851 research outputs found

    On choice of preconditioner for minimum residual methods for nonsymmetric matrices

    Get PDF
    Existing convergence bounds for Krylov subspace methods such as GMRES for nonsymmetric linear systems give little mathematical guidance for the choice of preconditioner. Here, we establish a desirable mathematical property of a preconditioner which guarantees that convergence of a minimum residual method will essentially depend only on the eigenvalues of the preconditioned system, as is true in the symmetric case. Our theory covers only a subset of nonsymmetric coefficient matrices but computations indicate that it might be more generally applicable

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    A Fast Parallel Poisson Solver on Irregular Domains Applied to Beam Dynamic Simulations

    Full text link
    We discuss the scalable parallel solution of the Poisson equation within a Particle-In-Cell (PIC) code for the simulation of electron beams in particle accelerators of irregular shape. The problem is discretized by Finite Differences. Depending on the treatment of the Dirichlet boundary the resulting system of equations is symmetric or `mildly' nonsymmetric positive definite. In all cases, the system is solved by the preconditioned conjugate gradient algorithm with smoothed aggregation (SA) based algebraic multigrid (AMG) preconditioning. We investigate variants of the implementation of SA-AMG that lead to considerable improvements in the execution times. We demonstrate good scalability of the solver on distributed memory parallel processor with up to 2048 processors. We also compare our SAAMG-PCG solver with an FFT-based solver that is more commonly used for applications in beam dynamics

    Preconditioning and fast solvers for incompressible flow

    Get PDF
    We give a brief description with references of work on fast solution methods for incompressible Navier-Stokes problems which has been going on for about a decade. Specifically we describe preconditioned iterative strategies which involve the use of simple multigrid cycles for subproblems

    Some Preconditioning Techniques for Saddle Point Problems

    Get PDF
    Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution of such systems which are of particular importance in the context of large scale computation. In particular we describe some of the most useful preconditioning techniques for Krylov subspace solvers applied to saddle point problems, including block and constrained preconditioners.\ud \ud The work of Michele Benzi was supported in part by the National Science Foundation grant DMS-0511336

    A Bramble-Pasciak conjugate gradient method for discrete Stokes equations with random viscosity

    Full text link
    We study the iterative solution of linear systems of equations arising from stochastic Galerkin finite element discretizations of saddle point problems. We focus on the Stokes model with random data parametrized by uniformly distributed random variables and discuss well-posedness of the variational formulations. We introduce a Bramble-Pasciak conjugate gradient method as a linear solver. It builds on a non-standard inner product associated with a block triangular preconditioner. The block triangular structure enables more sophisticated preconditioners than the block diagonal structure usually applied in MINRES methods. We show how the existence requirements of a conjugate gradient method can be met in our setting. We analyze the performance of the solvers depending on relevant physical and numerical parameters by means of eigenvalue estimates. For this purpose, we derive bounds for the eigenvalues of the relevant preconditioned sub-matrices. We illustrate our findings using the flow in a driven cavity as a numerical test case, where the viscosity is given by a truncated Karhunen-Lo\`eve expansion of a random field. In this example, a Bramble-Pasciak conjugate gradient method with block triangular preconditioner outperforms a MINRES method with block diagonal preconditioner in terms of iteration numbers.Comment: 19 pages, 1 figure, submitted to SIAM JU

    A framework for deflated and augmented Krylov subspace methods

    Get PDF
    We consider deflation and augmentation techniques for accelerating the convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in the sense the term is used here) "removes" certain parts from the operator making it singular, while augmentation adds a subspace to the Krylov subspace (often the one that is generated by the singular operator); in contrast, preconditioning changes the spectrum of the operator without making it singular. Deflation and augmentation have been used in a variety of methods and settings. Typically, deflation is combined with augmentation to compensate for the singularity of the operator, but both techniques can be applied separately. We introduce a framework of Krylov subspace methods that satisfy a Galerkin condition. It includes the families of orthogonal residual (OR) and minimal residual (MR) methods. We show that in this framework augmentation can be achieved either explicitly or, equivalently, implicitly by projecting the residuals appropriately and correcting the approximate solutions in a final step. We study conditions for a breakdown of the deflated methods, and we show several possibilities to avoid such breakdowns for the deflated MINRES method. Numerical experiments illustrate properties of different variants of deflated MINRES analyzed in this paper.Comment: 24 pages, 3 figure

    Preconditioning and convergence in the right norm

    Get PDF
    The convergence of numerical approximations to the solutions of differential equations is a key aspect of Numerical Analysis and Scientific Computing. Iterative solution methods for the systems of linear(ised) equations which often result are also underpinned by analyses of convergence. In the function space setting, it is widely appreciated that there are appropriate ways in which to assess convergence and it is well-known that different norms are not equivalent. In the finite dimensional linear algebra setting, however, all norms are equivalent and little attention is often payed to the norms used. In this paper, we highlight this consideration in the context of preconditioning for minimum residual methods (MINRES and GMRES/GCR/ORTHOMIN) and argue that even in the linear algebra setting there is a ‘right’ norm in which to consider convergence: stopping an iteration which is rapidly converging in an irrelevant or highly scaled norm at some tolerance level may still give a poor answer
    • …
    corecore