25 research outputs found

    Waterfilling Theorems for Linear Time-Varying Channels and Related Nonstationary Sources

    Full text link
    The capacity of the linear time-varying (LTV) channel, a continuous-time LTV filter with additive white Gaussian noise, is characterized by waterfilling in the time-frequency plane. Similarly, the rate distortion function for a related nonstationary source is characterized by reverse waterfilling in the time-frequency plane. Constraints on the average energy or on the squared-error distortion, respectively, are used. The source is formed by the white Gaussian noise response of the same LTV filter as before. The proofs of both waterfilling theorems rely on a Szego theorem for a class of operators associated with the filter. A self-contained proof of the Szego theorem is given. The waterfilling theorems compare well with the classical results of Gallager and Berger. In the case of a nonstationary source, it is observed that the part of the classical power spectral density is taken by the Wigner-Ville spectrum. The present approach is based on the spread Weyl symbol of the LTV filter, and is asymptotic in nature. For the spreading factor, a lower bound is suggested by means of an uncertainty inequality.Comment: 13 pages, 5 figures; channel model in Section III now restricted to LTV filters with real-valued kerne

    On the Szeg\"o-Asymptotics for Doubly-Dispersive Gaussian Channels

    Full text link
    We consider the time-continuous doubly-dispersive channel with additive Gaussian noise and establish a capacity formula for the case where the channel correlation operator is represented by a symbol which is periodic in time and fulfills some further integrability and smoothness conditions. The key to this result is a new Szeg\"o formula for certain pseudo-differential operators. The formula justifies the water-filling principle along time and frequency in terms of the time--continuous time-varying transfer function (the symbol).Comment: 5 pages, to be presented at ISIT 2011, minor typos corrected, references update

    Noncoherent Capacity of Underspread Fading Channels

    Full text link
    We derive bounds on the noncoherent capacity of wide-sense stationary uncorrelated scattering (WSSUS) channels that are selective both in time and frequency, and are underspread, i.e., the product of the channel's delay spread and Doppler spread is small. For input signals that are peak constrained in time and frequency, we obtain upper and lower bounds on capacity that are explicit in the channel's scattering function, are accurate for a large range of bandwidth and allow to coarsely identify the capacity-optimal bandwidth as a function of the peak power and the channel's scattering function. We also obtain a closed-form expression for the first-order Taylor series expansion of capacity in the limit of large bandwidth, and show that our bounds are tight in the wideband regime. For input signals that are peak constrained in time only (and, hence, allowed to be peaky in frequency), we provide upper and lower bounds on the infinite-bandwidth capacity and find cases when the bounds coincide and the infinite-bandwidth capacity is characterized exactly. Our lower bound is closely related to a result by Viterbi (1967). The analysis in this paper is based on a discrete-time discrete-frequency approximation of WSSUS time- and frequency-selective channels. This discretization explicitly takes into account the underspread property, which is satisfied by virtually all wireless communication channels.Comment: Submitted to the IEEE Transactions on Information Theor

    On the Sensitivity of Noncoherent Capacity to the Channel Model

    Full text link
    The noncoherent capacity of stationary discrete-time fading channels is known to be very sensitive to the fine details of the channel model. More specifically, the measure of the set of harmonics where the power spectral density of the fading process is nonzero determines if capacity grows logarithmically in SNR or slower than logarithmically. An engineering-relevant problem is to characterize the SNR value at which this sensitivity starts to matter. In this paper, we consider the general class of continuous-time Rayleigh-fading channels that satisfy the wide-sense stationary uncorrelated-scattering (WSSUS) assumption and are, in addition, underspread. For this class of channels, we show that the noncoherent capacity is close to the AWGN capacity for all SNR values of practical interest, independently of whether the scattering function is compactly supported or not. As a byproduct of our analysis, we obtain an information-theoretic pulse-design criterion for orthogonal frequency-division multiplexing systems.Comment: To be presented at IEEE Int. Symp. Inf. Theory 2009, Seoul, Kore

    Information Theory of underspread WSSUS channels

    Get PDF
    The chapter focuses on the ultimate limit on the rate of reliable communication through Rayleigh-fading channels that satisfy the wide-sense stationary (WSS) and uncorrelated scattering (US) assumptions and are underspread. Therefore, the natural setting is an information-theoretic one, and the performance metric is channel capacity. The family of Rayleigh-fading underspread WSSUS channels constitutes a good model for real-world wireless channels: their stochastic properties, like amplitude and phase distributions match channel measurement results. The Rayleigh-fading and the WSSUS assumptions imply that the stochastic properties of the channel are fully described by a two-dimensional power spectral density (PSD) function, often referred to as scattering function. The underspread assumption implies that the scattering function is highly concentrated in the delay-Doppler plane. Two important aspects need to be accounted for by a model that aims at being realistic: neither the transmitter nor the receiver knows the realization of the channel; and the peak power of the transmit signal is limited. Based on these two aspects the chapter provides an information-theoretic analysis of Rayleigh-fading underspread WSSUS channels in the noncoherent setting, under the additional assumption that the transmit signal is peak-constrained

    On the Sensitivity of Continuous-Time Noncoherent Fading Channel Capacity

    Get PDF
    The noncoherent capacity of stationary discrete-time fading channels is known to be very sensitive to the fine details of the channel model. More specifically, the measure of the support of the fading-process power spectral density (PSD) determines if noncoherent capacity grows logarithmically in SNR or slower than logarithmically. Such a result is unsatisfactory from an engineering point of view, as the support of the PSD cannot be determined through measurements. The aim of this paper is to assess whether, for general continuous-time Rayleigh-fading channels, this sensitivity has a noticeable impact on capacity at SNR values of practical interest. To this end, we consider the general class of band-limited continuous-time Rayleigh-fading channels that satisfy the wide-sense stationary uncorrelated-scattering (WSSUS) assumption and are, in addition, underspread. We show that, for all SNR values of practical interest, the noncoherent capacity of every channel in this class is close to the capacity of an AWGN channel with the same SNR and bandwidth, independently of the measure of the support of the scattering function (the two-dimensional channel PSD). Our result is based on a lower bound on noncoherent capacity, which is built on a discretization of the channel input-output relation induced by projecting onto Weyl-Heisenberg (WH) sets. This approach is interesting in its own right as it yields a mathematically tractable way of dealing with the mutual information between certain continuous-time random signals.Comment: final versio
    corecore