1,025 research outputs found

    Nonuniform Codes for Correcting Asymmetric Errors

    Get PDF
    Codes that correct asymmetric errors have important applications in storage systems, including optical disks and Read Only Memories. The construction of asymmetric error correcting codes is a topic that was studied extensively, however, the existing approach for code construction assumes that every codeword could sustain t asymmetric errors. Our main observation is that in contrast to symmetric errors, where the error probability of a codeword is context independent (since the error probability for 1s and 0s is identical), asymmetric errors are context dependent. For example, the all-1 codeword has a higher error probability than the all-0 codeword (since the only errors are 1 → 0). We call the existing codes uniform codes while we focus on the notion of nonuniform codes, namely, codes whose codewords can tolerate different numbers of asymmetric errors depending on their Hamming weights. The goal of nonuniform codes is to guarantee the reliability of every codeword, which is important in data storage to retrieve whatever one wrote in. We prove an almost explicit upper bound on the size of nonuniform asymmetric error correcting codes and present two general constructions. We also study the rate of nonuniform codes compared to uniform codes and show that there is a potential performance gain

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part II: Asymmetric Constellations

    Get PDF
    In this paper, multilevel coded asymmetric modulation with multistage decoding and unequal error protection (UEP) is discussed. These results further emphasize the fact that unconventional signal set partitionings are more promising than traditional (Ungerboeck-type) partitionings, to achieve UEP capabilities with multilevel coding and multistage decoding. Three types of unconventional partitionings are analyzed for asymmetric 8-PSK and 16-QAM constellations over the additive white Gaussian noise channel to introduce design guidelines. Generalizations to other PSK and QAM type constellations follow the same lines. Upper bounds on the bit-error probability based on union bound arguments are first derived. In some cases, these bounds become loose due to the large overlappings of decision regions associated with asymmetric constellations and unconventional partitionings. To overcome this problem, simpler and tighter approximated bounds are derived. Based on these bounds, it is shown that additional refinements can be achieved in the construction of multilevel UEP codes, by introducing asymmetries in PSK and QAM signal constellations
    • …
    corecore