a complex array of values and functions. EXplainable RL (XRL) aims to develop techniques to extract concepts from the agent’s: perception of the environment; intrinsic/extrinsic motivations/beliefs; Q-values, goals and objectives. This paper aims to introduce the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI. CXF is designed to incorporate many standard RL extensions and integrated with external ontologies and communication facilities so that the agent can answer questions that explain outcomes its decisions. This paper aims to: establish XRL as a distinct branch of XAI; introduce a conceptual framework for XRL; review existing approaches explaining agent behaviour; and identify opportunities for future research. Finally, this paper discusses how additional information can be extracted and ultimately integrated into models of communication, facilitating the development of Broad-XAI. © 2023, The Author(s)

    COIN@AAMAS2015

    Get PDF
    COIN@AAMAS2015 is the nineteenth edition of the series and the fourteen papers included in these proceedings demonstrate the vitality of the community and will provide the grounds for a solid workshop program and what we expect will be a most enjoyable and enriching debate.Peer reviewe

    Learning Dynamic Network Models for Complex Social Systems

    Get PDF
    Human societies are inherently complex and highly dynamic, resulting in rapidly changing social networks, containing multiple types of dyadic interactions. Analyzing these time-varying multiplex networks with approaches developed for static, single layer networks often produces poor results. To address this problem, our approach is to explicitly learn the dynamics of these complex networks. This dissertation focuses on five problems: 1) learning link formation rates; 2) predicting changes in community membership; 3) using time series to predict changes in network structure; 4) modeling coevolution patterns across network layers and 5) extracting information from negative layers of a multiplex network. To study these problems, we created a rich dataset extracted from observing social interactions in the massively multiplayer online game Travian. Most online social media platforms are optimized to support a limited range of social interactions, primarily focusing on communication and information sharing. In contrast, relations in massively-multiplayer online games (MMOGs) are often formed during the course of gameplay and evolve as the game progresses. To analyze the players\u27 behavior, we constructed multiplex networks with link types for raid, communication, and trading. The contributions of this dissertation include 1) extensive experiments on the dynamics of networks formed from diverse social processes; 2) new game theoretic models for community detection in dynamic networks; 3) supervised and unsupervised methods for link prediction in multiplex coevolving networks for both positive and negative links. We demonstrate that our holistic approach for modeling network dynamics in coevolving, multiplex networks outperforms factored methods that separately consider temporal and cross-layer patterns

    Normative Agents For Real-World Scenarios

    No full text
    Norms are an important part of human social systems, governing many aspects of group decision-making. Yet many popularly used social models neglect to model normative effects on human behavior, relying on simple probabilistic and majority voting models of influence diffusion. Within the multi-agent research community, the study of norm emergence, compliance, and adoption has resulted in new architectures and standards for normative agents; however few of these models have been successfully applied to real-world public policy problems. During our research we introduced a new hybrid architecture, Cognitive Social Learners (CSL), that models bottom-up norm emergence through a social learning mechanism, while using BDI (Belief/Desire/Intention) reasoning to handle adoption and compliance. Our proposed cognitive architecture includes the interaction between rational thought, reward-based learning, and contagious social behaviors. The future plan is to employ this architecture for constructing normative agents to model human social systems; the aim of our research is to be able to study the effects of different public policy decisions on a community and studying the emergence of norms in real-world cases
    corecore