27 research outputs found

    Coupling of Finite and Boundary Elements for Singularly Nonlinear Transmission and Contact Problems

    Get PDF
    This article discusses the well-posedness and error analysis of the coupling of finite and boundary elements for interface problems in nonlinear elasticity. It concerns -Laplacian-type Hencky materials with an unbounded stress-strain relation, as they arise in the modelling of ice sheets, non-Newtonian fluids or porous media. We propose a functional analytic framework for the numerical analysis and obtain a priori and a posteriori error estimates for Galerkin approximations to the resulting boundary/domain variational inequality

    Boundary Element Methods with Weakly Imposed Boundary Conditions

    Get PDF
    We consider boundary element methods where the CalderĂłn projector is used for the system matrix and boundary conditions are weakly imposed using a particular variational boundary operator designed using techniques from augmented Lagrangian methods. Regardless of the boundary conditions, both the primal trace variable and the flux are approximated. We focus on the imposition of Dirichlet, mixed Dirichlet--Neumann, and Robin conditions. A salient feature of the Robin condition is that the conditioning of the system is robust also for stiff boundary conditions. The theory is illustrated by a series of numerical examples

    Symmetric Galerkin boundary element method.

    No full text
    This review concerns a methodology for solving numerically, to engineering purposes, boundary and initial-boundary value roblems by a peculiar approach characterized by the following features: the continuous formulation is centered on integral equations based on the combined use of single-layer and double-layer sources, so that the integral operator turns out to be symmetric with respect to a suitable bilinear form; the discretization is performed either on a variational basis or by a Galerkin weighted residual procedure, the interpolation and weight functions being chosen so that the variables in the approximate formulation are generalized variables in Prager's sense. As main consequences of the above provisions, symmetry is exhibited by matrices with a key role in the algebraized versions, some quadratic forms have a clear energy meaning, variational properties characterize the solutions and other results, invalid in traditional boundary element methods, enrich the theory underlying the computational applications. The present survey outlines recent theoretical and computational developments of the title methodology with particular reference to linear elasticity, elastoplasticity, fracture mechanics, time-dependent problems, variational approaches, singular integrals, approximation issues, sensitivity analysis, coupling of boundary and finite elements, computer implementations. Areas and aspects which at present require further research are dentified and comparative assessments are attempted with respect to traditional boundary integral-element methods

    Seeing the invisible: Digital holography

    Get PDF
    For the past years there has been an increasing interest in developing mathematical and computational methods for digital holography. Holographic techniques furnish noninvasive tools for high-speed 3D live cell imaging. Holograms can be recorded in the millisecond or microsecond range without damaging samples. A hologram encodes the wave field scattered by an object as an interference pattern. Digital holography aims to create numerical images from digitally recorded holograms. We show here that partial differential equation constrained optimization, topological derivatives of shape functionals, iteratively regularized Gauss–Newton methods, Bayesian inference, and Markov chain Monte Carlo techniques provide effective mathematical tools to invert holographic data with quantified uncertainty. Holography set-ups are particularly challenging because a single incident wave is employed. Similar tools could be useful in inverse scattering problems involving other types of waves and different emitter/receiver configurations, such as microwave imaging or elastography, for instance
    corecore