25 research outputs found

    Nonuniversal power law scaling in the probability distribution of scientific citations

    Full text link
    We develop a model for the distribution of scientific citations. The model involves a dual mechanism: in the direct mechanism, the author of a new paper finds an old paper A and cites it. In the indirect mechanism, the author of a new paper finds an old paper A only via the reference list of a newer intermediary paper B, which has previously cited A. By comparison to citation databases, we find that papers having few citations are cited mainly by the direct mechanism. Papers already having many citations ('classics') are cited mainly by the indirect mechanism. The indirect mechanism gives a power-law tail. The 'tipping point' at which a paper becomes a classic is about 21 citations for papers published in the Institute for Scientific Information (ISI) Web of Science database in 1981, 29 for Physical Review D papers published from 1975-1994, and 39 for all publications from a list of high h-index chemists assembled in 2007. The power-law exponent is not universal. Individuals who are highly cited have a systematically smaller exponent than individuals who are less cited.Comment: 7 pages, 3 figures, 2 table

    Quantifying Long-Term Scientific Impact

    Full text link
    The lack of predictability of citation-based measures frequently used to gauge impact, from impact factors to short-term citations, raises a fundamental question: Is there long-term predictability in citation patterns? Here, we derive a mechanistic model for the citation dynamics of individual papers, allowing us to collapse the citation histories of papers from different journals and disciplines into a single curve, indicating that all papers tend to follow the same universal temporal pattern. The observed patterns not only help us uncover basic mechanisms that govern scientific impact but also offer reliable measures of influence that may have potential policy implications

    Uncovering the dynamics of citations of scientific papers

    Full text link
    We demonstrate a comprehensive framework that accounts for citation dynamics of scientific papers and for the age distribution of references. We show that citation dynamics of scientific papers is nonlinear and this nonlinearity has far-reaching consequences, such as diverging citation distributions and runaway papers. We propose a nonlinear stochastic dynamic model of citation dynamics based on link copying/redirection mechanism. The model is fully calibrated by empirical data and does not contain free parameters. This model can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.Comment: 18 pages, 7 figure

    Statistical regularities in the rank-citation profile of scientists

    Get PDF
    Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile ci(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each ci(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different ci(r) profiles, our results demonstrate the utility of the βi scaling parameter in conjunction with hi for quantifying individual publication impact. We show that the total number of citations Ci tallied from a scientist's Ni papers scales as . Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress
    corecore