3 research outputs found

    Rotate-and-Press: A Non-Visual Alternative to Point-and-Click

    Get PDF
    Most computer applications manifest visually rich and dense graphical user interfaces (GUIs) that are primarily tailored for an easy-and-efficient sighted interaction using a combination of two default input modalities, namely the keyboard and the mouse/touchpad. However, blind screen-reader users predominantly rely only on keyboard, and therefore struggle to interact with these applications, since it is both arduous and tedious to perform the visual \u27point-and-click\u27 tasks such as accessing the various application commands/features using just keyboard shortcuts supported by screen readers. In this paper, we investigate the suitability of a \u27rotate-and-press\u27 input modality as an effective non-visual substitute for the visual mouse to easily interact with computer applications, with specific focus on word processing applications serving as the representative case study. In this regard, we designed and developed bTunes, an add-on for Microsoft Word that customizes an off-the-shelf Dial input device such that it serves as a surrogate mouse for blind screen-reader users to quickly access various application commands and features using a set of simple rotate and press gestures supported by the Dial. Therefore, with bTunes, blind users too can now enjoy the benefits of two input modalities, as their sighted counterparts. A user study with 15 blind participants revealed that bTunes significantly reduced both the time and number of user actions for doing representative tasks in a word processing application, by as much as 65.1% and 36.09% respectively. The participants also stated that they did not face any issues switching between keyboard and Dial, and furthermore gave a high usability rating (84.66 avg. SUS score) for bTunes

    Repurposing Visual Input Modalities for Blind Users: A Case Study of Word Processors

    Get PDF
    Visual \u27point-and-click\u27 interaction artifacts such as mouse and touchpad are tangible input modalities, which are essential for sighted users to conveniently interact with computer applications. In contrast, blind users are unable to leverage these visual input modalities and are thus limited while interacting with computers using a sequentially narrating screen-reader assistive technology that is coupled to keyboards. As a consequence, blind users generally require significantly more time and effort to do even simple application tasks (e.g., applying a style to text in a word processor) using only keyboard, compared to their sighted peers who can effortlessly accomplish the same tasks using a point-and-click mouse. This paper explores the idea of repurposing visual input modalities for non-visual interaction so that blind users too can draw the benefits of simple and efficient access from these modalities. Specifically, with word processing applications as the representative case study, we designed and developed NVMouse as a concrete manifestation of this repurposing idea, in which the spatially distributed word-processor controls are mapped to a virtual hierarchical \u27Feature Menu\u27 that is easily traversable non-visually using simple scroll and click input actions. Furthermore, NVMouse enhances the efficiency of accessing frequently-used application commands by leveraging a data-driven prediction model that can determine what commands the user will most likely access next, given the current \u27local\u27 screen-reader context in the document. A user study with 14 blind participants comparing keyboard-based screen readers with NVMouse, showed that the latter significantly reduced both the task-completion times and user effort (i.e., number of user actions) for different word-processing activities

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices
    corecore