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Background
Scholars have been investigating their own citation practice for too long. Bibliometrics 
already forced considerable changes in citation practice Michels and Schmoch (2014). 
Because the overwhelming majority of bibliometric studies focus on the citation sta-
tistics of scientific papers (see, e.g., Adler et al. 2009; Albarrán and Ruiz-Castillo 2011; 
De Battisti and Salini 2013; Nicolaisen 2007; Yang and Han 2015), special attention is 
devoted to citation distributions (see, inter alia, Radicchi and Castellano 2012; Ruiz-Cas-
tillo 2012; Sangwal 2014; Thelwall and Wilson 2014; Vieira and Gomes 2010). However, 
the fundamentals of the citation distribution (or CD for convenience) are far from being 
well established and the universal law of CD is still unknown (we do not go into details, 
and refer the reader to Bornmann and Daniel 2009; Eom and Fortunato 2011; Peterson 
et al. 2010; Radicchi et al. 2008; Ruiz-Castillo 2013; Waltman et al. 2012). Furthermore, 
existing bibliometric models of CDs place little or no emphasis on characteristics of the 
mathematical formalism itself (cf. Egghe 1998; Simkin and Roychowdhury 2007; Zhang 
2013).

A mathematical theory of the CDs does not considers social citation system in its actu-
ality. (We prefer to abbreviate social citation system to SCS; for the definition of SCS the 
reader is referred to, e.g., Fujigaki 1998; Rodríguez-Ruiz 2009; Rousseau and Ye 2012.) 

Abstract 

The paper is written with the assumption that the purpose of a mathematical theory 
of citation is to explain bibliometric regularities at the level of mathematical formalism. 
A mathematical formalism is proposed for the appearance of power law distributions 
in social citation systems. The principal contributions of this paper are an axiomatic 
characterization of citation distributions in terms of the Ekeland variational principle 
and a mathematical exploration of the power law nature of citation distributions. Apart 
from its inherent value in providing a better understanding of the mathematical under-
pinnings of bibliometric models, such an approach can be used to derive a citation 
distribution from first principles.
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This task is completely left to scientometricists. The mathematical theory of CDs is used 
to investigate a mathematical substitute instead of a real process. For this mathematical 
substitute, the term mathematical structure has been introduced.

The objective of scientometrics is to bridge a gap between our insights of science and 
our knowledge of science Mingers and Leydesdorff (2015). A mathematical theory of 
citation can appear as an attempt to understand the structures that constitute the bases 
of scientometric models. To “understand” here means to bring a bibliometric structure 
into congruence with a mathematical structure. The purpose of a mathematical theory 
is fulfilled if it provides a structure of thought objects that allows us to relate bibliomet-
ric data sets and interpret the state of affairs in science by making mathematical deduc-
tions. A scientometric model attempts to create a heuristic explanation of an empirical 
data set. In contrast, a mathematical theory of citation is not concerned with biblio-
metric data per se and strives to construct a clear and coherent framework that accu-
rately expresses some scientometric propositions in mathematical language. In this way, 
opportunities emerge for applying sophisticated mathematical concepts to bibliometric 
phenomena. The difference between a bibliometric model and a mathematical theory of 
citation is more apparent than real because, although the concepts of bibliometrics can 
be analyzed in terms of mathematics, they cannot be eliminated in favor of the latter 
without losing the understanding gained by bibliometrics. In particular, a firm founda-
tion for a mathematical theory of citation can be obtained only phenomenologically by 
comparing the consequences of basic mathematical statements to bibliometric data.

Motivation

We will study the axioms on which a mathematical description of SCS can be based. 
The author risks asserting that a mathematical theory appears to be a systematic refor-
mulation of the problem of cumulative CDs on a purely mathematical basis. That is the 
main intent of this paper. Before we proceed with the analysis, we remark that there are 
no strong arguments leading from the bibliometric facts to the axioms. However, as we 
hope to show below, one can obtain additional conceptual information (relating to SCS) 
that is not readily available from a conventional bibliometric model by means of the 
axioms.

Purpose

The purpose of the research reported in this article is to provide a simple and coherent 
presentation of CDs based on the Ekeland variational principle. We stress the elemen-
tary variational principle governing the state of SCS and have also attempted to provide 
enough technical detail to create a basis for potential future studies.

Methodology

The paper addresses the construction of structural hypotheses for “how SCS works” 
rather than statistical inferences from bibliometric data. We accept that the continu-
ous reproduction of a scientific inequality is a conceptual basis for almost all SCSs (cf. 
Bourdieu 2004). An emphasis is placed on the role of the variational principle as a valid 
approach for describing the local behavior of an continuous SCS. We consider an SCS to 
obey the following scheme. Suppose an SCS is a sufficiently smooth “motion” to ensure 
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the consistency and the integrity of citations. In phase space, this condition is equivalent 
to a variational principle that produces the Euler equation for the weak form of a CD. 
This variational principle asserts that, for an appropriate functional, one can add a small 
perturbation to make it attain a minimum.

Preliminaries
A mathematical theory of CDs cannot make sense of bibliometric models of CDs. How-
ever, this theory can make sense of mathematical models; therefore, it stipulate that bib-
liometrics must be presented in mathematical terms. We will call a function z �→ N (z) 
giving the number n of scientific papers which have been cited a total of z times a cita-
tion distribution (CD). By construction, we define the event ω as the value of z, ω := z . 
Under mild assumptions, it can be assumed (somewhat non-rigorously) that, with 
respect to the Lebesgue measure, for any Borel set B,

ζ being a corresponding random variable (RV for short), defined on a certain probabil-
ity space (Ω ,B,P). Because of this result, without any great error one can also view the 
quantity N(z) as the probability density function (or, in abbreviated form, PDF) f(z) for 
finding the citation process at the point z in phase space (see also Redner 1998; Gupta 
et al. 2005), ignoring, for now, the objection that z and n assume only non-negative inte-
ger values. We do not consider the case where supp f (·) is discrete separately. Although 
this is not mathematically rigorous, it is often useful to identify the CD N (·) with the 
PDF f (·) because a discrete SCS might be too complex to allow analytical results to be 
obtained.

All empirical CDs are different, but many have some statistical properties in common. 
In broad terms, power distributions of the form

are frequently accepted without question. In the expression (1), zmin is a threshold value, 
and by l(z), we denote a slowly varying function (for the precise definition, see Borovkov 
2013) such that for any fixed k > 0, the expression lim l(kz)

l(z) , as z → ∞, is equal to 1. 
More concretely, owing to complexities arising from the intricate citation dynamics of 
papers, the age distribution of references, the role of scientific journals, etc., the CDs 
are quite complicated in detail. However, to a reasonable approximation, a CD can be 
represented (in the long-time limit of the observation period) by the relation (1) (among 
an abundant literature, we refer to Albarrán et  al. 2011; Brzezinski 2015; Egghe 2005; 
Radicchi and Castellano 2015; Redner 2005; Wallace et al. 2009). The systematic study 
of CDs’ deviations from power laws is not the subject of this paper. However, the lit-
erature on this topic is currently growing; the reader can see, e.g., Golosovsky and Solo-
mon (2012), Golosovsky and Solomon (2014); Radicchi et al. 2012), Thelwall and Wilson 
(2014), Wang et al. (2013) and Yao et al. (2014).

Through the paper, we adopt the following notation: V is a real separable reflexive 
Banach space equipped with a norm � · �, and V ⋆ is its topological dual endowed with 
the natural norm � · �⋆. The duality mapping between V and V ⋆ is denoted by �·, ·�. In 

(
ζ(ω) = ω

)(
Ω = [zmin, zmax]

)
: P(ζ ∈ B) =

∫

B
f (z)dz ∝

∫

B
N (z)dz,

(1)(z ≫ zmin) : f (z) ∝ l(z)z−a
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addition, recall that for a nontrivial function φ(·) : V → R ∪ {+∞} with the effective 
domain

the subset of V ⋆

is said to be the subdifferential of φ(·) at v0.
In the language of P(Z ∈ B), the PDF f (·) is (almost everywhere) given by formal dif-

ferentiating; as a result of this, a rather simple interpretation of f (·) can be given in the 
framework of Sobolev spaces Hk(R). (For the definitions and properties of Sobolev 
spaces, see Maz’ya 2011.)

Unless specified, in the following, I is an open interval in R. For technical reasons, 
Hk(I) is a good example of the space of RVs ζ such that

In addition to the probabilistic treatment, one can say that an SCS acting on some 
function ϕ(·) yields an RV ζ. In other words, we can also state that an SCS allow us to 
bring one and only one well-defined RV ζ ∈ V  into correspondence with each function 
ϕ(·) ∈ V ⋆.

Results
Because ϕ(·) and ζ are so fundamental in this paper, it may seem strange that we have not 
explicitly defined them in formal mathematical terms. As with other primitive objects of 
the mathematical theory, the most one can do is to give the implicit definitions by postu-
lating the properties that hold for ϕ(·) and ζ.

We shall attempt now to shed some light upon the relation between the function ϕ(·) 
and the quantity ζ. Pick any ε > 0; then, the partial order of Bishop – Phelps on V × R 
can be defined as follows (cf. Johnson and Lindenstrauss 2001):

For a nonempty closed convex subset M ⊂ V × R which is bounded below, in sense 
that,

there is a minimal element [v∗, v⋆∗] in the partial order (2), according to the classical theo-
rem of Bishop – Phelps (see, e.g., Deville and Ghoussoub 2001). In this connection, it 
is evident that the map ϕ �→ ζ is nothing but the Riesz – Fréchet isomorphism from V ⋆ 
onto V. This means that we have characterization via

dom φ :=
{
v ∈ V : φ(v) < +∞

}
,

(∀v ∈ V ) : ∂φ(v0) =
{
v⋆ ∈ V ⋆ : φ(v)− φ(v0) ≥

〈
v⋆, v − v0

〉}

(
∀ζ ∈ Hk(I)

)
:

∫

I
|ζ |kP(dz) < ∞.

(2)
[
v1, v

⋆
1

]
�

[
v2, v

⋆
2

]
⇐⇒

〈
v⋆1, v1

〉
+ ε�v1 − v2� ≤

〈
v⋆2, v2

〉
.

(
v⋆ ∈ V ⋆

)
: inf

V

{〈
v∗, v

〉
∈ R : ∃v ∈ V ,

[
v, v⋆

]
∈ M

}
> −∞,

(
ζ , v

)
V
=

〈
ϕ, v

〉
V ⋆,V

,
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where (·, ·)V  indicates the scalar product in V. Based on this assertion, we will collect the 
basic properties of ϕ(·) and ζ in the following axioms: 

A1  A function ϕ(·) for ∀v ∈
(
V , � · �

)
 is a proper (dom ϕ �= ∅), lower semicontinuous 

(ϕ(v) ≤ lim infn→∞ ϕ(vn) if vn → v), convex, and bounded below (infV ϕ > −∞) 
function from 

(
V , � · �

)
 to R+, satisfying the following condition: 

A2  Among all admissible ζ, the quantity ζ∗ which actually describes a given CD, is 
assigned in such a way that the function ϕ(·) reaches its minimum. The axiom A1 
hinges on a corollary Aubin and Ekeland (2006), p. 262 of the Ekeland variational 
principle Ekeland (1974). The term “Ekeland variational principles” refers here 
essentially to a result stating that the function ϕ(v) possesses arbitrarily small 
perturbations

such that the perturbed function

will have an absolute (and even strict) minimum Ioffe and Tikhomirov (1997). More pre-
cisely, there exists vε ∈ dom ϕ and v⋆ε ∈ ∂ϕ(vε) such that

Loosely speaking, if vε is at least as good as v, then vε is almost the same function for 
which the minimum of ϕ(·) is almost achieved. At the same time, it is important to stress 
that the Ekeland variational principle does not guarantee that ϕ(·) attains its minimum.

The essential features of our approach include the use of Sobolev spaces. Consider 
now the Gelfand triple

where

is a closed affine subspace of the second-order Sobolev space H1(I) (which is also a sepa-
rable Hilbert space) and the embeddings are dense, continuous, and compact. Given a 
function vε, we set

From now on, we will use the transformed functions ṽ, but for convenience drop the 
tilde.

(∀v ∈ V )(∀c ∈ R) : ϕ(u+ v) = ϕ(u)+ ϕ(v) ⇔ v = |c|u.

(v ∈ dom ϕ)(ε > 0) : ϕ(v) ≤ inf
V

ϕ + ε,

(
∀v ∈ V \{vε}

)
: v �→ ϕ(v)+ ε�v − vε�,

(
∀v ∈ V \{vε}

)
: �v − vε� ≤ ϕ(v)− ϕ(vε),(

∂ϕ(vε) �= ∅
)
:
∥∥v⋆ε

∥∥
⋆
≤ ε.

V = H̃(I) →֒ L2(I) →֒ H̃−1(I) = V ⋆,

H̃(I) :=
{
v, vε ∈ H1(I) : v − vε ∈ H1

0 (I)
}

(
∀v, vε ∈ H1(I)

)
: ṽ := v − vε .
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The space V := H̃(I) is endowed with the usual scalar product

We see that the associated norm

satisfies the axiom A1. Before moving on to consider ζ, however, it is tempting to slightly 
generalize the definition of V. Modelization of an complex real SCS requires us to intro-
duce some additional constructions. The differential operator K,

is an isomorphic map K : V ⇆ V ⋆. We will work on the so-called energetic space HE(I) 
such that

Hereafter we use the notation E := VE = HE(I). To avoid overloading our presentation, 
we refer the reader to Zeidler (1999) for details, proofs and explanations; the interested 
reader can compare this approach to the one described in Kristály et al. (2010).

Thanks to the notation introduced above, the energetic space E is equipped with the 
scalar product given by

The induced energetic norm can be written as

By definition, put

That is, ϕ may be interpreted as measuring the average value of the weak derivatives. 
Recall from Attouch et al. (2014) that the statements listed below are equivalent. 

S1   There exists a unique ζ ∈ E such that 

 The formula (5) reads as the “weak” Euler equation in the current setting.

(∀u, v ∈ V ) : (u, v)V =

∫

I

(
uv + u′v′

)
.

�v�2V =

∫

I

(
v′2 + v2

)

(
0 < α ≤ p(·) ∈ C1

(
I
))(

0 ≤ q(·) ∈ C
(
I
))

(
∀v ∈ H̃(I)

)
: v := −

(
p(·)v′

)′
+ q(·)v,

VE = HE(I) →֒ H̃(I) →֒ L2(I) →֒ H̃−1(I) →֒ H−1
E (I) = V ⋆

E .

(3)(∀ũ, v ∈ E) : (u, v)E =

∫

I

(
pu′v′ + quv

)
.

(
∀v ∈ E

)
: �v�2E =

∫

I

(
pv′2 + qv2

)
.

(4)
(
∀v ∈ E

)
: ϕ(v) = �v�2E .

(5)
(
∀v ∈ E

)
:
(
ζ , v

)
E
= 0.
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S2   ζ is obtained by 

It is well known from the theory for variational problems in Sobolev spaces that any 
local minimizer of ϕ(v) in the E topology is also a local minimizer of ϕ(v) in the C1 topol-
ogy, and it follows in the standard way that for the quantity ζ, we have

where

and c1, c2 are constants.
To arrive at specific, relevant RV ζ one has to make an assumption in addition to the 

axioms A1 and A2. Now let us choose the function z �→ η defined in Eq. (4) according to 
the formula (1), i.e. in the form of a slowly varying function (see Borovkov 2013). There-
fore, we have

We then introduce the function η(z) given by

To set up the problem, we eliminate the factor � from Eq. (7) by rescaling the quantity ζ

In an appropriate normalization, instead of the original RV ζ occurring in Eq. (7), we 
now have to deal with the renormalized RV ζ. Substituting expressions (11) and (12) into 
Eq. (8), we obtain

At least for all practical purposes, it is possible to represent the relation (12) by means of 
a standard uniform RV U

We will treat Eq. (13) in a broader sense — as the Wakeby distribution (WD) (for more 
details, see Katchanov and Markova 2015; the WD features may be found in Hosking and 
Wallis 2005). Introducing the continuous parameters β, γ, δ, which are called shape param-
eters in statistics, the continuous location parameter ξ, and the continuous scale parameter 
α, we may cast Eq. (13) into the following general WD form Johnson et al. (2010), p. 44–46

min
v∈E

{
1

2
ϕ(v)

}
. (6)

(7)ζ = �(c1 cosh η + c2 sinh η),

(8)η =

∫ (
q(z)

p(z)

) 1
2

dz,

(9)� =
(
p(z)q(z)

)− 1
4 ,

lim
z→∞

η(z) = o(ln z).

(10)η(z) ∝ ln z.

(11)(�)−1ζ → ζ .

(12)ζ ∝ κ1z
−δ + κ2z

β .

(13)ζ ∝ κ1U
−δ + κ2U

β .
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In a special, but very important case, when α = 0 or γ = 0, the WD in Eq. (14) reduces 
to the generalized Pareto distribution (GPD)

To furnish a concrete illustration, we collected the sample of articles and reviews pub-
lished in journals that put in print more than 100 documents per year and were indexed 
in Journal Citation Reports 2003 Science edition (Thomson Reuters). All data were 
downloaded from Web of Science (WoS, updated on August 8, 2013), with a 10-year time 
window. The number of citations z was counted as the total number of times a paper 
appears as a reference of a more recently published paper indexed in the Web of Science 
Core Collection. There are 31,  097,  160 citations among 1,  062,  961 papers. The WD, 
the Weibull, and the lognormal distribution were fitted these bibliometric data using the 
‘lmomco’ R package. Goodness-of-fit was done based on Kolmogorov – Smirnov’s statis-
tic D and Anderson – Darling’s statistic A. The values of the test statistics are reported in 
Table 1 (see also Figs. 1, 2, 3, 4, 5 and 6). Comparing the obtained values and goodness-
of-fit statistics given in the Table 1, it will be seen that the WD offers a higher level of 
accuracy than the other probability distributions considered. We conclude that the CD 
obtained turns out to be similar to the WD.

Discussion
One of the most exciting and fruitful applications of mathematical methods in the natu-
ral sciences is the variational principle. The substantive aim of the present paper is the 
derivation of a variational principle, which makes it possible to interpret the empirical 
regularities of the CDs as a logical necessity. Starting from the famous Ekeland varia-
tional principle, we show that the derivation of the CDs given in this paper might be 
considered a step in indicated above direction. Using the variational principle (6) in the 
energetic space E together with empirical evidences about the existence of the slowly 
varying functions representing the right tail of the CDs allows us to introduce the WD 
(and the GPD) naturally.

Let us stress that modest mathematical means concerning some simple facts of 
functional analysis yield a simple mathematical theory of CDs from which, as its con-
sequence, concrete CDs are immediate derived. It is remarkable that a first-principles 

(14)ζ = ξ +
α

β

(
1− (1− U)β

)
−

γ

δ

(
1− (1−U)−δ

)
.

(15)ζ = ξ −
γ

δ

(
1− (1− U)−δ

)
.

Table 1 Goodness of fit—summary

Distribution Kolmogorov–Smirnov
α = 0.1,

Crit. val. 0.0013
Statistic D

Anderson–Darling
α = 0.1,

Crit. val. 1.929
Statistic A

WD 0.0406 1449.0

Lognormal 0.1062 1.258E+ 5

Weibull 0.1262 1.319E+ 5
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Fig. 1 WD Q–Q plot of z

Fig. 2 WD probability difference plot of z
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Fig. 3 Weibull distribution Q–Q plot of z

Fig. 4 Weibull distribution probability difference plot of z
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Fig. 5 Lognormal distribution Q–Q plot of z

Fig. 6 Lognormal distribution probability difference plot of z



Page 12 of 14Katchanov  SpringerPlus  (2015) 4:677 

derivation of the CDs (e.g., GPD) in a bibliometric model is possible at the price of 
uncontrollable assumptions, which are justified a posteriori. On the contrary, in our 
derivation it is only assumed that Eq. (8) is relevant. This is, of course, more satisfac-
tory. However, note that there are no proper bibliometric reasons for which the Sobolev 
spaces are preferred over any other, and, therefore there are also no reasons to give the 
vague bibliometric meaning of the consistency and the integrity of citations the math-
ematical form of Ekeland’s variational principle.

One must bear in mind that our result refers to properties of some “pure mathematical 
structure”. Like any mathematical result, the Eq. (13) cannot give a completely accurate 
description of a empirical CD. Moreover, in the mathematical theory of CDs, “by con-
struction”, we have no direct knowledge of the statistical parameters. Thus, we can only 
measure the parameters that index the CDs, not compute them from the axioms.

Conclusions
In summary, the approach suggested here allows an interpretation of the Ekeland vari-
ational principle in terms of the standard uniform RV, which may have some interest. It 
is shown that in a sufficiently “smooth” SCS a power-law tail of the static CD can appear. 
However, there are no grounds to consider this a mathematical model underlying biblio-
metric theory. At the same time, the present study may be instructive beyond the spe-
cific research site and can contribute to a mathematical theory of CDs building.
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