45,083 research outputs found

    Deep Exponential Families

    Full text link
    We describe \textit{deep exponential families} (DEFs), a class of latent variable models that are inspired by the hidden structures used in deep neural networks. DEFs capture a hierarchy of dependencies between latent variables, and are easily generalized to many settings through exponential families. We perform inference using recent "black box" variational inference techniques. We then evaluate various DEFs on text and combine multiple DEFs into a model for pairwise recommendation data. In an extensive study, we show that going beyond one layer improves predictions for DEFs. We demonstrate that DEFs find interesting exploratory structure in large data sets, and give better predictive performance than state-of-the-art models

    Towards Building Deep Networks with Bayesian Factor Graphs

    Full text link
    We propose a Multi-Layer Network based on the Bayesian framework of the Factor Graphs in Reduced Normal Form (FGrn) applied to a two-dimensional lattice. The Latent Variable Model (LVM) is the basic building block of a quadtree hierarchy built on top of a bottom layer of random variables that represent pixels of an image, a feature map, or more generally a collection of spatially distributed discrete variables. The multi-layer architecture implements a hierarchical data representation that, via belief propagation, can be used for learning and inference. Typical uses are pattern completion, correction and classification. The FGrn paradigm provides great flexibility and modularity and appears as a promising candidate for building deep networks: the system can be easily extended by introducing new and different (in cardinality and in type) variables. Prior knowledge, or supervised information, can be introduced at different scales. The FGrn paradigm provides a handy way for building all kinds of architectures by interconnecting only three types of units: Single Input Single Output (SISO) blocks, Sources and Replicators. The network is designed like a circuit diagram and the belief messages flow bidirectionally in the whole system. The learning algorithms operate only locally within each block. The framework is demonstrated in this paper in a three-layer structure applied to images extracted from a standard data set.Comment: Submitted for journal publicatio

    Learning the Structure of Deep Sparse Graphical Models

    Full text link
    Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.Comment: 20 pages, 6 figures, AISTATS 2010, Revise
    corecore