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Brain function is hallmarked by its adaptivity and robustness, arising from under-

lying neural activity that admits well-structured representations in the temporal,

spatial, or spectral domains. While neuroimaging techniques such as Electroen-

cephalography (EEG) and magnetoencephalography (MEG) can record rapid neural

dynamics at high temporal resolutions, they face several signal processing challenges

that hinder their full utilization in capturing these characteristics of neural activity.

The objective of this dissertation is to devise statistical modeling and estimation

methodologies that account for the dynamic and structured representations of neural

activity and to demonstrate their utility in application to experimentally-recorded

data.

The first part of this dissertation concerns spectral analysis of neural data. In

order to capture the non-stationarities involved in neural oscillations, we integrate

multitaper spectral analysis and state-space modeling in a Bayesian estimation set-

ting. We also present a multitaper spectral analysis method tailored for spike trains



that captures the non-linearities involved in neuronal spiking. We apply our pro-

posed algorithms to both EEG and spike recordings, which reveal significant gains

in spectral resolution and noise reduction.

In the second part, we investigate cortical encoding of speech as manifested in

MEG responses. These responses are often modeled via a linear filter, referred to as

the temporal response function (TRF). While the TRFs estimated from the sensor-

level MEG data have been widely studied, their cortical origins are not fully under-

stood. We define the new notion of Neuro-Current Response Functions (NCRFs) for

simultaneously determining the TRFs and their cortical distribution. We develop an

efficient algorithm for NCRF estimation and apply it to MEG data, which provides

new insights into the cortical dynamics underlying speech processing.

Finally, in the third part, we consider the inference of Granger causal (GC)

influences in high-dimensional time series models with sparse coupling. We consider

a canonical sparse bivariate autoregressive model and define a new statistic for

inferring GC influences, which we refer to as the LASSO-based Granger Causal

(LGC) statistic. We establish non-asymptotic guarantees for robust identification

of GC influences via the LGC statistic. Applications to simulated and real data

demonstrate the utility of the LGC statistic in robust GC identification.
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Chapter 1: Introduction

In recent years, a wide range of experimental methodologies for recording the

structure and function of the human brain have produced abundant neural datasets

in various spatiotemporal resolutions and modalities. Modalities such as electro-

corticography (ECoG), local field potential (LFP) recording, and single/multi-unit

depth electrode recordings acquire electrophysiological activity directly from the

cortex in an invasive fashion. On the contrary, noninvasive approaches such elec-

troencephalography (EEG) and magnetoencephalography (MEG), record electro-

magnetic fields generated by cortical activity, at the scalp or around the head.

Other examples of noninvasive brain-imaging modalities include positron emission

tomography (PET) and functional magnetic resonance imaging (fMRI), which mea-

sure the changes in cerebral blood flow as correlates of neural activity. While the

invasive and noninvasive approaches have specific benefits as well as limitations,

noninvasive modalities have become increasingly popular in research settings, and

particularly in studying the human brain, due to the convenience of their adoption

in non-clinical environments.

This convenience, however, comes at the cost of losing either the temporal

or spatial resolution due to indirect measurement of neural activity. For example,
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while fMRI can distinguish between brain sources separated by ∼ 1.5 mm [1], it

has a temporal resolution of the order of seconds. M/EEG recordings, on the other

hand, can capture neural activity with millisecond resolution, but suffer from spatial

mixing of the activity over the sensor space. A key advantage of such high temporal

resolution is the ability to track the rapid temporal dynamics of coordinated neu-

ronal population activity under sensory or cognitive tasks [2, 3, 4]. However, the

indirect measurement of brain activity via M/EEG makes the inference of its spa-

tial characteristics heavily dependent on modeling and computational tools. While

invasive electrophysilogy recordings do not suffer from loss of spatial resolution, the

come with other sets of challenges. For example, spike train recordings of individ-

ual neurons’ action potentials result in binary time series, which require the usage

of statistical inference techniques capable of capturing the characteristics of such

binary data.

Existing inference algorithms face several key challenges in deciphering the

brain dynamics that underlie neural data. First, under sensory and cognitive tasks,

the underlying cortical activity exhibits representations that are well structured

in the temporal, spatial, or spectral domains, or combinations thereof [5, 6, 7]. An

important challenge in neural data analysis is therefore how to exploit the aforemen-

tioned structured representations towards more robust and interpretable inference

procedures. Second, existing approaches often adopt linear models (specially for

encoding of external stimuli), even though various nonlinearities are involved in cor-

tical processing [8, 9]. Undermining these nonlinearities results in large biases in

the inferred characteristics of neural activity. Third, neuronal activity often under-
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goes rapid changes, often referred to as neuronal plasticity [10], in order to adapt

to changing stimulus salience and behavioral context. Most existing techniques for

neuroimaging data analysis either assume stationarity of the data or resort to sliding

window processing, which result in loss of temporal resolution. Fourth, the major-

ity of existing data analysis techniques designed for continuous-time data such as

M/EEG and LFP are not optimal for the analysis of binary time series obtained by

single-/multi-unit recordings of neuronal activity. In this thesis, we aim at address-

ing these challenges for three classes of data analysis techniques, namely, spectral

analysis, encoding models, and causal inference, primarily in context of M/EEG and

spiking data analysis.

Part I: Spectral Analysis of Neural Data

The first part of this dissertation concerns the spectral analysis of neural data

from EEG and neuronal spike recordings. Although spectral analysis of continu-

ous time-series is well established, hallmarked by the multitaper method that offers

optimal bias-variance trade-offs [11, 12, 13], some of the key characteristics of neu-

ral data cannot be readily captured by existing techniques. In particular, we aim

at capturing the non-stationarity of EEG data and the non-linearities involved in

spiking activity in the context of multitaper spectral analysis.

In Chapter 2, we develop a Bayesian framework for estimating time-varying

spectra of non-stationary data at high spectrotemporal resolutions. Classically,

spectral analysis techniques, such as the multitaper method, are used in conjunction
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with overlapping sliding windows in analyzing such non-stationary time series data.

Although sliding window analysis is convenient to implement, the resulting estimates

are sensitive to the window length and overlap size. In addition, it undermines the

dynamics of the time series as the estimate associated to each window uses only

the data within. Finally, the overlap between consecutive windows hinders a precise

statistical assessment of the estimated spectra.

We address these shortcomings by explicitly modeling the spectral dynam-

ics through augmenting the multitaper method with a state-space model within

a Bayesian estimation framework [14, 15]. The underlying states pertaining to the

eigen-spectral quantities arising in multitaper analysis are estimated using instances

of the Expectation-Maximization algorithm, and are used to construct spectrograms

and their respective confidence intervals. We propose spectral estimators that are

robust to noise and are able to capture spectral dynamics at high spectrotemporal

resolution. We provide a theoretical analysis of the bias-variance trade-off, which es-

tablishes performance gains over the standard overlapping multitaper method. We

compare the spectrogram estimates from our algorithms to other state-of-the-art

estimation techniques using synthetic data, the results of which also validate our

theoretical analysis. We apply our algorithms to EEG data recorded during sleep,

as well as electric network frequency recordings, to demonstrate their utility and

versatility in real world data analysis.

Next, we consider the problem of inferring the spectra of latent neural covari-

ates that underlie spiking activity. Access to such spectra is critical to understand-

ing the role of brain rhythms in mediating cognitive functions. While the spectral

4



estimation of continuous time-series is a well-established domain, computing the

spectral representation of these latent neural covariates from spiking data sets forth

various challenges due to the intrinsic non-linearities involved. In Chapter 3, we

address this problem by proposing a variant of the multitaper method specifically

tailored for neural spiking data [16]. To this end, we construct auxiliary spiking

statistics akin to tapered data, from which the eigen-spectra of the underlying latent

process can be directly inferred using maximum likelihood estimation, and thereby

the multitaper estimate can be efficiently computed. Comparison of our proposed

technique to existing methods using simulated spike trains and multi-unit record-

ings under general anesthesia reveals significant gains in terms of the bias-variance

trade-off.

Part II: A Cortically-distributed Encoding Model of Speech Processing

for M/EEG Analysis

The second part of this dissertation concerns the characterization of the neural

dynamics that underlie speech processing at the cortical level. Neuroimaging tech-

niques such as M/EEG have provided significant insights into the meso-scale neural

processing of continuous stimuli, such as speech, thanks to their high temporal res-

olution [3, 17, 18, 19]. Existing work in the context of auditory processing suggests

that certain features of speech, such as the acoustic envelope, can be used as reliable

linear predictors of the neural response manifested in M/EEG. The corresponding

linear filters are referred to as temporal response functions (TRFs) [19, 20, 21].
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The resulting encoding model considers the whole brain along with the neu-

roimaging measurement mechanism as a linear time invariant (LTI) system, col-

lectively characterized by the TRFs, where the the system takes one or several

representations of the auditory stimuli (e.g., the broadband acoustic envelope) as

input and produces the M/EEG recordings as output. While the functional roles of

specific components of the TRF are well-studied and linked to behavioral attributes

such as attention, the cortical origins of the underlying neural processing are not

as well understood due to the spatial mixing at the sensor level. Existing methods

for demixing the TRFs at the cortical level work in a two-stage fashion: either the

TRFs are first estimated at the sensor level, and then mapped to the cortex via

source localization (See, for example, [4, 18]), or the neuroimaging data are first

mapped to the cortex followed by estimating TRFs for each of the resulting cortical

sources [22]. Given that each stage is biased towards specific goals, such as enforcing

sparsity and smoothness, the end result typically suffers from destructive propaga-

tion of biases across stages, which in turn hinders a valid statistical interpretation

of the results and requires significant post-hoc processing to summarize the results

in a meaningful fashion.

In Chapter 4, we address this challenge by directly estimating linear filter rep-

resentations of cortical sources from neuroimaging data in the context of speech

processing [23, 24]. To this end, we introduce the Neuro-Current Response Func-

tions (NCRFs), a set of linear filters, spatially distributed throughout the cortex,

that predict the cortical currents giving rise to the observed ongoing MEG (or

EEG) data in response to continuous speech. We cast NCRF estimation within
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a Bayesian framework, which allows unification of the TRF and source estimation

problems, and also facilitates the incorporation of prior information on the structural

properties of the NCRFs. To generalize this analysis to M/EEG recordings which

lack individual structural magnetic resonance (MR) scans, NCRFs are extended to

free-orientation dipoles and a novel regularizing scheme is introduced to mitigate

dependence on fine-tuned coordinate co-registration. We present a fast estimation

algorithm, which we refer to as the Champ-Lasso algorithm, by leveraging recent ad-

vances in optimization, and demonstrate its utility through application to simulated

and experimentally recorded MEG data under auditory experiments. Our simula-

tion studies reveal significant improvements over existing two-stage methods, in

terms of spatial resolution, filter reconstruction, and recovering dipole orientations.

The analysis of experimentally-recorded MEG data without MR scans corroborates

existing findings, by delineating the distinct cortical distribution of the underlying

neural processes at high spatiotemporal resolution and thus obviating the need for

post-processing steps such as clustering and denoising. In summary, we provide a

principled whole brain encoding model for sensory processing as well as an estima-

tion paradigm for MEG source analysis tailored to extracting the cortical origin of

neural responses to continuous stimuli.

Part III: Granger Causal Inference from Sparse Autoregressive Models

Reliable identification of causal influences is one the central challenges in neural

data analysis [25, 26, 27]. Granger causal (GC) characterization of time-series is

7



among the widely used data-driven methods in this regard [28, 29, 30]. The notion

of GC influence pertains to assessing the improvements in predicting the future

samples of one time-series by incorporating the past samples of another one.

Conventionally, the prediction task is cast within the multivariate autoregres-

sive modeling framework, in which the optimal linear predictors are obtained by

the ordinary least squares (OLS) method coupled with the AIC [31] or BIC [32]

procedures to determine optimal model orders. Then, the GC measure is defined as

the logarithmic ratio of the two prediction error variances, and its statistical signifi-

cance is assessed based on the corresponding asymptotic distributions [33, 34]. Two

of the main practical challenges of this methodology are (1) parameter estimation

and model selection under limited data durations, which leads to over-fitting and

hence errors in identifying the causal influences [25, 27, 35, 36], and (2) correlated

process noise as a confounding factor that hinders accurate identification of the

causal effects [37].

The theory of sparse estimation, and particularly the LASSO, has successfully

addressed these challenges for parameter estimation. The LASSO and its variants

have already been utilized in existing work to identify graphical GC influences based

on the estimated model parameters, either directly [38] or by appropriate thresh-

olding [39, 40]. Another strand of results uses de-biasing techniques in order to

construct confidence intervals and thereby identify the significant causal interac-

tions (See, for example, [41, 42]). There is, however, an evident disconnect between

these LASSO-based approaches and the classical OLS-based GC inference: while the

LASSO-based approaches aim at identifying the GC effects based on the estimates
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of the model parameters, the classical GC methodology relies on the comparison

of the prediction errors between two models (i.e., an unconstrained model and a

constrained model) by resorting to asymptotic distributions.

In Chapter 5, we close the gap by providing a LASSO-based Granger causal

analysis for a canonical bivariate autoregressive model with correlated process noise.

Under the hypothesis that the true model admits a sparse autoregressive representa-

tion, we study the non-asymptotic properties of a likelihood-based scaled F-statistic

under the null (i.e., absence of a Granger causal effect) and alternative (i.e., presence

of a Granger causal effect) conditions and establish that the well-known sufficient

conditions of LASSO also suffice for robust identification of Granger causal influ-

ences. By slightly weakening these sufficient conditions, we also characterize the

false positive error probability of a simple thresholding rule for identifying Granger

causal effects. We present simulation studies to compare the performance of the con-

ventional ordinary least squares method to that of the LASSO in detecting Granger

causal influences to demonstrate the validity of our theoretical claims and to explore

the key underlying trade-offs. We also present an application to experimentally-

recorded neural data from general anesthesia to assess the causal influence of the

LFP on spiking activity. In summary, our main contribution is to extend the non-

asymptotic results of the LASSO to the classical asymptotic characterization of GC

influences, and to identify the key trade-offs in terms of sampling requirements and

strength of the causal effects that result in robust GC identification.

Finally we close this thesis by discussing some of the future directions of re-

search along the same line, in Chapter 6. It is worth nothing that in addition to
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their utility in analyzing neuronal data, our techniques have potential application

in other domains beyond neuroscience, thanks to the plug-and-play nature of the

algorithms used in our inference frameworks: for example, the spectral analysis

techniques may have applications in domains such as economics, forensics, oceanog-

raphy, climatology, seismology; the LASSO-based Granger causal analysis can be

used to extract causal influences in social networks or gene regulatory networks.

In order to facilitate usage by the broader systems neuroscience community, MAT-

LAB/Python implementations of the algorithms developed in this dissertation are

archived as open source repositories on GitHub: https://github.com/proloyd.
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Chapter 2: Dynamic Bayesian Multitaper Spectral Analysis

Spectral analysis techniques are among the most important tools for extracting

information from time series data recorded from naturally occurring processes. Ex-

amples include speech [43], images [44], electroencephalography (EEG) [45], oceanog-

raphy [46], climatic time series [47] and seismic data [48]. Due to the exploratory

nature of most of these applications, non-parametric techniques based on Fourier

methods and wavelets are among the most widely used. In particular, the multita-

per (MT) method excels among the available non-parametric techniques due to both

its simplicity and control over the bias-variance trade-off via bandwidth adjustment

[11, 12, 13].

Most existing spectral analysis techniques assume that the time series is sta-

tionary. In many applications of interest, however, the energy of the various oscil-

latory components in the data exhibits dynamic behavior. Extensions of stationary

time series analysis to these non-stationary processes have led to ‘time-varying’

spectral descriptions such as the Wigner-Ville distribution [49, 50], the evolutionary

spectra and its generalizations [51, 52], and the time-frequency operator symbol for-

mulation [53] (See [54] for a detailed review). A popular approach to estimating such

time-varying spectra is to subdivide the data into overlapping windows or segments
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and estimate the spectrum locally for each window using various Fourier or wavelet-

based methods[55], assuming the underlying process is quasi-stationary, i.e., the

spectrum changes slowly with time. Thereby, the so-called spectrogram analysis is

obtained by using sliding windows with overlap in order to capture non-stationarity.

Although sliding window processing is widely used due to its fast implementa-

tion, it has several major drawbacks. First, the window length and extent of overlap

are subjective choices and can drastically change the overall attribute of the spectro-

gram if chosen poorly. Second, given that the estimate associated to a given window

is obtained by only the data within, it ignores the common dynamic trends shared

across multiple windows, and thereby fails to fully capture the degree of smoothness

inherent in the signal. Instead, the smoothness of the estimates is enforced by the

amount of overlap between adjacent windows. Third, although techniques such as

the MT analysis are able to mitigate the variabilities arising from finite data dura-

tion or the so-called ‘sampling’ noise by averaging over multiple tapers, their spectral

resolution degrades when applied to data within small windows due to the increase

in the Rayleigh resolution [56]. In addition, they do not have a mechanism in place

to suppress the additive measurement noise that commonly contaminates empirical

observations. Fourth, the overlap between adjacent windows hinders a precise sta-

tistical assessment of the estimates, such as constructing confidence intervals due to

the high dependence of estimates across windows. To address this issue, statistical

corrections for multiple comparisons need to be employed [57], which in turn limit

the resulting test powers when multiple windows are involved.

In recent years, several alternative approaches to non-stationary spectral anal-
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ysis have been proposed, such as the empirical mode decomposition (EMD) [58],

synchrosqueezed wavelet transform [59, 60], time-frequency reassignment [61], time-

frequency ARMA models [62], and spectrotemporal pursuit [63]. These techniques

aim at decomposing the data into a small number of smooth oscillatory components

in order to produce spectral representations that are smooth in time but sparse or

structured in frequency. Although they produce spectral estimates that are highly

localized in the time-frequency plane, they require certain assumptions on the data

to hold. For example, EMD analysis assumes the signal to be deterministic and does

not take into account the effect of observation noise [58]. Other methods assume

that the underlying spectrotemporal components pertain to certain structures such

as amplitude-modulated narrowband mixtures [59, 60], sparsity [63] or chirp-like

dynamics [61]. In addition, they lack a statistical characterization of the estimates.

Finally, although these sophisticated methods provide spectrotemporal resolution

improvements, they do not yield implementations as simple as those of the sliding

window-based spectral estimators.

In this chapter, we address the above-mentioned shortcomings of sliding win-

dow multitaper estimators by resorting to state-space modeling. State-space mod-

els provide a flexible and natural framework for analyzing systems that evolve with

time [64, 65, 66, 67], and have been previously used for parametric [62, 68] and

non-parametric [63] spectral estimation. The novelty of our approach is in the in-

tegration of techniques from MT analysis and state-space modeling in a Bayesian

estimation framework. To this end, we construct state-space models in which the

underlying states pertain to the eigen-spectral quantities, such as the empirical
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eigen-coefficients and eigen-spectra arising in MT analysis. We employ state dy-

namics that capture the evolution of these quantities, coupled with observation

models that reflect the effect of measurement and sampling noise. We then utilize

Expectation-Maximization (EM) to find the maximum a posteriori (MAP) estimate

of the states given the observed data to construct our spectral estimators as well as

statistical confidence intervals.

We provide theoretical analysis of the bias-variance trade-off, which reveals

two major features of our proposed framework:

1. Our methodology inherits the control mechanism of the bias-variance trade-off

from the MT framework by means of changing the design bandwidth param-

eters [13], and

2. Our algorithms enjoy the optimal data combining and denoising features of

Bayesian filtering and smoothing.

In addition, due to the simplicity and wide usage of Bayesian filtering and smoothing

algorithms, our algorithms are nearly as simple to implement as the sliding window-

based spectrograms. To further demonstrate the performance of our algorithms,

we apply them to synthetic as well as real data including human EEG recordings

during sleep and electric network frequency data from audio recordings. Application

of our proposed estimators to these data provides spectrotemporal features that

are significantly denoised, are smooth in time, and enjoy high spectral resolution,

thereby corroborating our theoretical results.

The rest of the chapter is organized as follows: In Section 2.1, we present
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the preliminaries and problem formulation. In Section 2.2, we develop our proposed

estimators. Application of our estimators to synthetic and real data are given in Sec-

tion 2.3, followed by our theoretical analysis in Section 2.4. Finally, our concluding

remarks are presented in Section 2.5.

2.1 Preliminaries and Problem Formulation

2.1.1 Non-stationary Processes and Time-Varying Spectrum

Consider a finite realization of T samples from a discrete-time non-stationary

process yt, t = 1, 2, · · ·T , obtained via sampling a continuous-time signal above the

Nyquist rate. We assume that the non-stationary process yt is harmonizable so that

it admits a Cramér representation [69, p. 150] of the form:

yt =

∫ 1
2

− 1
2

ei2πftdz(f), (2.1)

where dz(f) is the generalized Fourier transform of the process. This process has a

covariance function of the form:

ΓL(t1, t2) := E[yt1y
∗
t2

] =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

ei2π(t1f1−t2f2)γL(f1, f2)df1df2, (2.2)

where γL(f1, f2):=E[dz(f1)dz∗(f2)] is referred to as the generalized spectral density

or the Loève spectrum [70]. Due to the difficulty in extracting physically-plausible

spectrotemporal information from the two-dimensional function γL(f1, f2), other
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forms of spectrotemporal characterization that are two-dimensional functions over

time and frequency have gained popularity [55]. To this end, by defining the coor-

dinate rotations t := (t1 + t2)/2, τ := t1− t2, f := (f1 + f2)/2, and g := f1− f2 and

by substituting in the definition of the covariance function in Eq. (2.2), we obtain:

Γ(τ, t) :=ΓL(t1, t2)=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

ei2π(tg+τf)γ(g, f)dfdg,

where f and g are referred to as the ordinary and non-stationary frequencies,

respectively[70], and γ(g, f)dfdg := γL(f1, f2)df1df2 is the Loève spectrum in the

rotated coordinates. To obtain one such two-dimensional spectral density represen-

tation over time and frequency, we define:

D(t, f) :=

∫ 1
2

− 1
2

ei2πtgγ(g, f)dg=

∫ 1
2

− 1
2

e−i2πτfE[yt+ τ
2
y∗t− τ

2
]dτ, (2.3)

which coincides with the expected value of the Wigner-Ville distribution [49]. The

‘time-varying’ spectral representation D(t, f) captures the spectral information of

the data as a function of time, and thus provides a useful framework for analyzing

non-stationary time series. However, estimating D(t, f) from finite samples of the

process is challenging, considering that the expectation needs to be replaced by time

averages which may smooth out the time-varying features of the signal [50].

In order to address this challenge, certain additional assumptions need to be

imposed on the underlying process, which as a matter of fact restrict the extent

of temporal or spectral variations the signal can exhibit. In this regard, two such
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popular assumptions are posed in terms of the quasi-stationary and underspread

properties. In order to define these properties quantitatively, let us first define the

Expected Ambiguity Function (EAF) [52, 54] as:

∆(τ, g) :=

∫ 1
2

− 1
2

ei2πτfγ(g, f)df=

∫ 1
2

− 1
2

e−i2πtgE[yt+ τ
2
y∗t− τ

2
]dt (2.4)

A signal whose EAF has a limited spread along g (i.e., negligible spectral corre-

lation) is called quasi-stationary. If the signal is concentrated around the origin

with respect to both τ and g (i.e., small spectral and temporal correlation), it is

called underspread. There exists a large body of work on estimating time-varying

spectra under the quasi-stationarity assumption, such as short-time periodograms,

pseudo-Wigner estimators [50], and estimates of the evolutionary spectra [51]. More

recent methods such as the Generalized Evolutionary Spectra (GES) estimators [52]

and time-frequency auto-regressive moving-average (TFARMA) [62] estimators rely

on the underspread property of the underlying signals. We refer the reader to [71,

Chapter 10] for a detailed discussion of these properties.

It is noteworthy that both assumptions are fairly general, encompass a broad

range of naturally-occurring processes, and have resulted in successful applications

in real life problems. We will next discuss one of the widely used methods for esti-

mating time-varying spectra under the quasi-stationary assumption, which extends

MT spectral analysis beyond second-order stationary processes and has gained pop-

ularity in exploratory studies of naturally occurring processes [70].
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2.1.2 The Sliding Window MT Spectral Analysis

One of the popular non-parametric techniques for estimating the ‘time-varying’

spectral representation D(t, f) is achieved by subdividing the data into overlapping

windows or segments and estimating the spectrum for each window independently

using the MT method [70]. This method naturally and intuitively extends the popu-

lar non-parametric MT method to the non-stationary scenario under the assumption

of quasi-stationarity, which enables one to treat the time series within segments (lo-

cally) as approximately second-order stationary [72]. The resulting spectrotemporal

representations are smoothed version of the Wigner-Ville distribution [54] and are

referred to as spectrogram. In what follows, we briefly describe the MT spectrogram

method, since it provides the foundation of our treatment.

The MT method is an extension of single-taper spectral analysis, where the

data is element-wise multiplied by a taper prior to forming the spectral representa-

tion to mitigate spectral leakage [11, 12]. In the MT method, spectral representation

is computed as the average of several such single-taper PSDs, where the tapers are

orthogonal to each other and exhibit good leakage properties. This can be achieved

by using the discrete prolate spheroidal sequences (dpss) or Slepian sequences [73],

due to their orthogonality and optimal leakage properties.

Another viewpoint of the MT method with this particular choice of data ta-

pers is the decomposition of the spectral representation of the process over a set of

orthogonal basis functions. Indeed, these basis functions originate from an approx-

imate solution to the integral equation expressing the projection of dz(f) onto the
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Fourier transform of the data:

y(f) =

∫ 1
2

− 1
2

sinWπ(f − ζ)

sin π(f − ζ)
e−i2π(f−ζ)W−1

2 dz(ζ).

where W is window length, i.e., number of samples, and dz(ζ) is an orthogonal incre-

ment process. This integral equation can be approximated using a local expansion

of the increment process over an interval [−B,B], for some small design band-width

B, in the space spanned by the eigenfunctions of the Dirichlet kernel sinWπf
sinπf

[11, 12].

These eigenfunctions are known as the prolate spheroidal wave functions

(PSWFs), which are a set of doubly-orthogonal functions over [−B,B] and [−1

2
,
1

2
],

with time-domain representations given by the dpss sequences. Let u
(k)
l be the lth

sample of the kth dpss sequence, for a given bandwidth B and window length W .

The kth PSWF is then defined as:

U (k)(f) :=
W−1∑
l=0

u
(k)
l e−i2πfl.

Choosing K 6 b2WBc − 1 dpss having eigenvalues close to 1 as data tapers, the

MT spectral estimate can be calculated as follows:

Ŝ(mt)(f) :=
1

K

K∑
k=1

|x̂(k)(f)|2, (2.5)

where x̂(k)(f) :=
∑W−1

l=0 e−i2πflu
(k)
l yl for k = 1, 2, · · · , K are called the ‘eigen-

coefficients’. The ‘eigen-spectra’, Ŝ(k)(f) := |x̂(k)(f)|2 can be viewed as the ex-

pansion coefficients of the decomposition.
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To estimate time-varying spectra under the MT framework, sliding windows

with overlap are used to enforce temporal smoothness and increase robustness of

the estimates [70, 74], resulting in MT spectrogram estimates. Although this ‘over-

lapping’ MT procedure overcomes frequency leakage issues and produces consistent

estimates, subjective choices of the window length and the degree of overlap can

change the overall appearance of the spectrogram drastically when poor choices of

these parameters are used. In addition, these estimates lack precise statistical in-

ference procedures, such as hypothesis testing, due to the statistical dependence

induced by the overlaps. The objective of this chapter is to overcome these lim-

itations by directly modeling and estimating the evolution of the process without

committing to overlapping sliding windows, while achieving fast and efficient im-

plementations. Before presenting our proposed solutions, we give a brief overview

of other existing approaches in the literature in order to put our contributions in

context.

2.1.3 Motivation and Connection to Existing Literature

Our goal is to overcome the foregoing challenges faced by the sliding window

MT spectrogram analysis in estimating the expected value of the Wigner-Ville dis-

tribution (See Eq. (2.3)) under the quasi-stationarity assumption. In addition, our

framework can be viewed in the context of the spectrogram approximation to the

evolutionary spectra [51]. The evolutionary spectra is obtained by considering an
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expansion of yt over the set of complex sinusoids as

yt =

∫ 1/2

−1/2

xt(f)ej2πftdf, (2.6)

with uncorrelated time-varying expansion coefficients, i.e., E[xt(f1)x∗t (f2)] = D(t, f1)

δ(f1−f2). In standard MT spectrogram analysis, the extent of overlap between con-

secutive segments dictates the amount of temporal smoothness in the estimates. Our

approach is to avoid the usage of overlapping windows by modeling and estimating

the dependence of the spectra across windows using state-space models, while re-

taining the favorable leakage properties of the MT analysis. As will be revealed in

the subsequent sections, in the same vein as the sliding window multitaper analysis

our methods pertain to the class of spectrogram estimates, which are viewed as

smoothed versions of the Wigner-Ville spectrum [54].

Due to the underlying quasi-stationarity assumption, i.e., negligible spectral

correlation, the domain of applicability of our methods might be narrower than the

more general non-stationary spectral analysis methods such as GES and Weyl spec-

tral estimation and TFARMA modeling; however, our methods admit simple and

efficient implementations, which makes them attractive for exploratory applications

in which sliding window processing is widely used with subjective and ad hoc choices

of design parameters. In this context, the novelty of our contributions lies in:

1. Capturing the evolution of the spectra across windows by modeling the dy-

namics of certain eigen-spectral quantities arising in MT analysis (e.g., spectral

eigen-coefficients and eigen-spectra);
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2. Addressing the additive measurement noise and multiplicative sampling noise,

which severely distort the spectrograms obtained by the multitaper framework;

and

3. Constructing a framework for precise statistical assessment of the estimates,

by addressing the dependency among windows using a Bayesian formulation.

As it will be evident in Section 2.4, the use of state-space models in the context

of MT analysis results in adaptive weighting of the estimates of the eigen-coefficients

or eigen-spectra across windows, thanks to the optimal data combining feature of

Bayesian smoothing. These adaptive weights depend on the common dynamic trends

shared across windows and hence result in capturing the degree of smoothness in-

herent in the signal, while producing estimates robust against uncertainties due to

observation noise and limited data.

It is noteworthy that the use of state-space models here is significantly different

from those used in parametric non-stationary spectral analysis methods such as

TFARMA modeling [62]. In the TFARMA formulation, time delays and frequency

shifts are used to model the non-stationary dynamics of the process in a physically

intuitive way. These state-space models therefore determine the functional form of

the resulting spectral estimates in closed form in terms of the finite set of ARMA

coefficients. In contrary, the state-space models used here do not determine the

functional form of the spectral estimates at each window, and rather control the

temporal smoothness of the eigen-spectral quantities via forming a regularization

mechanism in the underlying Bayesian estimation framework (See Section 2.1.5). In
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our approach, we indeed estimate the spectrogram at a given number of frequency

bins in each window, which scales with the total number of samples, in the same

vein as sliding window MT spectrogram.

In light of the above, our algorithms belong to the class of semi-parametric

estimation methods, as the underlying model is a hybrid of parametric unobservable

state evolution process and a non-parametric data generating process [75]. In Section

2.3.1, we will compare our proposed semi-parametric methodology with both non-

parametric and parametric techniques, namely the MT spectrogram analysis and

the Time-Frequency Autoregressive (TFAR) modeling technique [62].

2.1.4 Problem Formulation

Assume, without loss of generality, that an arbitrary window of length W is

chosen so that for some integerN , NW = T and let yn =
[
y(n−1)W+1, y(n−1)W+2, · · · ,

ynW
]>

for n = 1, 2 · · ·N , denotes the data in the nth window. This way, the entire

data is divided into N non-overlapping segments of length W each. To this end, we

invoke quasistationarity assumption by modeling yt to be stationary within each of

these segments of length W . With this assumption, motivated by the major sources

of uncertainty in spectral estimation, i.e., measurement noise and sampling noise,

we formulate two state-space frameworks in the following subsections.

2.1.4.1 Mitigating the Measurement Noise

Suppose that ỹt is the noise corrupted observation obtained from the true

signal yt, i.e., ỹt = yt + vt, where (vt)
T
t=1 is an i.i.d. zero-mean Gaussian noise
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sequence with fixed variance σ2. By discretizing the representation in Eq. (3.2) at

a frequency spacing of 2π/J with J an integer, at any arbitrary window n, we have

ỹn = Fnxn + vn, (2.7)

where Fn is a matrix with elements (Fn)l,j := exp
(
i2π(((n− 1)W + l) j−1

J
)
)

for l =

1, 2, · · · ,W and j = 1, 2, , · · · J ; ỹn :=
[
ỹ(n−1)W+1, ỹ(n−1)W+2, · · · , ỹnW

]>
is the noisy

observation of the true signal yn; xn(f) and xn :=
[
xn(0), xn(2π 1

J
), · · · , xn(2π J−1

J
)
]>

denote the orthogonal increment process and its discretized version, respectively at

window n and vn =
[
v(n−1)W+1, v(n−1)W+2, · · · , vnW

]>
is zero-mean Gaussian noise

with covariance Cov{vi,vj} = σ2Iδi,j .

Let u(k) :=
[
u

(k)
1 , u

(k)
2 , · · · , u(k)

W

]>
denotes the kth dpss taper and ỹ

(k)
n := u(k) �

ỹn, where � denotes element-wise multiplication. Let x
(k)
n (f) and x

(k)
n := [x

(k)
n (0),

x
(k)
n (2π 1

J
), · · · , x(k)

n (2π J−1
J

)]> denote the kth spectral eigen-coefficient of yn and its

discretized version, respectively, for k = 1, 2, · · · , K. Then, following Eq. (2.7) we

consider the following spectrotemporal representation of the tapered data segments:

ỹ(k)
n = Fnx

(k)
n + v(k)

n , (2.8)

where v
(k)
n is the contribution of vn to the kth tapered data, assumed to be inde-

pendent of x
(k)
1:n−1, and identically distributed according to a zero-mean Gaussian

distribution with covariance Cov{v(k)
i ,v

(k)
j } = σ(k)2

Iδi,j. We view ỹ
(k)
n as a noisy
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observation corresponding to the true eigen-coefficient x
(k)
n , which provides a linear

Gaussian forward model for the observation process.

In order to capture the evolution of the spectrum and hence systematically

enforce temporal smoothness, we impose a stochastic continuity constraint on the

eigen-coefficients (x
(k)
n )Nn=1 for k = 1, 2, · · ·K, using a first-order difference equation:

x(k)
n = α(k)x

(k)
n−1 + w(k)

n , (2.9)

starting with an initial condition x
(k)
0 = [0, 0, · · · , 0]> ∈ RJ , where 0 6 α(k) < 1, and

w
(k)
n is independent of x

(k)
1:n−1 and assumed to be independently distributed according

to a zero-mean Gaussian distribution with diagonal covariance Cov{w(k)
i ,w

(k)
j } =

Q
(k)
i δi,j. Under this assumption, the discrete-time process, (x

(k)
n )Nn=1 forms a jointly

Gaussian random process with independent increments, while the process itself is

statistically dependent. An estimate of the unobserved states (true eigen-coefficients)

from the observations (tapered data) under this model suppresses the measurement

noise and captures the state dynamics.

It is worth mentioning that, here, the terms smoothness or continuity do not

adhere to their usual notions used for continuous valued functions. Instead, here we

say the discrete states, {x}Kk=0:

• are temporally smooth, if the states satisfy:

‖xk − αxk−1‖2 ≤M‖xk‖2 ∀ k = 1, · · · , K, M <∞
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• follow a stochastic continuity constraint if the following statements are true:

max
k=1,··· ,K

E [xk − αxk−1] = 0, and max
k=1,··· ,K

E
[
‖xk − αxk−1‖2

2

]
<∞,

i.e., one possible to way to enforce temporal smoothness in probabilistic case,

for some α satisfying 0 < α ≤ 1.

2.1.4.2 Mitigating the Sampling Noise

Suppose the additive measurement noise is negligible, i.e. vt u 0. For now,

consider only a single window of length W . It is known that when the spectrum

does not rapidly vary over the chosen design bandwidth B, the eigen-spectra are ap-

proximately uncorrelated and the following approximation holds for k = 1, 2 · · · , K

[12, 70]:

Ŝ(k)(f)

S(f)
∼ χ2

2

2
, 0 < f < 1/2, (2.10)

where Ŝ(k)(f) and S(f) are the tapered estimate and true PSD, respectively. In

other words, the empirical eigen-spectra of the process can be thought of as the

true spectra corrupted by a multiplicative noise, due to sampling and having access

to only a single realization of the process. We refer to this uncertainty induced by

sampling as sampling noise. By defining ψ(k)(f) := log Ŝ(k)(f)+ log 2 and s(k)(f) :=

logS(f), we can transform the multiplicative effect of the sampling noise in Eq.
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Figure 2.1: Schematic depiction of the proposed models.

(2.10) to the following additive forward model[76]:

ψ(k)(f) = s(k)(f) + φ(k)(f), (2.11)

where φ(k)(f) is a log-chi-square distributed random variable, capturing the uncer-

tainty due to sampling noise. It can be shown that φ(k)(f) has a density given

by:

p(φ) =
1

2
exp

(
φ− 1

2
exp(φ)

)
, (2.12)

which belongs to the family of log-Gamma distributions, including the Gumbel and

Bramwell-Holdsworth-Pinton distributions common in extreme value statistics [77].

In order to incorporate this observation model in our dynamic framework, we
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define the state vector, s
(k)
n :=

[
s

(k)
n (0), s

(k)
n

(
2π 1

J

)
, · · · , s(k)

n

(
2π J−1

J

)]>
; the obser-

vation vector, ψ
(k)
n :=

[
ψ

(k)
n (0), ψ

(k)
n

(
2π 1

J

)
, · · · , ψ(k)

n

(
2π J−1

J

)]>
and the observation

noise vector, φ
(k)
n :=

[
φ

(k)
n (0), φ

(k)
n

(
2π 1

J

)
, · · · , φ(k)

n

(
2π J−1

J

)]>
. Then, the forward

model at window n can be stated as:

ψ(k)
n = s(k)

n + φ(k)
n , (2.13)

where each element of φ
(k)
n is log-chi-square distributed. Similar to the preceding

model, we impose a stochastic continuity constraint over the logarithm of the eigen-

spectra as follows:

s(k)
n = θ(k)s

(k)
n−1 + e(k)

n , (2.14)

starting with an initial condition s
(k)
0 = [0, 0, · · · , 0]> ∈ RJ , where 0 6 θ(k) < 1, and

e
(k)
n is assumed to be a zero-mean Gaussian vector independent of s

(k)
1:n−1 and with

a diagonal covariance Cov{e(k)
i , e

(k)
j } = R

(k)
i δi,j. Note that the logarithm function

maps the range of the eigen-spectra in [0,∞) to (−∞,∞) which makes the Gaussian

state evolution plausible. An estimate of the unobserved states (logarithm of the

true spectra) from the observations (logarithm of the empirical eigen-spectra) under

this model suppresses the sampling noise and captures the state dynamics.

In summary, through these models we project the data of each short window

onto the functional space spanned by the PSWFs and impose stochastic continuity

constraints (Eq. (2.9) and Eq. (2.14)) on these projections (eigen-coefficients or
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eigen-spectra) in order to recover spectral representations that are smooth in time

and robust against measurement or sampling noise. Fig. 2.1 provides a visual

illustration of the proposed modeling paradigm.

2.1.5 The Inverse Problem

We formulate the spectral estimation problem as one of Bayesian estimation,

in which the Bayesian risk/loss function, fully determined by the posterior den-

sity of (x
(k)
n )N,Kn=1,k=1 (resp. (s

(k)
n )N,Kn=1,k=1) given the observations (ỹ

(k)
n )N,Kn=1,k=1 (resp.

(ψ
(k)
n )N,Kn=1,k=1) is minimized. We first consider the forward model of Eq. (2.8), which

provides the observed data likelihood given the states. Under the state-space model

of Eq. (2.9), the kth eigen-coefficient can be estimated by solving the following

maximum a posteriori (MAP) problem:

min
x
(k)
1 ,x

(k)
2 ,··· ,x(k)

N

N∑
n=1

[
1

σ2

∥∥ỹ(k)
n − Fnx

(k)
n

∥∥2

2
+ (x(k)

n − αx
(k)
n−1)HQ(k)

n

−1
(x(k)

n − αx
(k)
n−1)

]
,

(2.15)

for k = 1, 2, · · · , K. Similarly, in the second state space framework Eq. (2.13), the

eigen-spectra can be obtained by solving another MAP estimation problem:

min
s
(k)
1 ,s

(k)
2 ,··· ,s(k)N

N∑
n=1

[
1>J [s(k)

n −ψ(k)
n +

1

2
exp(ψ(k)

n − s(k)
n )]

+ (s(k)
n − θs

(k)
n−1)HR(k)

n

−1
(s(k)
n − θs

(k)
n−1)

]
, (2.16)
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for k = 1, 2, · · · , K, where 1J is the vector of all ones of length J . We call the

MAP estimation problems in Eq. (2.15) and Eq. (2.16) the Dynamic Bayesian

Multitaper (DBMT) and the log-DBMT estimation problems, respectively. Similarly,

the respective spectrogram estimates will be denoted by the DBMT and log-DBMT

estimates.

Eq. (2.15) is a strictly convex function of x
(k)
n ∈ CW and Q

(k)
n ∈ SW++ for n =

1, 2 · · · , N , which can be solved using standard eqimization techniques. However,

these techniques do not scale well with the data length N . A careful examination of

the log-posterior reveals a block tri-diagonal structure of the Hessian, which can be

used to develop efficient recursive solutions that exploit the temporal structure of

the problem. A similar argument holds for the eqimization problem in Eq. (2.16).

However, the parameters of these state-space models need to be estimated from the

data. In the next section, we show how the EM algorithm can be used to both

estimate the parameters and states efficiently from the eqimization problems Eq.

(2.15) and Eq. (2.16).

2.2 Fast Recursive Solutions via the EM Algorithm

In order to solve the MAP problem in Eq. (2.15), we need to find the param-

eters Q
(k)
n ∈ SW++ and α(k) ∈ (0, 1] for n = 1, 2 · · · , N and k = 1, 2, · · · , K. Similarly

R
(k)
n ∈ SW++ and θ(k) ∈ (0, 1] need to be estimated for the problem in Eq. (2.16). If

the underlying states were known, one could further maximize the log-posterior with

respect to the parameters. This observation can be formalized in the EM framework

[65, 66, 78]. To avoid notational complexity, we drop the dependence of the various
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variables on the taper index k in the rest of this subsection.

2.2.1 The DBMT Spectrum Estimation Algorithm

By treating xn, n = 1, 2, · · · , N as the hidden variables and α,Qn, n = 1, 2, · · · ,

N as the unknown parameters to be estimated, we can write the complete log-

likelihood as:

logL(α,Q1:N) := −
N∑
n=1

[
1

σ2
‖ỹn − Fnxn‖2

2 + log | det Qn|

+ (xn − αxn−1)HQ−1
n (xn − αxn−1)

]
+ c, (2.17)

where c represents the terms that do not depend on α, (Qn)Nn=1 or (xn)Nn=1. For

simplicity of exposition, we assume that Qn = Q for n = 1, 2, · · · , N . The forth-

coming treatment can be extended to the general case with little modification. Also,

note that σ2 can be absorbed in Q, and thus is assumed to be known. At the lth

iteration, we have:

E-Step

Given α[l],Q[l], for n = 1, 2, · · · , N , the expectations, xn|N := E[xn|ỹ1:N , α
[l],

Q[l]], Σn|N := E[(xn−xn|N)(xn−xn|N)H |ỹ1:N , α
[l],Q[l]], and Σn,n−1|N := E[(xn−xn|N)

(xn−1−xn−1|N)H |ỹ1:N , α
[l],Q[l]], can be calculated using the Fixed Interval Smoother

(FIS ) [79] (lines 4 and 5) and the state-space covariance smoothing algorithm [80]

(line 6). These expectations can be used to compute the expectation of the complete

data log-likelihood E
[

logL(α,Q)|ỹ1:N , α
[l],Q[l]

]
.
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Algorithm 1: The DBMT Estimate of the kth Eigen-coefficient

1: Initialize: observations ỹ
(k)
1:N ; initial guess x

(0)
1:N ; initial guess Q[0]; initial condi-

tions Σ0|0; tolerance tol ∈ (0, 10−3), Maximum Number of iteration Lmax ∈ N+.
2: repeat
3: l = 0.
4: Forward filter for n = 1, 2, · · · , N :

xn|n−1 = α[l]xn−1|n−1

Σn|n−1 = α[l]2Σn−1|n−1 + Q[l]

Kn = Σn|n−1F
H
n (FnΣn|n−1F

H
n + σ2I)−1

xn|n = xn|n−1 + Kn(ỹn − Fnxn|n−1)

Σn|n = Σn|n−1 −KnFnΣn|n−1

5: Backward smoother for n = N − 1, N − 2, · · · , 1:

Bn = α[l]Σn|nΣ
−1
n+1|n

xn|N = xn|n + Bn(xn+1|N − xn+1|n)

Σn|N = Σn|n + Bn(Σn+1|N −Σn+1|n)BH
n

6: Covariance smoothing for n = N − 1, N − 2, · · · , 1:

Σn,n−1|N = Bn−1Σn|N

7: Let X̂[l] := [xH1|N ,x
H
2|N , · · · ,x

H
N |N ]

H .

8: Update α[l+1] and Q[l+1] as:

α[l+1] =

∑N
n=2 Tr(Σn,n−1|NQ[l]−1

) + xHn−1|NQ[l]−1
xn|N∑N

n=2 Tr(Σn−1|NQ[l]−1
) + xHn−1|NQ[l]−1

xn−1|N
,

Q[l+1] =
1

N

N∑
n=1

[
xn|NxHn|N + Σn|N+α[l+1]2(xn−1|NxHn−1|N + Σn−1|N)

− α[l+1](xn−1|NxHn|N + xn|NxHn−1|N + 2Σn,n−1|N)
]
.

9: Set l← l + 1.

10: until ‖X̂
[l]−X̂(l−1)‖2
‖X̂[l]‖2

< tol or l = Lmax.

11: Output: Denoised eigen-coefficients X̂[L] where L is the index of the last iteration
of the algorithm, and error covariance matrices Σn|N for n = 1, 2, · · · , N in from
last iteration of the algorithm.

33



M-Step

The parameters for subsequent iterations, α[l+1] and Q[l+1] can be obtained by

maximizing the expectation of Eq. (2.17). Although this expectation is convex in

α and Q individually, it is not a convex function of both. Hence, we perform cyclic

iterative updates for α[l+1] and Q[l+1] given by:

α[l+1] =

∑N
n=2 Tr(Σn,n−1|NQ[l]−1

) + xHn−1|NQ[l]−1
xn|N∑N

n=2 Tr(Σn−1|NQ[l]−1
) + xHn−1|NQ[l]−1

xn−1|N
(2.18)

and

Q[l+1] =
1

N

N∑
n=1

[
xn|NxHn|N + Σn|N + α[l+1]2(xn−1|NxHn−1|N+Σn−1|N)

−α[l+1](xn−1|NxHn|N+xn|NxHn−1|N+2Σn,n−1|N)
]
. (2.19)

These iterations can be performed until convergence to a possibly local max-

imum. However, with even one such update, the overall algorithm forms a majori-

zation-minimization (MM) procedure, generalizing the EM procedure and enjoying

from similar convergence properties [81]. One possible implementation of this iter-

ative procedure is described in Algorithm 1. Once the DBMT estimates of all the

K eigen-coefficients x̂
(k)
n are obtained, for n = 1, 2, · · · , N and k = 1, 2, · · · , K, the

DBMT spectrum estimate is constructed similar to Eq. (2.5):

D̂n(fj) =
1

K

K∑
k=1

∣∣∣(x̂(k)
n

)
j

∣∣∣2, (2.20)
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where fj := 2π(j−1)
J

for j = 1, 2, · · · , J and n = 1, 2, · · · , N . Confidence intervals can

be computed by mapping the Gaussian confidence intervals for x̂
(k)
n ’s to the final

DBMT estimate.

2.2.2 The log-DBMT Spectrum Estimation Algorithm

We utilize a similar iterative procedure based on the EM algorithm to find

the log-DBMT spectrum estimate. As before, we treat sn, n = 1, 2, · · · , N as hidden

variables and θ,Rn, n = 1, 2, · · · , N as the unknown parameters to be estimated. In

order to give more flexibility to the observation model, we consider the observation

noise to be distributed as log-chi-square with degrees of freedom 2ν, for some positive

integer ν to be estimated. The density of each element of φ
(k)
n is then given by:

p(φ) =
1

2νΓ(ν)
exp

(
νφ− 1

2
exp(φ)

)
. (2.21)

We can express the complete data log-likelihood as:

logL(ν, θ,R1:n) := −
N∑
n=1

[
1>J

(
ν(sn −ψn) + 1

2
exp(ψn − sn)

)
+J
(
ν log 2 + log Γ(ν)

)
+ (sn− θsn−1)HR−1

n (sn− θsn−1) + log | det Rn|
]

+ c,

(2.22)

where c represents the terms that do not depend on ν, θ, (Rn)Nn=1 or (sn)Nn=1. Again

assuming Rn = R for all n = 1, 2, · · · , N for simplicity, the following EM algorithm

can be constructed:
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E-step

Computation of the conditional expectation of the log-likelihood in Eq. (2.22)

requires evaluatingE[sn|ψ1:N ,R
[l], θ[l], ν [l]] andE[exp(−sn)|ψ1:N ,R

[l], θ[l], ν [l]] for n =

1, 2, · · · , N . Unlike the DBMT estimation problem, the forward model in this case

is non-Gaussian, and hence we cannot apply the Kalman filter and FIS to find

the state expectations. To compute the conditional expectation, the distribution

of sn|ψ1:n,R
[l], θ[l], ν [l] or its samples are required [67]. Computation of the dis-

tribution sn|ψ1:n,R
[l], θ[l], ν [l] involves intractable integrals and sampling from the

distribution using numerical methods such as Metropolis-Hastings is not compu-

tationally efficient, especially for long data, given that it has to be carried out at

every iteration. Since the posterior distribution is unimodal and a deviation from

the Gaussian posterior, we approximate the distribution of sn|ψ1:n,R
[l], θ[l], ν [l] as

a Gaussian distribution by matching its mean and covariance matrix to the log-

posterior in Eq. (2.22). To this end, the mean is approximated by the mode of

fsn|ψ1:n,R[l],θ[l],ν[l] and the covariance is set to the inverse of the negative Hessian of

the log-likelihood in Eq. (2.22) [66, 82]. Under this approximation, computing

E[exp(−sn)|ψ1:n,R
[l], θ[l], ν [l]] is also facilitated thanks to the closed-form moment

generating function of z ∼ N (µ,Σ):

E
[
exp

(
a>z

)]
= exp

(
a>µ+

1

2
a>Σa

)
. (2.23)
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Algorithm 2: The log-DBMT Estimate of the kth log-Eigen-spectra

1: Initialize: observations ψ
(k)
1:N ; initial guess s

[0]
1:N ; initial guess R[0]; initial condi-

tions Ω0|0; tolerance tol ∈ (0, 10−3), Maximum Number of iteration Lmax ∈ N+.
2: repeat
3: l = 0.
4: Forward filter for n = 1, 2, · · · , N :

sn|n−1 = θ[l]sn−1|n−1

Ωn|n−1 = θ[l]2Ωn−1|n−1 + R[l]

sn|n = sn|n−1 + Ωn|n−1

[
1

2
exp(ψn − sn|n)− ν [l]1J

]
Ωn|n = Ω−1

n|n−1 −
1

2
diag{exp(ψn − sn|n)}

5: Backward smoother for n = N − 1, N − 2, · · · , 1:

An = θ[l]Ωn|nΩ
−1
n+1|n

sn|N = sn|n + An(sn+1|N − sn+1|n)

Ωn|N = Ωn|n + An(Ωn+1|N −Ωn+1|n)AH
n

6: Covariance smoothing for n = N − 1, N − 2, · · · , 1:

Ωn,n−1|N = An−1Ωn|N

7: Let Ŝ[l] := [sH1|N , s
H
2|N , · · · , s

H
N |N ]

H .

8: Update ν [l+1], θ[l+1] and R[l+1] as:

θ[l+1] =

∑N
n=2 Tr(Ωn,n−1|NR[l]−1

) + sHn−1|NR[l]−1
sn|N∑N

n=2 Tr(Ωn−1|NR[l]−1
) + sHn−1|NR[l]−1

sn−1|N
,

ν [l+1] =
1− log 2 + 1

JN

∑N
n=1 1>J (ψ

[l]
n −s

[l]
n )−z(ν [l+1])

2
JN

∑N
n=1 1>J exp(ψ

[l]
n −s

[l]
n )

,

R[l+1] =
1

N

N∑
n=1

[
sn|NsHn|N+Ωn|N+θ[l+1]2(sn−1|NsHn−1|N+Ωn−1|N)

− θ[l+1](sn−1|NsHn|N + sn|NsHn−1|N+2Ωn,n−1|N)
]
.

9: Set l← l + 1.
10: until ‖Ŝ

[l]−Ŝ(l−1)‖2
‖Ŝ[l]‖2

< tol or l = Lmax.

11: Output: Denoised log-eigen-spectra Ŝ[L] where L is the index of the last iteration
of the algorithm, and error covariance matrices Ωn|N for n = 1, 2, · · · , N in from
last iteration of the algorithm.
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Similar to the case of DBMT, we can exploit the block tri-diagonal structure of the

Hessian in Eq. (2.16) to carry out the E-step efficiently using forward filtering and

backward smoothing.

M-step

Once the conditional expectation of the log-likelihood in Eq. (2.22) given

ψ1:n, R[l], θ[l], ν [l] is available, we can update R[l+1] and θ[l+1] using similar closed

form equations as in Eq. (2.19). But updating ν [l+1] by maximizing the conditional

expectation of the log likelihood in Eq. (2.22) wrt. ν [l+1] requires solving following

nonlinear equation:

ν [l+1] =
1− log 2 + 1

JN

∑N
n=1 1>J (ψ

[l]
n −s

[l]
n )−z(ν [l+1])

2
JN

∑N
n=1 1>J exp(ψ

[l]
n −s

[l]
n )

, (2.24)

where z(·) is the digamma function. We can use Newton’s method to solve this

equation up to a given precision. An implementation of the log-DBMT is given by

Algorithm 2. Note that unlike the DBMT algorithm which pertains to a Gaussian

observation model, the forward filtering step to compute sn|n is nonlinear, and stan-

dard techniques such as Newton’s method can be used to solve for sn|n. We use the

log-DBMT algorithm to find all the K estimates of true log-spectra and construct

the log-DBMT estimate as:

D̂n(fj) =
1

K

K∑
k=1

exp
((

ŝ(k)
n

)
j

)
, (2.25)
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where fj := 2π(j−1)
J

for j = 1, 2, · · · , J and n = 1, 2, · · · , N . Again, confidence

intervals can be computed by mapping the Gaussian confidence intervals for ŝ
(k)
n ’s

to the final log-DBMT estimate.

2.2.3 Parameter Selection

The window length W , design bandwidth B, and the number of tapers K

need to be carefully chosen. Since both proposed algorithms are motivated by the

standard overlapping MT method, we use the same guidelines for choosing these

parameters [70, 74]. The window length W is determined based on the expected

rate of change of the PSD (given domain-specific knowledge) in order to make sure

that the quasi-stationarity assumption holds. The design bandwidth B is chosen

small enough to be able to resolve the dominant frequency components in the data,

while being large enough to keep the time-bandwidth product ρ := WB > 1. The

number of tapers K is then chosen as K 6 b2ρc − 1 [70].

2.3 Application to Synthetic and Real Data

Before presenting our theoretical analysis, we examine the performance of

DBMT and log-DBMT spectrogram estimators on synthetic data, and then demon-

strate their utility in two real world data applications, namely spectral analysis of

human EEG during sleep and Electric Network Frequency signal detection.
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2.3.1 Application to Synthetic Data

The synthetic data consists of a linear combination of an amplitude-modulated

and a frequency-modulated processes with high dynamic range (i.e., high-Q). The

amplitude-modulated component y
(1)
t is generated through modulating an AR(6)

process tuned around 11 Hz by a cosine at a low frequency f0 = 0.02 Hz. The

frequency-modulated component y
(2)
t is a realization of an ARMA(6, 4) with varying

pole loci. To this end, the process has a pair of 3rd order poles at ωt := 2πft and

−ωt, where ft increases from 5 Hz, starting at t = 0, every ∼ 26 s by increments of

0.48 Hz, to achieve frequency modulation. In summary, the noisy observations are

given by:

yt = y
(1)
t cos(2πf0t) + y

(2)
t + σvt, (2.26)

where vt is a white Gaussian noise process and σ is chosen to achieve an SNR of

30 dB. The process is truncated at 600 s to be used for spectrogram analysis. Fig.

2.2 shows a 12 s sample window of the process.

In addition to the standard overlapping MT, we present comparison to the TFAR

method as an example of parametric state-space modeling approaches to non-station-

ary spectral analysis. This method is known to be well suited to processes whose

time-varying spectra exhibits sharp peaks, i.e., signals consisting of several narrow-
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Figure 2.2: Sample from the synthetic data from t =384 s to 396 s.

band components [62]. The TFAR model is defined by the input-output relation

yt :=−
MA∑
m=1

LA∑
l=−LA

am,le
i 2π
N
ltyt−m+

LB∑
l=−LB

b0,le
i 2π
N
ltet,

where et is a stationary white noise process with unit variance, and (am,l)
MA,LA
m=1,l=−LA

and (b0,l)
LB
l=−LB are the autoregressive (AR) and zero-delay moving average (MA)

parameters, respectively. The integers MA and LA are respectively the delay and

Doppler model orders of the AR component and LB denotes the Doppler model

order of the zero-delay MA component. The AR and MA parameters are estimated

by solving the time-frequency Yule-Walker equations, from which the evolutionary

spectra can be constructed (See the methods described in [62] for more details).

Fig. 2.3 shows the true as well as estimated spectrograms by the standard

overlapping MT, DBMT, log-DBMT and the TFAR estimators. Each row consists of

three panels: the left panel shows the entire spectrogram; the middle panel shows a

zoomed-in spectrotemporal region marked by the dashed box in the left panel; and
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the right panel shows the PSD along with confidence interval (CI) in gray hull, at a

selected time point marked by a dashed vertical line in the middle panel. Note that

for the standard MT estimates, the CIs are constructed assuming a χ2
2K distribution

of the estimates around the true values [12, 70], whereas for DBMT and log-DBMT

estimate by mapping the Gaussian confidence intervals for eigen-coefficients or eigen-

spectra to the final estimates. We were not able to evaluate the CIs for the TFAR

estimates, since to the best of our knowledge we are not aware of any method to do

so. Fig. 2.3A shows true spectrogram of the synthetic process, in which the existence

of both amplitude and frequency modulations makes the spectrogram estimation a

challenging problem.

Fig. 2.3B shows the standard overlapping MT spectrogram estimate. We

used windows of length 6 s and the first 3 tapers corresponding to a time-bandwidth

product of 3 and 50% overlap to compute the estimates (note that the same window

length, tapers and time-bandwidth product are used for the DBMT and log-DBMT

estimators). Although the standard MT spectrogram captures the dynamic evolu-

tion of both components, it is blurred by the background noise and picks up spectral

artifacts (i.e., vertical lines) due to window overlap, frequency mixing, and sampling

noise. Fig. 2.3C demonstrates how the DBMT spectrogram estimate overcomes

these deficiencies of the overlapping MT spectrogram: the spectrotemporal local-

ization is sharper and smoother across time, artifacts due to overlapping between

windows are vanished, and frequency mixing is further mitigated. By comparing the

right panel of the second and third rows, two important observations can be made:

first, the DBMT captures the true dynamic range of the original noiseless PSD,
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the standard MT estimate fails to do so. Second, the CIs in Fig. 2.3C as compared

to 2.3B are wider when the signal is weak (e.g., near 5 Hz) and tighter when the

signal is strong (e.g., near 11 Hz). The latter observation highlights the importance

of the model-based confidence intervals in interpreting the denoised estimates of

DBMT: while the most likely estimate (i.e., the mean) captures the true dynamic

range of the noiseless PSD, the estimator does not preclude cases in which the noise

floor of −40 dB is part of the true signal, while showing high confidence in detecting

the spectral content of the true signal that abides by the modeled dynamics.

Next, Fig. 2.3D shows the log-DBMT spectrogram estimate, which shares the

artifact rejection feature of the DBMT spectrogram. However, the log-DBMT esti-

mate is smoother than both the standard overlapping MT and DBMT spectrograms

in time as well as in frequency (see the zoomed-in middle panels), due to its sam-

pling noise mitigation feature (by design). However, similar to the standard MT

estimate, the log-DBMT estimator treats the observation noise as part of the signal,

and thus does not suppress it. Though, the confidence intervals of the log-DBMT

PSD estimate are tighter than those of the standard overlapping MT estimate due

to averaging across multiple windows via Bayesian filtering/smoothing. As we will

show in Section 2.4, these qualitative observations can be established by our theo-

retical analysis.

Finally, Fig. 2.3E shows the TFAR spectral estimate. The model orders are

chosen as MA = 20, LA = 25, LB = 25, large enough to allow the parametric model

to achieve high time-frequency resolution. As it is shown in the right panel, the

TFAR method provides the smoothest estimate along the frequency axis. However,
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it is not successful in capturing the true dynamic range of the signal due to spectral

leakage (See middle and right panels). In addition, it is contaminated by similar

vertical frequency artifacts as in the case of the MT spectrogram (See Fig. 2.3A).

In the spirit of easing reproducibility, we have deposited a MATLAB imple-

mentation of these algorithms on the open source repository GitHub [83], which

generates Fig. 2.3.

2.3.2 Application to EEG data

To illustrate the utility of our proposed spectrogram estimators, we apply them

to human EEG data recorded during sleep. In the interest of space, in the remainder

of this section, we only present comparisons with the MT spectrogram as a non-

parametric benchmark. The EEG data set is available online as part of the SHHS

Polysomnography Database (https://www.physionet.org/pn3/shhpsgdb/). The

data is 900 s long during stage 2 sleep, and sampled at 250 Hz. During stage 2 sleep,

the EEG is known to manifest delta waves (0 Hz to 4 Hz) and sleep spindles (transient

wave packets with frequency 12 Hz to 14 Hz) [84, 85]. Accurate localization of these

spectrotemporal features has significant applications in studying sleep disorders and

cognitive function [84]. Since the transient spindles occur at a time scale of seconds,

we choose a window length of 2.25 s for all algorithms (with 50% overlap for the

standard overlapping MT estimate). We also chose a time-bandwidth product of

2.25 for all algorithms, in order to keep the frequency resolution at 2 Hz. Figs. 2.4A,
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B and C show the MT, DBMT and log-DBMT spectrogram estimates, respectively,

with a similar presentational structure as in Fig. 2.3. As the middle panels reveal,

the overlapping MT estimate is not able to clearly distinguish the delta waves and

sleep spindles due to high background noise. The DBMT estimate shown in Fig.

2.4B, however, provides a significantly denoised spectrogram, in which the delta

waves and sleep spindles are visually separable. The log-DBMT estimator shown

in Fig. 2.4C provides significant spectrotemporal smoothing, and despite not fully

reducing the background noise, provides a clear separation of the delta waves and

spindles (see the PSD in the right panel). Similar to the analysis of synthetic data,

the same observations regarding the confidence intervals of the estimators can be

made.

2.3.3 Application to ENF data

Finally, we examine the performance of our proposed algorithms in tracking

the Electrical Network Frequency (ENF) signals from audio recordings. The ENF

signal corresponds to the supply frequency of the power distribution network which

is embedded in audio recordings [86, 87]. The instantaneous values of this time-

varying frequency and its harmonics form the ENF signal. The ability to detect and

track the spectrotemporal dynamics of ENF signals embedded in audio recordings

has shown to be crucial in data forensics applications [86].

Fig. 2.5A shows the spectrogram estimates around the sixth harmonic of the

nominal 60 Hz ENF signal (data from [87]). We used 1000 s of audio recordings, and

constructed spectrograms with windows of length 5 s and using the first 3 tapers
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corresponding to a time-bandwidth product of 3 for all three methods (with 25%

overlap for the overlapping MT estimate). The two dominant components around

the sixth ENF harmonic exhibit temporal dynamics, but are hard to distinguish

from the noisy background. Fig. 2.5B shows the DBMT spectrogram, in which

the background noise is significantly suppressed, yielding a crisp and temporally

smooth estimate of the ENF dynamics. The log-DBMT estimate is shown in Fig.

2.5C, which provides higher spectrotemporal smoothness than the standard MT

estimate. Although the log-DBMT shows smaller variability in the estimates (middle

and right panels), the gain is not as striking as in the cases of synthetic data and

EEG analysis, due to the usage of longer windows which mitigates the sampling

noise for all algorithms. Similar observations as in the previous two cases regarding

the statistical confidence intervals can be made, which highlight the advantage of

modeling the spectrotemporal dynamics in spectrogram estimation.

2.4 Theoretical Analysis

2.4.1 Filter Bank Interpretation

In order to characterize the spectral properties of any non-parametric spectrum

estimator, the tapers applied to the data need to be carefully inspected. In the MT

framework, the dpss sequences are used as tapers, which are known to produce

negligible side-lobes in the frequency domain [11, 12]. The DBMT and log-DBMT

algorithms also use the dpss tapers to alleviate the problem of frequency leakage.

However, because of the stochastic continuity constraint we introduced, the estimate
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associated to any given window is now a function of the data in all the windows.

Therefore, the theoretical properties of the MT method do not readily apply to our

estimators.

To characterize the statistical properties of our estimates, we first need take a

detour from the usual analysis of spectrum estimation techniques. In what follows,

we mainly focus on the DBMT algorithm for the sake of presentation. By virtue of

the FIS procedure under the assumptions that:

1. the window length W is an integer multiple of J , the number of discrete

frequencies, so that Fn = F1, ∀n, and

2. the state noise covariance matrices are time-invariant, i.e., Qn = Q,∀n,

one obtains the following expansion of x
(k)
n|N in terms of the observed data [63]:

x
(k)
n|N =

n−1∑
s=1

n−1∏
m=s

[
α(I−KmFm)

]
KsU

(k)ỹs + KnU
(k)ỹn +

N∑
s=n+1

s∏
m=n

BmKsU
(k)ỹs.

(2.27)

In other words, the DBMT algorithm maps the entire data ỹ := [ỹ1, ỹ2, · · · , ỹT ]> to

the vector of coefficients X̂(k) according to [63]:

X̂(k) = G(k)FHU(k)ỹ, (2.28)

where F and U(k) are block-diagonal matrices with F1 and Uk := diag[u(k)] as

the diagonal blocks, respectively, and G is a weighting matrix which depends only

on Q∞ = liml→∞Q[l], α∞ = liml→∞ α
[l], and window length, W . The rows of
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G(k)FHU(k) form a filter bank whose output is equivalent to the time-frequency

representation.

In order to continue our analysis, we make two assumptions common in the

analysis of adaptive filters[88, 89]. First, we assume that the parameter estimates

Q∞ and α∞ are close enough to the true values of Q and α, and therefore replace

them by Q and α, i.e., as if the true parameters were known. Note that we have dis-

carded the dependence of Q and α on k for lucidity of analysis. Second, noting that

α(I −KmFm) = αΣm|mΣ−1
m|m−1 and Bm = αΣm|mΣ−1

m+1|m and that in steady state

we have Σm|m := Σ∞ and Σm|m−1 = α2Σ∞ + Q, Eq. (2.27) can be approximated

by:

x
(k)
n|N =

N∑
s=1

Λ|s−n|ΓFH
s U(k)ỹs, (2.29)

for 1 � n � N , where Λ = αΣ∞(α2Σ∞ + Q)−1, and Γ = (α2Σ∞ + Q)
[
I −

rW
(
(α2Σ∞+Q)−1 +rW I

)−1]
. That is, for values of n far from the data boundaries,

the weighting matrix is equivalent to a weighted set of dpss tapers in matrix form

acting on all the data windows with an exponential decay with respect to the nth

window.

As an example, the equivalents filters of the DBMT estimator corresponding

to the first taper for the 11 Hz and 9 Hz frequencies around 300 s, from the synthetic

data example are shown in Fig. 2.6. They are also compared to the equivalent filters

corresponding to first taper of standard MT method in the frequency domain. As

apparent from Fig. 2.6, the weighting matrix sets the gain of these filters in an
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adaptive fashion across all windows, unlike the standard MT method which only

uses the data in window n. In addition, the filter corresponding to frequency of 9Hz,

which is negligible in the data, is highly attenuated, resulting in significant noise

suppression. In this sense, the proposed estimation method can be identified as a

data-driven denoising method for constructing time-frequency representations given

noisy time series data. Next, we will characterize the performance of the DBMT

estimator in terms of bias-variance trade-off.

2.4.2 Bias and Variance Analysis

We first consider the implication of the stochastic continuity constraint of Eq.

(2.9) on the evolution of the orthogonal increment processes governing the time

series data. We first assume that the parameters α(k) = α, for all k = 1, 2, · · · , K.

Suppose that the data in window n has a Cramér representation with an orthogonal

increment process dzn(f), n = 1, 2, · · · , N . Then, one way to achieve the stochastic
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Figure 2.6: Equivalent filters corresponding to the first taper of the DBMT estimate
of the synthetic data example. Left: equivalent filters in time around t = 300 s.
Right: equivalent filters of MT (red) and DBMT (green) in frequency.
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continuity of Eq. (2.9) is to assume:

dzn+1(f) = αdzn(f) + dεn(f), (2.30)

where dεn(f) is a Gaussian orthogonal increment process, independent of dzn(f). In

the forthcoming analysis we also assume the locally stationarity condition, i.e., the

generalized Fourier transform of the process remains stationary within each window.

This assumption is common in the analysis of non-parametric spectral estimators

[70, 74]. Finally, we assume a scaling of K,N,W →∞, B → 0, BW → ρ, for some

constant ρ [90]. The following theorems characterize the bias and variance of the

DBMT estimator:

Theorem 2.1. Suppose that the locally stationary process yt is governed by orthog-

onal increment processes evolving according to the dynamics dzn+1(f) = αdzn(f) +

dεn(f), with α < 1, where the noise process dεn(f),∀f ∈ (−1/2, 1/2] is a zero-mean

Gaussian increment process with variance q(f) > 0, independent of dzn(f). If the

process is corrupted by additive zero-mean Gaussian noise with variance σ2, then

for f ∈ {f1, f2, · · · , fJ}, the DBMT estimate satisfies:

∣∣∣E[D̂n(f)]−D(f)
∣∣∣ 6(1− 1

K

K∑
k=1

λk

)
κn(f) sup

f
{D(f)}

+ |1− κn(f)|D(f) + µn(f)σ2 + κn(f)o(1),

where λk is the eigenvalue associated with the kth PSWF, D(f) := q(f)/(1 − α),

and κn(f), µn(f) are functions of α and q(f) and explicitly given in the proof.
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Theorem 2.2. Under the assumptions of Theorem 2.1, the variance of the DBMT

estimate D̂n(f) satisfies:

Var
{
D̂n(f)

}
6

2

K

[
sup
f
{κn(f)D(f) + µn(f)σ2}

]2

.

The proofs of Theorems 2.1 and 2.2 integrate the treatment of [90] with the

structure of the FIS estimates, and are presented in Appendix A. In order to illus-

trate the implications of these theorems, several remarks are in order:

Remark 2.1. The function κn(f) controls the trade-off between bias and variance:

for values of κn(f) < 1, the bound on the variance decreases while the bias bound

increases, and for κn(f) ≈ 1, all the terms in the bias bound become negligible,

while the variance bound increases. The function µn(f), on the other hand, reflects

observation noise suppression in both the bias and variance. Note that these upper

bounds are tight and achieved for a signal with flat spectrum.

Remark 2.2. The bias and variance bounds of [90] for the standard MT method can

be recovered by setting κn(f) = 1, µn(f) = 1, and σ2 = 0 in the results of Theorems

2.1 and 2.2, i.e., in the absence of signal dynamics and measurement noise. For the

DBMT estimator, signal and measurement noise variances, respectively contribute

to the bias/variance upper bounds in different fashions through κn(f) and µn(f),

due to the distinction of the signal and measurement noise in our state-space model.

In contrast, in the standard MT method, possible measurement noise is treated in

the same way as the true data, and hence both the signal and noise variances have

equal contributions in the estimator bias/variance.
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Figure 2.7: (A) µn versus α, (B) κn and its upper/lower bounds versus α for N =
100, n = 50, and q/σ2 = 10.

The functions κn(f) and µn(f) do not have closed-form expressions with re-

spect to the state-space parameters α, σ2 and q(f). In order to illustrate the roles of

κn(f) and µn(f), we consider the scenario under which the upper bounds on the bias

and variance are achieved, i.e., q(f) being independent of f , and hence κn(f) = κn

and µn(f) = µn, ∀f . In this scenario, even though the dependence of µn and κn

on the state-space parameters are quite involved, it is possible to obtain upper and

lower bounds on κn and µn. As it is shown in Proposition A.1 in Appendix A, the

main parameters determining the behavior of κn and µn are qn/σ (i.e., the SNR)

and α (i.e., temporal signal dependence). Here, we present a numerical example

for clarification. Fig. 2.7A and B shows the plot of µn vs. α and κn vs. α for

n = 50 and q/σ2 = 10. It is apparent that µn increases with α and does not exceed

1. The fact that µn < 1 implies that the DBMT estimator achieves a higher noise

suppression compared to the standard MT method. This fact agrees with the noise

suppression performances observed in Section 2.3.

Fig. 2.7B shows the plot of κn vs. α, which exhibits a similar increasing
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Figure 2.8: α corresponding to κn ≈ 1 against q/σ2

trend, but eventually exceeds 1. This result implies that with a careful choice α,

it is possible to achieve κn < 1, and hence obtain lower variance than that of the

standard MT estimate. Fig. 2.8 illustrates this statement by showing the value of α

for which κn ≈ 1 vs. qn/σ
2. For models with high temporal dependence (i.e., α close

to 1), it is possible to achieve κn < 1 and hence reduce the estimator variance, due

to the increase in the weight of data pooled from adjacent windows, even for small

values of qn/σ
2 (i.e., low SNR). However, this reduction in variance comes with the

cost of increasing the bias. On the contrary when the data across windows have

low temporal dependence (i.e., α� 1), it is only possible to achieve a reduction in

variance for high values of qn/σ
2 (i.e., high SNR). This is due to the fact that at

low SNR with low temporal dependence, pooling data from adjacent windows is not

beneficial in reducing the variance in a particular window, and indeed can result in

higher bias.

Remark 2.3. Even though the parameter α is estimated in a data-driven fashion, it

can be viewed as a tuning parameter controlling the bias-variance trade-off, given

the foregoing discussion. For a given SNR, fixing α at a small value can help reduce
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the variance but with a cost of increasing bias, and vice versa. In light of this

observation, Fig. 2.8 can be thought of as a guideline for choosing α to achieve

κn ≈ 1, so that the estimator is nearly unbiased, and achieves a lower variance than

that of the standard overlapping MT estimator due to the noise suppression virtue

of the state-space model. Although we focused on the case of flat spectrum in the

foregoing discussion, it is possible to numerically compute these trade-off curves

for more general cases, given the general expressions for κn(f) and µn(f) given in

Appendix A.

Remark 2.4. Extending Theorems 2.1 and 2.2 to the log-DBMT algorithm is not

straightforward, due to the high nonlinearity of the underlying state-space models.

However, under the common Gaussian approximation of the log-posterior density,

the well-known variance reduction property of the fixed interval smoother [79, 89]

carries over to the estimator of logSn(f). That is, the variance of the log-DBMT

estimate of logSn(f) obtained using the state-space model is lower than that of

the standard MT estimate which only uses the data within window n. This fact

agrees with our earlier observation in Section 2.3.1 regarding the tightening of the

confidence intervals for log-DBMT as compared to the overlapping MT estimates.

2.5 Concluding Remarks

Spectral analysis of non-stationary time series data poses serious challenges for

classical non-parametric techniques, in which temporal smoothness of the spectral

representations are implicitly captured using sliding windows with overlap. This
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widely-practiced approach tends to ignore the inherent smoothness of the data and

is not robust against measurement/sampling noise. In this chapter, we address

these issues and provide an alternative to the sliding window spectrogram analysis

paradigm. We propose two semi-parametric spectrogram estimators, namely the

DBMT and log-DBMT estimators, by integrating techniques from MT analysis and

Bayesian estimation. To this end, we explicitly model the temporal dynamics of the

spectrum using a state-space model over the spectral features obtained by multita-

pering. Therefore our algorithms inherit the optimality features of both Bayesian

estimators and MT analysis.

Our algorithms admit efficient and simple implementations, thanks to the

Expectation-Maximization algorithm and the well-known fixed interval state-space

smoothing procedure. Unlike existing approaches, our algorithms require no a priori

assumptions about the structure of the spectral representation and operate in a fully

data-driven fashion. While both algorithms yield spectral estimates that are smooth

in time, by design the DBMT algorithm significantly suppresses the measurement

noise in forming the spectrogram and the log-DBMT algorithm mitigates sampling

noise due to small observation length. We establish the performance gains provided

by our algorithms through theoretical analysis of the bias-variance trade-off, as well

as application to synthetic and real data from human EEG recording during sleep

and ENF signals from audio recordings.
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Chapter 3: Multitaper Spectral Analysis of Neuronal Spiking Activ-

ity Driven by Latent Stationary Processes

The advent of invasive recording technologies from the brains of animals and

humans, such as multi-electrode arrays and electrocorticography (ECoG), has re-

sulted in abundant pools of neuronal spiking data, which often exhibit oscillatory

features [91]. Characterizing the properties of these oscillations with high spectral

resolution is crucial to understanding their role in cognitive functions.

Most existing spectral analysis techniques, e.g. nonparametric techniques

based on Fourier methods and Wavelets, the multitaper method [11, 74, 92], or

their extensions such as DBMT analysis in Chapter 2, State-space multitaper time-

frequency analysis [93], however, are designed for continuous-time data and cannot

be readily applied to binary spiking data. There have been efforts aimed at ad-

dressing this challenge, which consider the periodogram of smoothed spike trains

using kernel methods as the spectral representation [94, 95, 96]. Another strand of

results are based on the theory of point processes, which has been widely used in

recent years to model and analyze the statistical properties of binary spike trains

[97, 98, 99, 100]. These techniques relate the Conditional Intensity Function (CIF)

or the spiking rate of a point process governing the spiking statistics to intrinsic and
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external neural covariates using state-space models. Then, the spectrum of the esti-

mated CIF is characterized using standard nonparametric or parametric techniques

[66, 101, 102].

Despite their relative success in application, these methods have several short-

comings from a theoretical perspective. First, it is known that explicit smoothing

of the signal using kernels or implicit smoothing using state-space models, results

in the distortion of the spectrum [12]. Second, time-domain smoothing alleviates

the variance of the estimates at the cost of increasing the bias. On the other hand,

existing techniques which avoid time-domain smoothing (e.g., [103]) may exhibit

high variability. Third, these modeling frameworks often require a priori informa-

tion (e.g., sparsity) or may suffer from model mismatch (e.g., overly-smoothed state

estimates).

To address these issues, in this chapter we introduce a novel multitaper spectral

analysis method, which we call the Point Process Multitaper Method (PMTM),

to be directly applied to binary data. To this end, we generate auxiliary spiking

statistics which correspond to the tapered versions of the CIF, which are then used

to independently estimate the eigen-spectra of the tapered CIFs via the Maximum

Likelihood (ML) procedure. The multitaper spectral estimate is formed by averaging

the corresponding eigen-spectral estimates. Our approach distinguishes itself from

existing work by providing a direct spectral estimator from binary observations via

a novel adaptation of multitaper analysis, with no recourse to intermediate time-

domain smoothing or need for a priori information. We demonstrate the performance

of PMTM using simulated spike trains driven by an autoregressive (AR) process
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and experimentally recorded neural data under general anesthesia. Our results

reveal substantial gains achieved by PMTM as compared to existing nonparametric

techniques, in terms of the bias-variance trade-off.

3.1 Problem Formulation

Let N(t) and Ht denote the point process representing the number of spikes

and spiking history in [0, t), respectively, where t ∈ [0, T ] and T denotes the obser-

vation duration. The CIF of a point process N(t) is defined as:

λ(t|Ht) := lim
∆→0

P [N(t+ ∆)−N(t) = 1|Ht]

∆
. (3.1)

To discretize the continuous process, we consider time bins of length ∆, small enough

that the probability of having two or more spikes in an interval of length ∆ is

negligible. Thus, the discretized point process can be modeled by a Bernoulli process

with success probability λk := λ(k∆|Hk)∆, for 1 ≤ k ≤ K, where K := T/∆ and

is assumed to be an integer with no loss of generality. Note that λk forms the

CIF of the discretized process, which we refer to as CIF hereafter for brevity. Let

nk ∈ {0, 1} be the number of spikes in bin k, for 0 ≤ k ≤ K. Our objective is to

estimate the Power Spectral Density (PSD) of the CIF from the observed spike train

{nk}Kk=1, under the assumption that the CIF is a second-order stationary process.

More generally, we consider an ensemble of L neurons or L trials from a

single neuron driven by the same CIF, and denote the observed spike trains by

D :=
{
n

(l)
k

}K,L
k=1,l=1

. When considering an ensemble of L neurons, this setting may
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only be valid for neuronal recordings from a small area of cortex using multi-electrode

arrays (See, for example [104]), and when considering L trials from the same neu-

ron, it is assumed that all trials pertain to the same stimulus (See, for example

[105]). We model the CIF using a zero-mean second-order stationary random pro-

cess, {xk}Kk=1, which by virtue of the Spectral Representation Theorem [12] admits

a Cramér representation [69, p. 150] of the form:

xk =

∫ 1
2

− 1
2

ei2πfkdz(f), (3.2)

where dz(f) is a complex-valued orthogonal increment process (i.e., z(f) and z(f ′)

are uncorrelated for f 6= f ′) and the PSD, S(f) of the process is defined as: S(f)df =

E[|dz(f)|2]. Finally, we use a linear link for the CIF so that the model can be

summarized as

λk = µ+ xk, n
(l)
k ∼ Bernoulli(λk), (3.3)

for 1 ≤ k ≤ K and 1 ≤ l ≤ L, where µ is the baseline spiking probability. The choice

of the linear link, as opposed to more common links such as the logistic function

[106], is for the sake of simplicity of the auxiliary data generation process that will

be described in Section 3.2.1. Acknowledging the non-linearity of the model Eq.

(3.3) and the availability of only a finite number of samples, we consider a piece-

wise continuous approximation to the PSD, i.e, dz(f) is constant over the intervals

[m−1
2N

, m
2N

), for large enough N , for m = 1, 2, · · · , N . This enables us to express
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dz(f) = (am + ibm)df for f ∈ [m−1
2N

, m
2N

), where am and bm are random variables for

m = 1, 2, · · · , N [103]. Invoking the conjugate symmetry of dz(f) for real valued

{xk}Kk=1, Eq. (3.2) can be written as

xk=
N∑
m=1

2

N

[
am cos

π(m−1)

N
− bm sin

π(m−1)

N

]
, (3.4)

with a PSD of S(f) = 1
N
E[a2

m + b2
m] for f ∈ [m−1

2N
, m

2N
).

Denoting x := [x1, x2, · · · , xK ]> and z := [a1, a2, b2, · · · , aN , bN ]> and defining

A as

A:=
2

N



1 cos π
N

− sin π
N

. . . cos (N−1)π
N

− sin (N−1)π
N

1 cos2π
N
− sin2π

N
. . . cos2(N−1)π

N
− sin2(N−1)π

N

...
...

...
. . .

...
...

1 cosKπ
N
− sinKπ

N
. . . cosK(N−1)π

N
− sinK(N−1)π

N


,

one can write Eq. (3.4) in the vector form as x = Az. By the orthogonality of

the increment process dz(f), zi’s are uncorrelated. We further assume that zi’s, for

i = 1, 2, · · · , 2N − 1, are independent and each zi follows a truncated zero-mean

Gaussian distribution, with a density

fi(zi)1[−µ̃ ≤ zi ≤ µ̃]∫
fi(ξ)1[−µ̃ ≤ ξ ≤ µ̃]dξ

, (3.5)

where fi(·) is the Gaussian density N (0, σi
2), 1 is the indicator function, and µ̃ :=

N
2(2N−1)

µ. While a Gaussian assumption (instead of truncated Gaussian) is more
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common in application, our choice of truncation ensures that λk = µ + xk is a

feasible spiking probability: Given that each entry of A is bounded in absolute

value by 2
N

, this ensures that each xk is restricted to [−µ, µ] for µ > 0. In addition,

by selecting µ ≤ 1/2, one can ensure that 0 ≤ λk ≤ 1, for all 1 ≤ k ≤ K.

3.2 The Point Process Multitaper Method

The MTM is an extension of tapered PSD estimation, where the spectral

estimate is computed by averaging several tapered PSD estimates corresponding to

orthogonal tapers with optimal spectral leakage properties [12]. The set of tapers

from the Discrete Prolate Spheroidal Sequences (dpss) [73] provides excellent control

over the bias-variance trade-off [11, 74, 92].

Let v
(j)
k be the kth sample of the jth dpss sequence, for a given design bandwidth

W , k = 1, 2, · · · , K and j = 1, 2, · · · , J such that J < b2KW c− 1. Given the time-

series data
{
xk
}K
k=1

, the jth eigen-spectrum is given by:

Ŝ(j)(f) :=

∣∣∣∣ K∑
k=1

e−i2πfkv
(j)
k xk

∣∣∣∣2 for j = 1, 2, · · · J (3.6)

from which the MTM PSD estimate can be computed as:

Ŝ(mtm)(f) :=
1

J

J∑
j=1

Ŝ(j)(f). (3.7)

Due to the non-linear nature of the model Eq. (3.3), forming the MTM PSD estimate

based on spiking data becomes non-trivial. In what follows, we indeed address this
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issue by devising a novel variant of MTM.
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Figure 3.1: Schematic depiction of the proposed method. Stem plots show the
ensemble average of the underlying spike trains.

3.2.1 Generating Auxiliary Spiking Statistics

Given that xk is not directly observable, we instead modify the observed spike

trains as if they were generated by a CIF comprising v
(j)
k xk (instead of xk). For

non-negative v
(j)
k (e.g., for j = 1), generating such modified spike trains is usually

carried out using the thinning method [107, 108]. The basic idea of the thinning

method is to retain the original spikes with a probability determined by the ratio of

the target and original CIFs, and thus to obtain a spike train corresponding to the

tapered CIF, v
(j)
k λk. Given that the dpss tapers take negative values (for j > 1),

the thinning method is not readily applicable and its näıve application results in

negative-valued spiking probabilities.

To resolve this issue, we leverage the virtue that the spike train is generated

according to a Bernoulli process and therefore its complement given by ň
(l)
k := 1−n(l)

k

has a CIF given by λ̌k := 1 − λk = 1 − µ − xk. Suppose that each taper v
(j)
k
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is normalized by its maximum absolute value such that |v(j)
k | ≤ 1 for all k. Let

ζ
(j)
k ∈ {0, 1} be independently drawn Bernoulli variables with p

[
ζ

(j)
k = 1

]
=
∣∣v(j)
k

∣∣,
for j = 1, 2, · · · , J and k = 1, 2, · · · , K. Consider the following thinned spike train

constructed from n
(l)
k and its complement ň

(l)
k :

n
(l,j)
k = ζ

(j)
k

(
n

(l)
k 1[v

(j)
k ≥ 0]+ň

(l)
k 1[v

(j)
k < 0]

)
. (3.8)

In words, the sequence n
(l,j)
k contains the thinned version of n

(l)
k , wherever v

(j)
k is

non-negative, and the thinned version of ň
(l)
k , wherever v

(j)
k is negative. As such,

n
(l,j)
k ∈ {0, 1} for all k by construction. This makes n

(l,j)
k a feasible spike train in the

point process framework. Furthermore, noting that ň
(l)
k has a CIF of λ̌k = 1 − λk,

from Eq. (3.8) the CIF of n
(l,j)
k can be expressed as:

λ
(j)
k := (µ+ xk)

∣∣v(j)
k

∣∣1[v
(j)
k ≥0] + (1− µ− xk)

∣∣v(j)
k

∣∣1[v
(j)
k <0]

(a)
= (µ+ xk)v

(j)
k 1[v

(j)
k ≥0]− (1− µ− xk)v(j)

k 1[v
(j)
k <0]

(b)
= µ

(j)
k + v

(j)
k xk, (3.9)

where µ
(j)
k = µv

(j)
k 1[v

(j)
k ≥ 0]−(1−µ)v

(j)
k 1[v

(j)
k < 0], for j = 1, 2, · · · , J , (a) follows

from the definition of absolute value, and the equality (b) follows from rearranging

the terms. The expression of λ
(j)
k in Eq. (3.9) indeed contains the desired tapered

version of xk, which is required for multitaper spectral estimation.

By considering multiple independent realizations of {ζ(j)
k }

J,K
j=1,K=1, one can gen-

erate multiple realizations of n
(l,j)
k , and take their ensemble average as a smoothed
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sequence of auxiliary statistics to estimate the spectral representation of the ta-

pered process v
(j)
k xk. It is not difficult to see that the ensemble average converges

in probability to [109]:

v
(j)
k n

(l)
k 1[v

(j)
k ≥ 0]− v(j)

k ň
(l)
k 1[v

(j)
k < 0], (3.10)

which can be directly computed from the original spiking activity n
(l)
k . Thus, for

the sake of robustness we use this limit as the auxiliary spiking statistic hereafter,

and refer to it also as n
(l,j)
k , for notational brevity. This choice is motivated by the

direct-averaging method common in adaptive filtering [110]. Given that each taper

v
(j)
k was initially normalized by its maximum absolute value, the estimated eigen-

spectra need to be accordingly rescaled. It is noteworthy that while in principle

this procedure can be extended to more general link functions, the generation of

the corresponding auxiliary statistics may be more intricate. Fig. 3.1 provides a

visual summary of our proposed framework. The time-bandwidth product and the

number of tapers are chosen following guidelines from the MTM literature [11, 74].

3.2.2 Maximum Likelihood Estimation of the Eigen-spectra

Once the auxiliary spiking statistics D(j) =
{
n

(l,j)
k

}K,L
k=1,l=1

, j = 1, 2, · · · , J are

available, the eigen-spectra need to be estimated to construct the PSD. Given the

modeling framework of Section 3.1, estimation of the jth eigen-spectrum reduces

to estimating the parameters θ(j) := [σ
(j)2
1 , σ

(j)2
2 , · · · , σ(j)2

2N−1]>, where σ
(j)2
m is the

variance of the random variable z
(j)
i corresponding to the jth eigen-spectra, i =
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1, 2, · · · , 2N − 1. The ML estimate of the parameter θ(j) is given by:

θ̂
(j)
ML = arg max

θ(j)
P (D(j)|θ(j)) (3.11)

Note that expressing P (D(j)|θ(j)) solely in terms of D(j), i.e., eliminating z(j) :=

[z
(j)
1 , z

(j)
2 , · · · , z(j)

2N−1]>, introduces computational intricacies, which we avoid by using

the Expectation-Maximization (EM) algorithm [78] as our solution method. In what

follows we drop the superscript j for the sake of clarity, as the same procedure will

be used for estimating each eigen-spectrum. If z is known, the complete data log-

likelihood of the observations D can be written as:

logL(θ|z,D) =
L∑
l=1

K∑
k=1

[
n

(l)
k log

µk+(Az)k

1−
(
µk+(Az)k

)+log
(
1−
(
µk + (Az)k

))]

−
2N−1∑
m=1

(
log

∫ µ̃

−µ̃
fm(ξ)dξ +

z2
m

2σ2
m

+
1

2
log σ2

m

)
+ C, (3.12)

which could be efficiently maximized to estimate θ (terms independent of θ are

denoted by C). Note that the linear dependence of the complete data log-likelihood

on n
(l)
k makes the direct-averaging technique described in Section 3.2.1 plausible, as

it corresponds to smoothing the data log-likelihood.

Before presenting the EM algorithm, we note that
∫ µ̃
−µ̃ fm(ξ)dξ = 1−2Φ(γm) ≈

1 for moderate values of γm := µ̃
σm

and small enough σ2
m, where Φ(·) is the standard

normal cumulative distribution function. Thus, we drop this term henceforth to

avoid unnecessary complexity. One may choose to work with this term included, at

the expense of additional computational costs. At the ith iteration, we have:
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E-step

Given θ[i], the Q-function is given by

Q(θ|θ[i]) = −
2N−1∑
m=1

(
1

2
log σ2

m +
1

2σ2
m

E[z2
m|D,θ[i]]

)
+ C ′, (3.13)

which requires fz|D,θ[i] or samples from it, and can thus be computationally demand-

ing to compute (terms independent of θ are denoted by C ′). Instead, we use the

unimodality of the density and approximate it by a multivariate Gaussian density

N (µz[i] ,Σz[i]) [66, 97]. By invoking the fact that the mode and mean of a multivari-

ate Gaussian density coincide and the Hessian of its natural logarithm is equal to

−
(
Σz[i]

)−1
, we get:

µz[i] = arg max
z∈D

L∑
l=1

K∑
k=1

[
n

(l)
k log

µk + (Az)k
1− (µk + (Az)k)

+ log (1−(µk + (Az)k))

]

−
2N−1∑
m=1

z2
m

2σ2
m

, (3.14)

and Σz[i] is given by the Hessian of the log-likelihood in Eq. (3.12) evaluated at

µz[i] . The maximization problem Eq. (3.14) is concave over

D = {z ∈ R2N−1 : 0 ≤ µk + (Az)k ≤ 1, k = 1, 2, · · · , K}

and the Hessian is negative definite, so Newton-type methods for bound-constrained

optimization can be used to compute µz[i] efficiently. We use a line-search method
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Algorithm 3: The Point Process Multitaper Method

Input: Ensemble of neuronal spiking data,
{
n

(l)
k

}K,L
k=1,l=1

for k = 1, 2, · · · , K; De-

sign bandwidth, W , such that α := KW ≥ 1; Number of tapers, J .
Generate J < b2αc dpss corresponding to data length K and half time-bandwidth
product α
for j = 1 to J do

Generate
{
n

(l,j)
k

}K
k=1

, for l = 1, 2, · · · , L
Compute Ŝ(j)(f) using ML estimation

end for
Output: PMTM estimate, Ŝ(pmtm)(f) = 1

J

∑J
j=1 Ŝ

(j)(f)

[111], which generates a sequence of iterates by setting µ
[r+1]

z[i]
= µ

[r]

z[i]
+α[r]d[r], where

µ
[r+1]

z[i]
is a feasible approximation to the solution, α[r] is the step-size and d[r] is the

Newton’s step for that iteration. Then, Σz[i] can be computed by evaluating the

Hessian of Eq. (3.12) at z = µz[i] , which allows E[z2
m|D,θ[i]] to be calculated as(

(µz[i])m
)2

+
(
Σ

[i]
z

)
m,m

.

M-step

The parameter vector θ[i+1] is updated by maximizing the expectation in Eq.

(3.13). Given that Q(θ|θ[i]) is concave over the positive orthant, its unique maxi-

mizer is given by θ̂
[i+1]
m = E[z2

m|D,θ[i]].

Note that we have assumed µ
(j)
k ’s to be known. Since it is not the case for

most practical purposes, we first estimate µ as µ̂ = 1
LK

∑L,K
l,k=1 n

(l)
k and compute µ

(j)
k

in Eq. (3.9) using µ̂. We terminate the EM algorithm after a fixed large number of

iterations or until some convergence criterion is met. A similar stopping rule for the

maximization problem inside each EM step is used. We initialize θ[0] as an arbitrary

vector in the positive orthant. Following the termination of the EM algorithm, the
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eigen-spectra are calculated as Ŝ(0) = σ̂2
1 and Ŝ(fm) = σ̂2

2m + σ̂2
2m+1 for fm = m

2N

and m = 1, 2, · · ·N − 1. Finally, the PMTM estimate can be computed using Eq.

(3.7). Algorithm 3 summarizes the proposed PMTM procedure.

3.3 Simulation Results

We simulate xk as an AR(4) process given by

xk = 0.4152xk−1 − 0.0922xk−2 + 0.4170xk−3 − 0.8852xk−4 + 0.025εk,

where εk is zero-mean i.i.d. Gaussian noise with unit variance. We compute the

CIF as λk = µ + xk for µ = 0.12 (truncated to [0, 1], if necessary), to generate the

binary spiking activity for K = 512 samples. A snapshot of one realization of this

AR process and the raster plot of L = 10 spike trains are depicted in Fig. 3.2A and

B, respectively.

We apply PMTM to this simulated data and benchmark it against two existing meth-

A 0.3

0.2

0.1

0

B 1

10

200 250 300 350

Figure 3.2: (A) A snapshot of the simulated AR process for 200 ≤ k ≤ 350. (B)
Raster plot of the corresponding neuronal ensemble activity.
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Figure 3.3: Comparison of the PSD estimates. (A) PMTM, PSTH-PSD, SS-PSD,
Oracle PSD (all using α = 5, J = 8), and the true PSD. (B) PMTM estimates for
L = 5, 10, 15, and 20.

ods: (1) PSTH-PSD, where the PSD is computed by forming the MTM estimate of

the ensemble peristimulus time histogram (PSTH), i.e., the average spike trains, and

(2) SS-PSD, where xk is first estimated using a state-space model xk = xk−1 + wk,

followed by forming its MTM PSD estimate [66].

Fig. 3.3A shows the PMTM (black), PSTH-PSD (green), SS-PSD (aqua) and

the true PSD (blue) for the realization shown in Fig. 3.2 in log-scale. For comparison

purposes, we have also included the MTM PSD estimate of xk, assuming that an

oracle has access to it (Oracle PSD, in red). We have used the first 8 dpss tapers

corresponding to α = 5. As it can be observed from Fig. 3.3A, PSTH-PSD suffers

from high bias, though exhibiting reduced variability, and the spectral peaks are

difficult to distinguish from the background. On the other hand, SS-PSD suffers
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from model mismatch, as it over-smooths the CIF due to the usage of a state-space

model, and as a result the spectral peaks are nearly absent in the estimate. The

PMTM estimate, however, closely follows the true PSD by reducing spectral leakage

and producing a nearly unbiased estimate on par with the Oracle PSD estimate,

though it exhibits some variability. In order to quantify these comparisons, we

computed a normalized measure of MSE by averaging the squared-error of the PSD

normalized by the true PSD values in the log-scale. The normalized MSE values

(± 2 STD) corresponding to 10 different AR process realizations and 5 different

spike-train ensemble realizations are given in Table 3.1, which corroborates our

foregoing qualitative comparison. It is noteworthy that the improved performance

of the PMTM method comes with the cost of higher computational complexity

as compared to the PSTH-PSD and SS-PSD methods. To ease reproducibility, we

have deposited a MATLAB implementation of PMTM on the open source repository

Github [112], which fully regenerates Fig. 3.3A.

PMTM SS-PSD PSTH-PSD
0.4733± 0.0072 7.7772± 2.0641 0.8164± 7.9592× 10−8

Table 3.1: Normalized MSE Comparisons

Finally, Fig. 3.3B examines the improvement of the PMTM estimates with

respect to the ensemble size, for L = 5, 10, 15 and 20. As L increases, the PSD

estimates improve, but with a seemingly saturating effect for L ≥ 10.
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3.4 Application to Experimentally Recorded Data

We next demonstrate the utility of PMTM in application to experimentally

recorded data. The data consist of both spike trains and local field potential (LFP)

recorded by a multi-electrode array from a human subject undergoing general anes-

thesia (See Lewis et al. [104] for details). It is known that the LFP signal–capturing

the synchronous activity of a large population of neurons–is a salient covariate of

rhythmic neuronal spiking under anesthesia [103, 104]. As such, it is expected that

the PSD of the latent process that drives spiking activity resembles that of LFP.

Fig. 3.4 shows the raster plot of 26 neurons considered for analysis, as well as the

corresponding PSTH and LFP signals.
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Figure 3.4: Experimentally recorded data under general anesthesia. (A) Raster plot
of 26 neurons, (B) the corresponding PSTH, and (C ) LFP, for a window of length
40.92 s.

To reduce computational complexity, the spike trains and LFP signal were
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down-sampled to 25 Hz, from their original sampling rates of 1 KHz and 250Hz,

respectively. We considered a window of K = 1024 samples (40.92 s) for analysis.

We used N = 512 frequency bins to construct the matrix A. Given that the activity

is known to be dominated by sub-hertz frequency components [104], we restricted

PSD estimation to [0, 3] Hz (i.e, the first 123 frequency bins). We used the first 4

dpss tapers corresponding to α = 3. Fig. 3.5 shows the PSD estimates obtained

by the PSTH-PSD, SS-PSD and PMTM methods, as well as the multitaper PSD

estimate of the LFP signal, in linear scale and normalized by the magnitude of
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Figure 3.5: PSD estimates from experimentally recorded data under general anes-
thesia. (A) PSTH-PSD, (B) SS-PSD, (C ), PMTM, and (D) multitaper PSD of the
LFP signal. The PSDs are presented in linear scale and normalized to the magni-
tude of their respective largest peak. PSD estimates above 2 Hz are negligible and
are cropped for visual convenience.
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the largest peak, for ease of comparison. The PSTH-PSD estimate (Fig. 3.5A)

is highly variable and exhibits multiple spurious peaks above 1 Hz. The SS-PSD

estimate (Fig. 3.5B) overly concentrates the PSD within low frequencies due to

the underlying temporal smoothing. The PMTM estimate (Fig. 3.5C ), however,

successfully suppresses the spectral energy above 1 Hz, and as expected, captures

the main spectral features of the LFP signal (Fig. 3.5D).

3.5 Concluding Remarks

Spectral estimation of continuous time-series is a well-established domain, as

hallmarked by the multitaper method known for its favorable control over the bias-

variance trade-off. Computing the spectral representation of the neural covariates

that underlie spiking activity, however, sets forth various challenges due to the

intrinsic non-linearities involved. In this chapter, we addressed this problem by

proposing a multitaper method specifically tailored for binary spiking data, which

we refer to as PMTM. We compared the performance of PMTM to that of two ex-

isting techniques using simulated and experimentally recorded data, which revealed

significant gains in terms of estimation accuracy. The PMTM can be extended to a

wide variety of binary data, such as rainfall and earthquake data, to extract spectral

representations of the underlying latent processes.
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Part II

A Cortically-distributed Encoding Model of Speech Processing for M/EEG

Analysis

77



Chapter 4: Neuro-Current Response Functions: an integrated ap-

proach to MEG source analysis for continuous stimuli

paradigm

The human brain routinely processes complex information as it unfolds over

time, for example, when processing natural speech, information from lower levels has

to be continuously processed to build higher level representations, from the acoustic

signal to phonemes to words to sentence meaning. Quantitative characterization

of the neural dynamics underlying such sensory processing is not only important in

understanding brain function, but it is also crucial in the design of neural prostheses

and brain-machine interface technologies.

In modeling neural activity at the meso-scale using neuroimaging modalities

such as electroencephalography (EEG) and magnetoencephalography (MEG), ex-

perimental evidence suggests that linear encoding models can be beneficial in pre-

dicting the key features of sensory processing; examples include encoding models of

visual and auditory stimuli [3, 17, 18, 19].

Arguably the earliest and most widely used technique to construct neural

encoding models is the ‘reverse correlation’ technique, in which neural responses

time-locked to multiple repetitions of simple stimuli (such as acoustic tones and
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visual gratings) are averaged, weighted by the instantaneous value of the preceding

stimulus, to form the so-called evoked response function. Originally devised to study

the tuning properties of sensory neurons [113, 114, 115], it was later incorporated

into MEG/EEG analysis. In probing the neural response to more sophisticated

stimuli such as continuous speech and video, the goal is to understand the encoding

of the continuous stimuli as a whole, which is composed of both low level (e.g.,

acoustics) and high level (e.g., semantics) features which are bound together and

distributed across time [116, 117].

To address this issue, techniques from linear systems theory have been suc-

cessfully utilized to capture neural encoding using MEG/EEG under the continuous

stimuli paradigm. In this setting, the encoding model takes the form of a linear

filter which predicts the MEG/EEG response from the features of the stimulus. For

example, it has been shown that the acoustic envelope of speech is a suitable predic-

tor of the EEG response [118]. These filters, or impulse response functions, play a

crucial role in characterizing the temporal structure of auditory information process-

ing in the brain, and are often referred to as Temporal Response Function (TRF)

[19, 20, 21]. For instance, in a competing-speaker environment in the presence of two

speech streams, it has been observed that the TRF extracted from MEG response to

the acoustic power consists of an early component at around 50 ms representing the

acoustic power of the speech mixture, while a later peak at around 100 ms preferen-

tially encodes the acoustic power of the attended speech stream [4, 119]. Building

up on evidence from ferret electrophysiology [120] and human electrocorticography

(ECoG) [121], more recent studies have expanded the TRF framework beyond the
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acoustic level to account for phoneme-level processing [116], lexical processing [117]

and semantic processing [122].

Thanks to the grounding of the TRF model in linear system theory, several

techniques from the system identification literature have been utilized for TRF es-

timation, such as the normalized reverse correlation [123], ridge regression [124],

boosting [6], and SPARLS [125], some of which are available as software packages

[126, 127, 128, 129]. While these methods have facilitated the characterization of the

functional roles of various TRF components in sensory and cognitive processing of

auditory stimuli, they predominantly aim at estimating TRFs over the MEG/EEG

sensor space. While recent studies, using electrophysiology in animal models and

ECoG in humans, have provided new insights into the cortical origins of auditory

processing [see, for example, 120, 121, 130, 131], they do not account for the whole-

brain distribution of the underlying sources due to their limited spatial range. As

such, the whole-brain cortical origins of the TRF components are not well studied.

To address this issue using neuroimaging, current dipole fitting methods have

been utilized to map the sensor space distribution of the estimated TRF components

onto cortical sources [4, 18]. Given that the processing of sophisticated stimuli such

as speech is known to be facilitated by a widely distributed cortical network, single

dipole sources are unlikely to capture the underlying cortical dynamics. More recent

results have used the minimum norm estimate (MNE) source localization technique

to first map the MEG activity onto the cortical mantle, followed by estimating a TRF

for each of the resulting cortical sources [22]. While these methods have shed new

light on the cortical origins of the TRF, they have several limitations that need to

80



be addressed. First, the ill-posed nature of the MEG/EEG source localization prob-

lem under distributed source models results in cortical estimates with low spatial

resolution [132, 133]. Given the recent and ongoing advances in MEG/EEG source

localization towards improving the spatial resolution of the inverse solutions [see, for

example, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149],

it is tempting to simply use more advanced source localization techniques followed

by fitting TRFs to the resulting cortical sources. However, these techniques are typ-

ically developed for the event-related potential (ERP) paradigm [150, 151, 152] and

leverage specific prior knowledge on the spatiotemporal orgranization of the under-

lying sources. While these assumptions bias the solution towards source estimates

with high spatiotemporal resolution under specific repetition-based experimental

settings, they do not account for the key structural properties of the underlying

neural processes that extract information from continuous sensory stimuli. These

key properties include the smoothness and/or sparsity of the response functions

in the lag domain and their spatial correlation over the cortex, which may not be

captured by merely enforcing spatiotemporal priors over the source domain.

Second, the single-trial nature of experiments involving continuous auditory

stimuli, does not allow to leverage the time-averaging across multiple trials common

in source localization of evoked responses from MEG/EEG. Third, the two-stage

procedures of first fitting TRFs over the sensor space followed by localizing the

peaks using dipole fitting, or first finding source estimates over the cortex followed

by fitting TRFs to cortical sources, results in so-called bias propagation: the in-

herent biases arising from the estimation procedure in the first stage propagate to
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the second stage, often destructively so, and limit, sometimes severely, the statisti-

cal interpretability of the resulting cortical TRFs (see Section 4.2.1, for example).

Finally, high resolution inverse solutions require precise forward models that are

constructed based on high resolution MR scans with accurate sensor registration,

which may not be readily available.

In order to address these limitations, here we provide a methodology for direct

estimation of cortical TRFs from MEG observations, taking into account their spa-

tiotemporal structure. We refer to these cortical TRFs as neuro-current response

functions (NCRFs). We construct a unified estimation framework by integrating

the linear encoding and distributed forward source models, in which the NCRFs lin-

early process different features of the continuous stimulus and result in the observed

neural responses at the sensor level. We cast the inverse problem of estimating the

NCRFs as a Bayesian optimization problem where the likelihood of the recorded

MEG response is directly maximized over the NCRFs, thus eliminating the need for

the aforementioned two-stage procedures.

In addition, to address the lack of accurate cortical surface patch statistics

in the head model due to unavailability of MR scans, the NCRFs are extended

to free-orientation dipoles by tripling them at each dipole location to account for

vector valued current moments in 3D space. To guard against over-fitting and ensure

robust recovery of such 3D NCRFs, we design a regularizer that captures the spatial

sparsity and temporal smoothness of the NCRFs (e.g., minimizing the number of

peaks or troughs) while eliminating any dependency on the choice of coordinate

system for representing the vector valued dipole currents.
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While the resulting optimization problem turns out to be non-convex, we pro-

vide an efficient coordinate-descent algorithm that leverages recent advances in ev-

idence maximization to obtain the solution in a fast and efficient manner.

We empirically evaluate the performance of the proposed NCRF estimation

framework using a simulation study mimicking continuous auditory processing,

which reveals that the proposed method is not only capable of identifying active

sources with better spatial resolution compared to existing methods, but can also

infer the orientation of the dipoles as well as the time course of the response func-

tions accurately. Lastly, we demonstrate the utility of estimation framework by

analyzing experimentally recorded MEG data from young adult individuals listen-

ing to speech for NCRFs at different hierarchical levels of speech processing. A

data set, initially recorded by [153] and lacking individual MR scans, was analyzed

previously by [22] for source response functions using two-stage MNE followed by

boosting-based TRF estimation. Our estimated NCRFs not only corroborate exist-

ing findings, but they are also readily interpretable in a meaningful fashion without

any recourse to post-hoc processing (i.e. hierarchal clustering, sparse principal com-

ponent analysis etc.) necessary for the previous study, thanks to improved spatial

localization. In summary, our method successfully delineates the distinct cortical

distribution of the underlying neural processes at high spatiotemporal resolution,

providing new insights into the cortical dynamics of speech processing.
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4.1 Theory and Methods

We develop our theory and methods for a canonical MEG auditory experiment

in which the subject is listening to a single speech stream. Our goal is to determine

how the different features of the speech stream are processed at different cortical

stages and evoke specific neural responses that give rise to the recorded MEG data.

For clarity of description and algorithm development, we first consider a single-

trial experiment, and take the momentary acoustic power of the speech stream, i.e.,

the speech envelope, as the feature of interest. We will discuss below the more

general scenarios including multiple trials, multiple speech stimuli, and multiple,

and possibly competing, features reflecting different levels of cognitive processing.

4.1.1 Preliminaries and Notation

Let et, 1 ≤ t ≤ T denote the speech envelope at discrete time index t for a du-

ration of T samples taken at a sampling frequency of fs. We consider a distributed

cortical source model composed of M dipole sources dm = (rm, jm,t), 1 ≤ m ≤ M ,

where rm ∈ R3 denotes the right-anterior-superior (RAS) coordinates of the mth

dipole and jm,t := [jm,t,R, jm,t,A, jm,t,S]> ∈ R3 denotes the dipole current vector at

time t in the same coordinate system. The dipole locations can be obtained by

standard tessellation of the 3D structural MR images of the cortex and assigning

dipoles to the corresponding vertices [133, 154]. Furthermore, the MR images can

also be utilized to approximate the orientation of the current vector, assuming cur-

rent flow is orthogonal to the cortical surface and replacing the dipole current vector
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by a scalar value [155, 156]. However, this approach requires precise knowledge of

the cortical geometry [137], and still might not result in ideal approximation of the

cortical current orientations [157]. So, it is often desirable to retain the vectorial

nature of current dipoles, even though the resulting process is more complex.

Next, we assume that these current dipoles are in part stimulus-driven, i.e.,

each component of the current dipole relies on contributions from the preceding

stimulus:

jm,t,i = fi(et, et−1, · · · , e1) + vm,t,i (4.1)

where the placeholder i takes the values of one of the coordinate axes, {R,A, S}, fi

is a generic function, and vm,t := [vm,t,R, vm,t,A, vm,t,S]> accounts for the stimulus-

independent background activity. Following the common modeling approaches in

this context [3, 18, 115, 118], we take fi to represent a linear finite impulse response

(FIR) filter of length L:

fi(et, et−1, · · · , e1) =
L−1∑
l=0

τm,i,let−l = (τm,i)
>et, i ∈ {R,A, S}, (4.2)

where τm,i := [τm,i,0, τm,i,1 · · · , τm,i,L−1]> and et := [et, et−1, · · · , et−L+1]>. Note

that τm,i can be thought of as a TRF corresponding to the activity of dipole

source m along the coordinate axis determined by i. The length of the filter L

is typically determined by a priori assumptions on the effective integration win-

dow of the underlying neural process. When stacked together, the 3D linear filters
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τm := [τm,R, τm,A, τm,S] ∈ RL×3 are vector-valued TRFs at each source m, capturing

the linear processing of the stimuli at the cortical level. As such, we refer to these

vector-valued filters as Neuro-Current Response Functions (NCRFs) henceforth. In-

tuitively speaking, the 3D vector (τm,R,l, τm,A,l, τm,S,l)
> is the vector-valued dipole

activity at a lag of l/fs second arising from a putative stimulus impulse at time 0.

Let jt := [j>1,t, j
>
2,t, · · · , j>M,t]

> ∈ R3M be a vector containing all the current

dipoles at time t, and J := [j1, · · · , jT ] ∈ R3M×T be the matrix of current dipoles ob-

tained by concatenating the instantaneous current dipoles across time t = 1, 2, · · · , T .

Similarly, let V ∈ R3M×T denote the matrix of stimulus-independent background

activity, Φ := [τ1, τ2, · · · , τM ]> ∈ R3M×L denote the matrix of NCRFs, and S :=

[e1, e2, · · · , eT ] ∈ RL×T denote the matrix of features. Eq. (4.1) and Eq. (4.2) can

then be compactly expressed as:

J = ΦS + V. (4.3)

As for the sensor space, we assume a conventional MEG setting with N sensors

placed at different positions over the scalp, recording magnetic fields/gradients as

a multidimensional time series. The MEG observation at the ith sensor at time t

is denoted by yi,t, 1 ≤ i ≤ N and t ∈ [1, · · · , T ]. Let Y ∈ RN×T be the MEG

measurement matrix with the (i, t)th element given by yi,t. The MEG measurement

matrix is related to the matrix of current dipoles J according to the following forward
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model [133, 158, 159]:

Y = LJ + W, (4.4)

where L ∈ RN×dM maps the source space activity to the sensor space and is referred

to as the lead-field matrix, and W ∈ RN×T is the matrix of additive measurement

noise. The lead-field matrix can be estimated based on structural MRI scans by

solving Maxwell’s equations under the quasi-static approximation [160].

4.1.2 Problem Formulation

Given the stimulus-driven and current-driven forward models of Eq. (4.3) and

Eq. (4.4), our main goal is to estimate the matrix Φ, i.e., the NCRFs. To this end,

we take a Bayesian approach, which demands distributional assumptions on the

various uncertainties involved, i.e., the stimulus-independent background activity

and the measurement noise. For the measurement noise, we adopt the common

temporally uncorrelated multivariate Gaussian assumption, i.e.,

p (Y|J) = |(2π)Σw|−T/2 exp

(
−1

2
‖Y − LJ‖2

Σ−1
w

)
, (4.5)

where ‖A‖2
B := tr

{
A>BA

}
and Σw ∈ SN+ denotes the unknown noise covariance

matrix. The covariance matrix Σw can be estimated from either empty-room or pre-

stimulus recordings [161]. Next, let Vm ∈ R3×T denote the matrix of background

activity at source m, for m = 1, 2, · · · ,M . We adopt the following distribution for
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the background activity V:

p(V|Γ) =

(
M∏
m=1

|(2π)Γm|−T/2
)

exp

(
−1

2

M∑
m=1

‖Vm‖2
Γ−1
m

)
, (4.6)

i.e., the portion of the current dipoles reflecting the background activity are modeled

as zero-mean independent Gaussian random vectors with unknown 3D covariance

matrix Γm ∈ S3
+. Under this assumption, Eq. (4.3) can be expressed as:

p (J|Φ,Γ) = |(2π)Γ|−T/2 exp

(
−1

2
‖J−ΦS‖2

Γ−1

)
, (4.7)

where Γ ∈ S3M
+ is a block-diagonal covariance matrix with its mth diagonal block

given by Γm, for m = 1, 2, · · · ,M .

Under these assumptions, the joint distribution of the MEG measurement and

current dipole matrices is given by:

p (Y,J|Φ,Γ) = |(2π)Σw|−T/2|(2π)Γ|−T/2 exp

(
−1

2
‖Y − LJ‖2

Σ−1
w
− 1

2
‖J−ΦS‖2

Γ−1

)
,

(4.8)

By marginalizing over J (see Section B.1 for details), we obtain the distribution of

the MEG measurement matrix parametrized by the NCRF matrix Φ and the source

covariance matrix Γ:

p (Y|Φ,Γ) =
∣∣(2π)

(
Σw + LΓL>

)∣∣−T/2 exp

(
−1

2
‖Y − LΦS‖2

(Σw+LΓL>)−1

)
. (4.9)
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It is now possible to cast the problem of finding Φ as a Bayesian estimation problem,

in which a loss function fully determined by the posterior distribution of NCRF

matrix Φ given the MEG measurement matrix Y is minimized. In other words, if Γ

were known, the NCRF matrix estimation would amount to the following maximum

likelihood problem:

min
Φ

1

2
‖Y − LΦS‖2

(Σw+LΓL>)−1 . (4.10)

Another advantage of this Bayesian framework is the possibility of introducing regu-

larization schemes that can mitigate the ill-posed nature of this problem, and instead

work with regularized maximum likelihood problems. Note that this optimization

problem makes a direct connection between the MEG measurement matrix,Y and

the NCRF matrix Φ and allows us to avoid the aforementioned two-stage procedures

in finding TRFs at the cortical level [18, 22].

4.1.2.1 Regularization

As is the case in other source imaging methods, there are many fewer con-

straints than the free parameters determining the NCRFs. This makes the problem

severely ill-posed. As such, proceeding with the maximum likelihood problem in

Eq. (4.10) is likely to result in overfitting. In order to ensure robust recovery of a

meaningful solution to this ill-posed problem, we need to include prior knowledge

on the structure of the NCRFs in the form of regularization.

To this end, we construct regularizers based on a convex norm of the NCRF
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matrix Φ, to both capture the structural properties of the NCRFs and facilitate

algorithm development. The structural properties of interest in this case are spatial

sparsity over the cortical source space, sparsity of the peaks/troughs, smoothness in

the lag domain, and rotational invariance [19, 125].

In order to promote smoothness in the lag domain and sparsity of the peaks/troughs,

we adopt a concept from Chen et al. [162], in which a temporally smooth time series

is approximated by a small number of Gabor atoms over an over-complete dictionary

G ∈ RL×L̃, for some L̃ ≥ L [125, 163]. To this end, we first perform a change of

variables τm := Gθm, Φ = ΘG>, and S̃ := G>S, where θm ∈ RL̃×3 are the

coefficients of the mth NCRF over the dictionary G and Θ ∈ R3M×L̃ is a matrix

containing θms across its rows. Then, to enforce sparsity of the peaks/troughs,

spatial sparsity, and rotational invariance, we use the following mixed-norm penalty
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a result, it promotes sparsity in space and Gabor coefficients, while being invariant
to the orientation of the dipole currents.
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over θms, i.e., the Gabor coefficients:

P2,1,1(Θ) :=
M∑
m=1

L̃∑
l=1

√
θ2
m,l,R + θ2

m,l,A + θ2
m,l,S. (4.11)

Let θm,l ∈ R3 be the lth Gabor coefficient vector for the mth NCRF. Note that the

summand is ‖θm,l‖2, which is a rotational invariant norm with respect to the choice

of dipole RAS coordinate system. This structural feature allows the estimates to be

robust to coordinate rotations (see Section B.2). The inner summation of ‖θm,l‖2

(as opposed to ‖θm,l‖2
2) over l = 1, 2, · · · , L̃ enforces group sparsity of the Gabor

coefficients (i.e., the number of peaks/troughs), akin to the effect of `1-norm. Finally,

the outer summation over m = 1, 2, · · · ,M promotes spatial sparsity of the NCRFs

(see Fig. 4.1, and also Section B.2).

Using this change of variables and regularization scheme, we can reformulate

Eq. (4.10) as the following regularized maximum likelihood problem:

min
Θ

1

2
‖Y − LΘS̃‖2

(Σw+LΓL>)−1 + ηP2,1,1(Θ). (4.12)

The parameter η > 0 controls the trade-off between data fidelity and regularization,

i.e., the complexity of the resulting model grows inversely with the magnitude of η.

This parameter can be chosen in a data-driven fashion using cross-validation (see

Section 4.2.2). Fig. 4.2 provides a visual illustration of the proposed modeling and

estimation paradigm.
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4.1.2.2 Source Covariance Matrix Adaptation

Note that the objective function in Eq. (4.12) is convex in Θ and thus one

can proceed to solve for Θ by standard convex optimization techniques. However,

this requires the knowledge of the source covariance matrix Γ, which is unknown in

general. From Eq. (4.7), it is evident that Γ implicitly offers adaptive penalization

over the source space through spatial filtering. As such, the source covariance matrix

serves as a surrogate for depth compensation [164], by reducing the penalization

level at locations with low SNR. One data-independent approach for estimating Γ

is based on the lead-field matrix [137]. Here, thanks to the Bayesian formulation of

our problem, we take a data-driven approach to adapt the source covariance matrix

to the background activity not captured by the stimulus [165]. One principled way

to do so is to estimate both Θ and Γ from the observed MEG data by solving the

following optimization problem:

min
Θ,Γ

T

2
log
∣∣Σw + LΓL>

∣∣+
1

2
‖Y − LΘS̃‖2

(Σw+LΓL>)−1 + ηP2,1,1(Θ) (4.13)

Unfortunately, the loss function in Eq. (4.13) is not convex in Γ. However, given an

estimate of Θ, solving for the minimizer of Eq. (4.13) in Γ is a well-known problem

in Bayesian estimation and is referred to as evidence maximization or empirical

Bayes [166]. Although a general solution to this problem is not straightforward to

obtain, there exist several Expectation-Maximization (EM)-type algorithms, such

as ReML [136], sMAP-EM [167], and the conjugate function-based algorithm called
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Champagne [138], which might be employed to estimate Γ given an estimate of

Θ. In the next section, we present an efficient recursive coordinate descent-type

algorithm that leverages recent advances in evidence maximization and proximal

gradient methods to solve the problem of Eq. (4.13).

4.1.3 Inverse Solution: The Champ-Lasso Algorithm

Since simultaneous minimization of Eq. (4.13) with respect to both Θ and

Γ is not straightforward, we instead aim to optimize the objective function by al-

ternatingly updating Θ and Γ, keeping one fixed at a time. Suppose after the rth

iteration, the updated variable pair is given by
(
Θ(r),Γ(r)

)
, then the update rules

for (r + 1)th iteration are as given as follows:

Updating Γ

With Θ = Θ(r), Eq. (4.13) reduces to the following optimization problem:

min
Γ

tr
(
Σ−1
v Cv

)
+ log |Σv|, (4.14)

with Cv = (Y − LΘ(r)S̃)(Y − LΘ(r)S̃)>/T and Σv = Σw + LΓL>. Although the

problem is non-convex in Γ, it can be solved via the Champagne algorithm [138],

which solves for Γ by updating a set of auxiliary variables iteratively. Though the

solution Γ(r+1) is not guaranteed to be a global minimum, the convergence rate is

fast (with computation cost per iteration being linear in N), and more importantly

each iteration is guaranteed not to increase the loss function in Eq. (4.14).
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Updating Θ

Fixing Γ = Γ(r+1), results in the following convex optimization problem:

min
Θ

1

2
‖LΘŜ−Y‖2

Σ
(r+1)
v

−1 + ηP2,1,1(Θ), (4.15)

over Θ, where Σ
(r+1)
v = Σw + LΓ(r+1)L>. The first term in Eq. (4.15) is a smooth

differentiable function whose gradient is straightforward to compute, and the proxi-

mal operator for the penalty term P2,1,1(Θ) has a closed-form expression and can be

computed in an efficient manner [168]. Regularized optimization problems of this

nature can be efficiently solved using an instance of the forward-backward splitting

(FBS) method [169, 170]. We use an efficient implementation of FBS similar to

FASTA (Fast Adaptive Shrinkage/Thresholding Algorithm) software package [171]

to obtain Θ(r+1) from Eq. (4.15).

Although the loss function is not jointly-convex in (Θ,Γ), the foregoing up-

date steps ensure that the loss in Eq. (4.13) is not increased at any iteration and

stops changing when a fixed-point or limit-cycle is reached [172]. Finally, Γ0 can

be initialized according to MNE-python recommendations for choosing the source

covariance matrix in computing linear inverse operators. Also note that due to the

efficiency of the overall solver, it is possible to start the optimization with several

randomized initializations, and choose the best solution among several potential

alternatives.
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4.1.4 Extension to Multiple Feature Variables

The preceding sections focused on the case of a single stimulus feature variable,

i.e., the speech envelope. However, complex auditory stimuli such as natural speech,

are processed at various levels of hierarchy. Upon entering the ears, the auditory

signal is decomposed into an approximate spectrogram representation at the cochlear

level prior to moving further into the auditory pathway [173]. Beyond these low-

level acoustic features, higher-level phonemic, lexical, and semantic features of the

natural speech are also processed in the brain. Thus, to obtain a complete picture of

complex auditory cortical processing, it is desirable to consider response functions

corresponding to more than one feature variable.

One can proceed to estimate response functions for each feature variable sepa-

rately. But, since many of these features have significant temporal correlations, the

resulting response functions do not readily provide unique information regarding

the different levels of the processing hierarchy. To investigate simultaneous pro-

cessing of these various feature variables and allow them to compete in providing

independently informative encoding models, we consider a multivariate extension of

the response functions [19, 116].

Suppose that there are F ≥ 1 feature variables of interest. We modify Eq.

(4.3) by replacing each column of the NCRF matrix Φ by F columns (one for each

temporal response function) and each row of the stimulus matrix by F rows (one

for each feature variable). As we will demonstrate below in Section 4.2, this will

enable us to distinguish between different cortical regions in terms of their response
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latency across a hierarchy of features.

4.1.5 Extension to Multiple Trials with Different Stimuli

Next, we consider extension to K different trials corresponding to possibly dif-

ferent auditory stimuli. Let the stimuli, MEG observation, and background activity

covariance matrices for the kth trial be denoted by S̃k, Yk, and Γk, respectively, for

k = 1, · · · , K. We can extend the optimization problem of Eq. (4.13) as follows:

min
Θ,Γ

K∑
k=1

[
T

2
log
∣∣Σw + LΓkL>

∣∣+
1

2
‖Yk − LΘŜk‖2

(Σw+LΓkL>)−1

]
+ ηP2,1,1(Θ).

(4.16)

In doing so, we have assumed that the background activity is a stationary Gaussian

process within a trial (with covariance Γk at trial k), and that the NCRFs remain

unchanged across trials, which promotes integration of complementary information

from different trials (without direct averaging). Note that this assumption intention-

ally suppresses the trial-to-trial variability of the NCRFs by adaptively weighting

the contribution of each trial according to its noise level (i.e., Γk), in favor of re-

covering NCRFs that can explain common cortical patterns of auditory processing.

In contrast, if all the trials were to be concatenated or directly averaged to form a

unified trial (with a single covariance matrix Γ), the trial-to-trial variability would

not necessarily be suppressed, especially when there are few trials available. Fur-

thermore, this formulation allows to incorporate trials with different lengths into

the same framework.
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Algorithm 4: The Champ-Lasso Algorithm over Multiple Trials

Input: MEG observations Yk, modified stimuli matrix Ŝk, for k = 1, 2, · · · , K;
Lead-field matrix L; Regularization parameter η; initial values of Θ0; Tolerance
parameter tol ∈ (0, 10−3), Maximum number of outer iterations Rmax ∈ N+.

1: r = 0 .
2: repeat
3: for k = 1, · · · , K do

4: Ck
v

(r)
=

1

T
(Yk − LΘ(r)Ŝk)(Yk − LΘ(r)Ŝk)>

5: Γk(r+1)
= arg min

Γ
tr
(
Σ−1
v Ck

v

(r)
)

+ log |Σv| s.t. Σv = Σw + L>ΓL

. Champagne iterations

6: Σk
v

(r+1)
= (Σw + LΓk(r+1)

L>)
−1

7: end for

8: Θ(r+1) = arg min
Θ

K∑
k=1

1

2
‖LΘŜk −Yk‖2

Σk
v
(r+1)−1 + ηP2,1,1(Θ)

. FASTA iterations

9: until
‖Θ(r+1) −Θ(r)‖2

‖Θ(r)‖2

< tol or r = Rmax.

10: Set r ← r + 1.

Output: Θ(R) where R is the index of the last outer iteration of the algorithm.

The optimization problem of Eq. (4.16) can be solved via a slightly modified

version of the solution presented in Section 4.1.3. The resulting algorithm is sum-

marized in Algorithm 4, which we refer to as the Champ-Lasso algorithm. A python

implementation of the Champ-Lasso algorithm is archived on the open source reposi-

tory Github [174] to ease reproducibility and facilitate usage by the broader systems

neuroscience community.

4.1.6 Subjects, Stimuli, and Procedures

The data used in this chapter are a subset of recordings presented in Presacco

et al. [153], and is publicly available in the Digital Repository at the University
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of Maryland [175]. The auditory experiments were conducted under the partic-

ipation of 17 young adult subjects (aged 18-27 years), recruited from the Mary-

land, Washington D.C. and Virginia area. The participants listened to narrated

segments from the audio-book, The Legend of Sleepy Hollow by Washington Irv-

ing (https://librivox.org/the-legend-of-sleepy-hollow-by-washington-irving/), while

undergoing MEG recording. Although the dataset contains recordings under dif-

ferent background noise levels, for the current analysis we considered recordings of

two 1 min long segments of the audio-book with no background noise presented as

single-speaker audio. Each of these segments was repeated three times to every in-

dividual, yielding a total 6 min of data per subject. To ensure that the participants

actively engage in the listening task, they were tasked to also silently count the

number of specific words that they would hear in the story.

4.1.7 Recording and Preprocessing

The data were acquired using a whole head MEG system (KIT, Nonoichi,

Ishikawa, Japan) consisting of 157 axial gradiometers, at the University of Maryland

Neuroimaging Center, with online low-pass filtering (200 Hz) and notch filtering (60

Hz) at a sampling rate of 1 kHz. Data were pre-processed with MNE-python 0.18.1

[143, 154]. After excluding flat and noisy channels, temporal signal space separation

was applied to remove extraneous artifacts [176]. Data were then filtered between 1

Hz to 80 Hz using a zero-phase FIR filter with the default filter parameter options of

the software. Independent component analysis [extended infomax, 177] was applied
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to remove ocular and cardiac artifacts. Finally, 60 s long data epochs corresponding

to the stimuli were extracted and downsampled to 200 Hz.

4.1.8 Source Space Construction

At the beginning of each recording session, each participant’s head shape was

digitized with a 3-Space Fastrak system (Polhemus), including 3 fiducial points and

5 marker positions. Five marker coils attached to these five marker positions were

used to localize the head position of the participant relative to the MEG sensors.

The head position measurement was recorded twice: at the beginning and end of

the recording session and the average measured head positions were used. Since MR

scans of the participants were not performed, the ‘fsaverage’ brain model [178] was

co-registered (via uniform scaling, translation and rotation) to each participant’s

head, using the digitized head shapes.

A volumetric source space for the ‘fsaverage’ brain was defined on a regular

grid with spacing of 7 mm between two neighboring points, and then morphed to

individual participants. These morphed source spaces were then used to compute

lead-field matrices by placing 3 orthogonal virtual current dipoles on each of the

grid points. The computed lead-field matrices contained contribution from 3222

virtual current dipoles, after removing those within subcortical structures along the

midline. No cortical patch statistics were available due to the lack of MR scans, so

the current dipoles were allowed to have arbitrary orientations in 3D.
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4.1.9 Stimulus Feature Variables

We included predictor variables reflecting three different hierarchical levels of

speech processing, including acoustic, lexical, and semantic features. These feature

variables are described in detail in Brodbeck et al. [22]:

• Envelope: The speech envelope was found by averaging the auditory spectro-

gram representation generated using a model of the auditory periphery [173]

across frequency bands. This continuous univariate feature variable reflects

the momentary acoustic power of the speech signal.

• Word Frequency: First, logarithmic word frequency measures, log10 wf, were

extracted from the SUBTLEX database [179] for each word. Then, a piecewise-

continuous feature variable was constructed by representing each word in the

speech segment by a rectangular pulse with height given by 6.33 − log10 wf.

Note that in this coding scheme, infrequent words are assigned higher values,

while common words get lower values. Windows of silence were assigned 0.

• Semantic Composition: Lastly, to probe semantic processing, the semantic

composition patterns identified by Westerlund et al. [180], including adjective-

noun, adverb-verb, adverb-adjective, verb-noun, preposition-noun and

determiner-noun pairs, were used. To generate the feature variable, the second

word in each pair was represented by a rectangular window of height 1, and 0

elsewhere. This binary-valued feature variable identifies the semantic binding

of word pairs within the speech stream.
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All three variables were constructed from the speech segments at the same

sampling frequency as the preprocessed MEG data (i.e. 200 Hz). All feature vari-

ables were centered and scaled by their mean absolute value, to facilitate comparison

of NCRF components pertaining to different feature variables.

4.1.10 Estimation Setup, Initialization and Statistical Tests

We estimated 1000 ms-long NCRFs (L = 200) corresponding to each of these

three stimulus variables (F = 3). This choice leads to a high-dimensional NCRF

matrix Φ ∈ R9666×600. The noise covariance matrix, Σw, was estimated from empty-

room data using MNE-python 0.18.1 [143, 154] following an automatic model selec-

tion procedure. The regularization parameter was tuned on the basis of general-

ization error via a 3-fold cross-validation procedure: from a predefined set of regu-

larization parameters (equally spaced in logarithmic scale), the one resulting in the

least generalization error was chosen to estimate the NCRFs for each subject. To

maintain low running time, instead of utilizing a randomized initialization scheme

for Γ0, we initialized it according to the MNE-python recommendation for source

covariances. The NCRF matrix Θ0 was initialized as an all zero matrix. In the

consecutive iterations of the Champagne and FASTA algorithms, a warm starting

strategy was followed, i.e., initializing each iteration by the solution of the previous

one.

To check whether inclusion of each of the feature variables improves the overall

NCRF model significantly, the original model fit being tested for significance (i.e., its
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cost function evaluated at the estimated NCRF parameters) was compared against

the average of three other model fits constructed by deliberately misaligning one

feature variable via 4-fold cyclic permutations, using one-tailed t-tests.

To evaluate the group-level significance of the estimated NCRF components,

the NCRF estimates were first smoothed with a Gaussian kernel (with standard

deviation of 10 mm) over the source locations to compensate for possible head

misalignments and anatomical differences across subjects. Then, at each dipole

location and time index, the magnitudes of the vector-valued NCRFs were tested

for significance using a permutation test via the threshold-free cluster-enhancement

(TFCE) algorithm [181] (see Section B.3 for details).

4.1.11 Simulation Setup

Before applying the Champ-Lasso algorithm to localize NCRFs from experi-

mentally recorded data, we assessed its performance using realistic simulation stud-

ies with known ground truth. In accordance with our experimental settings, we

synthesized six 1 min long MEG data segments according to the forward model of

Eq. (4.3) and Eq. (4.4), mimicking the neural processing of the speech envelope.

To this end, we simulated temporal response functions of length 500 ms (with sig-

nificant M50 and M100 components) associated with dipole current sources within

the auditory and motor cortices. Fig. 4.3A shows the simulated activity over the

cortical surface at specific time lags (top and bottom panels) as well as the tempo-

ral profile of the NCRFs (middle panel). The cortical activity was simulated using
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patches defined over a finely-discretized source space (namely, ico-5, with average

dipole spacing of 3.1 mm) with the dipole directions constrained to be normal to

the ‘fsaverage’ surface patches. To make the simulation as realistic as possible,

we used real MEG recordings corresponding to a different speech stream as back-

ground noise (i.e., stimulus-independent background activity), maintaining a −5 dB

signal-to-noise ratio.

In order to avoid any favorable bias in the inverse solution, we used a differ-

ent source space for NCRF estimation, i.e., the aforementioned volumetric source

space with unconstrained dipole orientations (Section 4.1.8), than the one used for

simulating the data, i.e., ico-5. As a comparison benchmark, we also applied the

two-stage method of Brodbeck et al. [22], MNE-boosting, and one of its variants,

Champagne-boosting, to first localize the cortical sources using MNE and Cham-

pagne, respectively, followed by boosting with 10-fold cross-validation and `1-norm

error of the standardized source estimates, for independently estimating TRFs for

all sources. The boosting was initialized with a zero response function, and itera-

tively modified it in small increments (typically 0.001) at a single time-lag in which

a change led to the largest `1-norm error reduction in the training set. The process

stopped when the training error no longer decreased, or testing error increased in

two successive steps.

In order to compare the spatial spread across different methods, we computed

the dispersion metric as the ratio of total NCRF power outside and inside of spheres

of radius r (for r = 10, 15, 20 mm) around the center of mass of the simulated corti-

cal patches (i.e., lower is better). To quantify the response function reconstruction
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performance, the 3-dimensional NCRFs within radius of r = 15 mm around the

center of mass of the simulated cortical patches were averaged and then separated

into principal orientation and principal time course, using singular value decompo-

sition. The principal orientations and time courses were compared to the ground

truths using the Pearson correlation (i.e., higher is better). Finally, we quantified

the selectivity of the principal orientation and time course in the recovered NCRFs,

by the ratio of the principal singular value to the sum of all three (i.e., higher is

better).

4.2 Results

4.2.1 Simulation Studies

The two two-stage localized TRFs and estimated NCRFs are shown in Fig.

4.3B, C and D, respectively. Since boosting tends to result in temporally sparse

response functions [6], response functions were smoothed with a 50 ms Hamming

window. The anatomical plots show the spatial response function profile at the

same temporal peaks selected in Fig. 4.3A, with direction of the vectors projected

onto the lateral plane. The Champ-Lasso algorithm successfully recovers both the

smooth temporal profile of the NCRFs and the spatial extent and location of the

active sources, and provides estimates that closely resemble the ground truth.

The two-stage localized TRFs, however, fail to recover the true extent of the

sources due to the destructive propagation of biases: MNE-boosting estimates are
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spatially dispersed while Champagne-boosting estimates are overly sparse. Also,

the poor signal-to-noise ratio caused the estimates to exhibit spurious peaks in the

anterior temporal and inferior frontal lobes: the prominence of these spurious peaks
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Figure 4.3: Results for a simulated auditory experiment. The top and bottom por-
tions of each subplot pertain to the left and right hemispheres, respectively. A.
The anatomical plots show the simulated neural sources normal to cortical surface,
and the traces show the overlaid temporal profiles. The colorbar encodes direc-
tional intensity normal to the cortical surface (shown by the green arrows). B & C.
The two-stage localized (i.e. MNE-boosting, and one of its variants, Champagne-
boosting, respectively) TRFs (free-orientation) are shown on the anatomical plots,
where the 3D dipoles are projected onto the lateral plane. D. NCRF estimates
from the Champ-Lasso algorithm. The colorbar encodes dipole magnitudes. The
spatial extent, dipole moment scale, temporal profile, and orientations of the neural
sources are faithfully recovered by the Champ-Lasso algorithm, whereas the two-
stage localized TRFs are either spatially dispersed (MNE-boosting) or overly sparse
(Champagne-boosting) and exhibit spurious peaks in the anterior temporal and in-
ferior frontal lobes.
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Figure 4.4: Results for the simulated auditory experiment (continued): Zoomed in
views of the active cortical patches (marked as S1, S2 and S2 in Fig. 4.3A) empha-
sizing the orientations of the simulated current dipoles (green arrows) alongside the
estimated current dipole directions.

in the Champagne-boosting estimates results in fully overshadowing the true sources.

In addition, the two-stage localized TRFs are rescaled using the standard deviation

of the sources before plotting. This rescaling, combined with the poor signal-to-noise

ratio, leads to the large scaling discrepancy between the estimates and the ground

truth. It is worth noting that despite the fact that the Champ-Lasso algorithm is

unaware of the true dipole orientations, the resulting NCRF orientations closely

match the normal directions of the patches (see Fig. 4.4). The Champ-Lasso also

successfully suppresses spurious peaks in the anterior temporal and inferior frontal

lobes, demonstrating its robustness to background activity.

Benchmarking metrics described in Section 4.1.11 are listed in Table 4.1 and

Table 4.2. Table 4.1 lists the dispersion metric, demonstrating how the different
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r (mm) Champ-Lasso MNE-boosting Champagne-boosting

0.010 1.139 4.005 6.446
0.015 0.630 2.229 3.172
0.020 0.229 1.491 2.963

Table 4.1: Comparison with respect to the dispersion metric, defined as the ratio of
the total NCRF power outside and inside of spheres of radius r (for r = 10, 15, 20
mm) around the center of mass of the simulated cortical patches (lower is better).
The bold numerical values indicate the best performance among the different esti-
mation methodologies for each sphere radius.

algorithms perform in localizing the neural sources correctly. Table 4.2 contains the

correlation measures for the principal orientation and time course along with the

selectivity of these principal orientations and time courses across the different sim-

ulated regions. While the principal orientations of Champ-Lasso and MNE-boosting

are similarly correlated with the true orientation, the selectivity of this orientation in

MNE-boosting is inferior to Champ-Lasso. Champagne-boosting exhibits the poor-

est performance overall. Unlike the other methods, the Champ-Lasso principal time

lA1 rA1 rM rA2

Principal Orientation
Correlation

Champ-Lasso 0.991 0.992 0.923 0.996
MNE-boosting 0.978 0.989 0.923 0.995
Champagne-boosting 0.124 0.207 -0.395 0.039

Principal Time Course
Correlation

Champ-Lasso 0.968 0.953 0.972 0.958
MNE-boosting 0.959 0.856 0.741 0.918
Champagne-boosting 0.994 0.131 0.114 0.015

Selectivity
Champ-Lasso 0.999 0.977 0.932 0.984
MNE-boosting 0.977 0.794 0.469 0.845
Champagne-boosting 0.993 0.891 0.904 1.000

Table 4.2: Comparison with respect to the reconstruction metrics: Pearson corre-
lation coefficients between the estimated principal orientation and principal time
course and the ground truth, as well as their selectivity (higher is better) for dif-
ferent cortical patches (lA1, rA1, rM and rA2 as in Fig. 4.4). The bold numerical
values indicate the best performance among the different estimation methodologies
in each category.
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courses consistently show high correlation with the ground truth.

4.2.2 Application to Experimentally Recorded MEG Data

4.2.2.1 Analysis of the Acoustic Envelope NCRFs

Fig. 4.5A depicts the group average of estimated NCRFs, corresponding to the

acoustic envelope, masked by a significance level of p = 0.05. The time traces show

the magnitude of the average NCRFs (gray segments are statistically insignificant)

and the anatomical plots show the spatial NCRF profile at selected temporal peaks,

with direction of the vectors projected onto the lateral plane. Fig. 4.5B shows the

temporal profiles (masked at a significance level of p = 0.05) of 6 selected NCRFs

exhibiting peak spatial activity (collapsed across time). The colored dots on the

anatomical plots show the locations of these NCRFs, with matching colors to those

of the traces. The traces are grouped by hemisphere and dorsoventrally ordered.

The left and right NCRFs in the motor areas are referred to as lMenv and rMenv,

respectively. The left and right auditory NCRF pairs are labeled as lA1env, lA2env

and rA1env, rA2env, respectively. The NCRFs corresponding to the acoustic envelope

in Fig. 4.5A exhibit two prominent temporal peaks: an early peak at around 30–35

ms, bilaterally centered over the auditory cortex (AC), and a later peak at around

100 ms, dorsal to the first peak and stronger in the right hemisphere. The latter

is evident from comparing the left temporal profiles lA1env and lA2env, with their

right hemisphere counterparts rA1env and rA2env . Note that the orientations of the

NCRFs at the second peak (blue arrow, bottom panel of Fig. 4.5A) are nearly the
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opposite of those at the first peak (red arrow, bottom panel of Fig. 4.5A), which

accounts for the negative polarity of the M100 peak with respect to M50 in stan-

dard TRF analysis. Furthermore, after the appearance of the first peak (∼ 35 ms,

auditory traces lA1env, lA2env, rA1env, and rA2env) at the AC, the activity appears to

gradually shift towards the primary motor cortex (PMC) in both hemispheres (∼ 50

ms, motor traces lMenv and rMenv). Additionally, the NCRFs show small bilateral

late auditory components at around ∼ 250–350 ms.

4.2.2.2 Analysis of the Word Frequency NCRFs

Fig. 4.6A shows the NCRFs for the word frequency feature variable, in the

same format as in Fig. 4.5. Fig. 4.6B shows the temporal profiles (masked at a

significance level of p = 0.05) of 4 selected NCRFs exhibiting peak spatial activity

(collapsed across time) also in the same format as in Fig. 4.5. These include a left

auditory (lAwf), a left frontal (lFwf), a left inferior temporal (IT) (lITwf), and a right

auditory (rAwf) NCRF. The significant NCRF components manifest predominantly

in the left hemisphere (Fig. 4.6A). The earliest peak in the left AC occurs at around

50 ms, followed by a much stronger peak at around 150 ms, slightly posterior to

the former (see lAwf in Fig. 4.6B). The earlier peak also has contributions from the

inferior temporal gyrus, as indicated by lITwf . In addition, the left frontal cortex

exhibits weak activity at around 150 ms (see lFwf in Fig. 4.6B). A weak but localized

peak centered over the left superior temporal sulcus (STS) is visible at around 240

ms. The only significant component in the right hemisphere occurs around the same

111



0
2

0
0

4
0

0
6

0
0

ti
m

e
 (

m
s
)

lA
w

f

lF
w

f

lI
T

w
f

r
A

w
f

NCRF magnitudes

(pAm/variance)

left right

ti
m

e
 (

m
s
)

0
2

0
0

4
0

0
6

0
0

8
0

0

0
.4

0
.2 0

0
.4

0
.2 0

2
4

0
5

5
5

1
5

0

5
9

0
2

3
5

0
.2

8

0
.1

9

0
.1

0

0p
A

-m

5
5

A
.

B
.

L
o

re
m

 ip
su

m

F
ig

u
re

4.
6:

E
st

im
at

ed
N

C
R

F
s

fo
r

th
e

w
or

d
fr

eq
u
en

cy
fe

at
u
re

va
ri

ab
le

.
A

.
T

h
e

an
at

om
ic

al
p
lo

ts
sh

ow
th

e
gr

ou
p
-l

ev
el

av
er

ag
e

N
C

R
F

s
p
ro

je
ct

ed
on

to
th

e
la

te
ra

l
p
la

n
e

(t
op

an
d

b
ot

to
m

p
an

el
s)

co
rr

es
p

on
d
in

g
to

se
le

ct
ed

v
is

u
al

ly
sa

li
en

t
p

ea
k
s

in
th

e
te

m
p

or
al

p
ro

fi
le

s
(m

id
d
le

p
an

el
s)

.
T

h
e

to
p

an
d

b
ot

to
m

p
or

ti
on

s
of

th
e

su
b
p
lo

t
p

er
ta

in
to

le
ft

an
d

ri
gh

t
h
em

is
p
h
er

e,
re

sp
ec

ti
ve

ly
.

N
u
m

er
ic

al
la

b
el

s
of

ea
ch

an
at

om
ic

al
su

b
p
lo

t
in

d
ic

at
es

th
e

co
rr

es
p

on
d
in

g
ti

m
e

la
g

in
m

s.
B

.
T

h
e

ti
m

e
tr

ac
es

sh
ow

th
e

te
m

p
or

al
p
ro

fi
le

of
4

se
le

ct
ed

N
C

R
F

s
ex

h
ib

it
in

g
p

ea
k

sp
at

ia
l
ac

ti
v
it

y
(c

ol
la

p
se

d
ac

ro
ss

ti
m

e)
,

gr
ou

p
ed

b
y

h
em

is
p
h
er

e
an

d
an

d
d
or

so
ve

n
tr

al
ly

or
d
er

ed
.

T
h
e

lo
ca

ti
on

s
of

th
e

se
le

ct
ed

N
C

R
F

s
ar

e
sh

ow
n

on
th

e
an

at
om

ic
al

p
lo

ts
,

w
it

h
co

lo
rs

m
at

ch
in

g
th

e
ti

m
e

tr
ac

es
an

d
li
n
ke

d
b
y

d
as

h
ed

li
n
es

.
T

h
e

an
at

om
ic

al
p
lo

ts
sh

ow
th

e
lo

ca
ti

on
s

of
th

e
se

le
ct

ed
N

C
R

F
s

w
it

h
co

lo
rs

m
at

ch
in

g
th

e
ti

m
e

tr
ac

es
.

T
h
e

gr
ay

p
or

ti
on

s
of

th
e

tr
ac

es
in

b
ot

h
su

b
p
lo

ts
in

d
ic

at
e

st
at

is
ti

ca
ll
y

in
si

gn
ifi

ca
n
t

N
C

R
F

s
at

th
e

gr
ou

p
le

ve
l

(s
ig

n
ifi

ca
n
ce

le
ve

l
of

5%
).

T
h
e

p
ro

m
in

en
t

N
C

R
F

s
m

an
if

es
t

in
th

e
le

ft
h
em

is
p
h
er

e,
d
om

in
at

ed
b
y

an
au

d
it

or
y

co
m

p
on

en
t

at
∼

15
0

m
s.

S
ee

S
u
p
p
le

m
en

ta
ry

M
ov

ie
02

fo
r

a
d
et

ai
le

d
an

im
at

io
n

sh
ow

in
g

h
ow

th
e

w
or

d
fr

eq
u
en

cy
N

C
R

F
co

m
p

on
en

ts
ch

an
ge

as
fu

n
ct

io
n

of
ti

m
e

la
gs

.

112



time. Finally, the late NCRF components (at around 500–600 ms) mostly originate

from the left AC and STS, with weak contributions from the right frontal cortex.

4.2.2.3 Analysis of the Semantic Composition NCRFs

The estimated NCRFs corresponding to the semantic composition feature vari-

able are shown in Fig. 4.7A, along with 5 representative NCRFs in Fig. 4.7B. These

include two left auditory (lA1sc and lA2sc), two right frontal (rF1sc and rF2sc), and

one right middle temporal (rMTsc) NCRF. The main NCRF components in the left

AC peak at around 155 ms and 475 ms, with the earlier peak being ventral to the

later one (see lA1sc and lA2sc in Fig. 4.7B). The significant right hemispheric NCRFs

are temporally concentrated between 155 to 210 ms, and appear superior to those in

the left hemisphere, involving inferior frontal gyrus (IFG). Strikingly, these NCRFs

in the right hemisphere seem to move in the anterosuperior direction until around

185 ms, at which point the right hemisphere exhibits strong frontal activity (Fig.

4.7A). The NCRFs return to their initial location afterwards at around 210 ms.

This sequence of spatiotemporal changes is also evident in the sequence of temporal

peaks in Fig. 4.7B, given by rMTsc → rF2sc → rF1sc → rF2sc.
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4.3 Discussion and Concluding Remarks

Characterizing the dynamics of cortical activity from noninvasive neuroimag-

ing data allows us to probe the underlying mechanisms of sensory processing at high

spatiotemporal resolutions. In this chapter, we demonstrated a framework for direct

estimation of such cortical dynamics in response to various features of continuous

auditory stimuli from the MEG response. To this end, we developed a fast inverse

solution under a Bayesian estimation setting, the Champ-Lasso algorithm, for infer-

ring the Neuro-Current Response Functions (as spatiotemporal models of cortical

processing) in a robust and scalable fashion.

One of the key features of the Champ-Lasso algorithm is the ability to simulta-

neously estimate cortical source covariances in a data-driven fashion (as opposed to

relying on data-agnostic depth-weighting procedures) and finding the NCRF model

parameters. The interplay between the two as well as incorporating the structural

properties of the NCRFs into the model, taking advantage of the Bayesian nature of

the estimation framework, ultimately leads to spatially focal NCRFs, with smooth

temporal profiles. In other words, the NCRF and source covariance estimation pro-

cedures function in tandem to best explain the observed MEG data while minimizing

the spatial leakage and capturing the smoothness of the temporal responses. In con-

trast, previously existing methodologies result in estimates that are spatially broad,

which then require post-hoc clustering procedures to meaningfully summarize the

underlying spatiotemporal cortical dynamics. These serialized procedures in turn

introduce biases to the estimates, and hinder meaningful statistical interpretation
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of the results.

To demonstrate the utility of our proposed framework, we estimated NCRFs

corresponding to several feature variables of speech, reflecting different levels of

cognitive processing and comprehension from MEG. The data analyzed here were

analyzed by an earlier method in Brodbeck et al. [22], where a two-stage procedure

was utilized to probe the cortical processing of speech: the MEG data was first

cortically localized using an MNE inverse solver, followed by estimating individual

temporal response functions for each source. In order to summarize the resulting

estimates in a meaningful fashion, yet another processing step was necessary to dis-

entangle the different spatially dispersed and highly overlapping cortical sources.

Our results corroborate those obtained in Brodbeck et al. [22], while obviating the

need for any such post-processing, by providing a one-step estimation procedure

with the substantial benefit of greatly improved spatial resolution. In addition, the

three-dimensional nature of the NCRFs in our framework allows the segregation of

different spatial activation patterns that are temporally overlapping. For example,

the bilateral activity components in the primary motor cortex in response to the

acoustic envelope are automatically clearly distinguishable from the early activation

in the auditory cortex, without the need for any post-hoc processing. To ease the

visual comparison, Fig. 4.8 compares the estimated NCRF distributions (transpar-

ent cortex) to those of Brodbeck et al. [22] (inflated cortical surface), at several time

points for each of the three stimulus features.

Our results also support other neuroimaging evidence for the hierarchical

model of speech processing, involving not only the temporal lobe, but also the motor
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and frontal cortices [182, 183, 184, 185, 186, 187]. To probe the functional organi-

zation of this hierarchy, we estimated NCRFs corresponding to features extracted

from speech at the acoustic, lexical and semantic levels and found distinct patterns

of cortical processing at high spatiotemporal resolutions. Our results indeed im-

ply that while the acoustic and lexical features are processed primarily within the

temporal and motor cortical regions [121, 188, 189, 190, 191, 192, 193], phrase-level

processing, assessed here using the semantic composition variable, is carried out

through the involvement of the frontal cortex [194, 195, 196].

Another advantage of our proposed methodology is mitigating the dependence

of the solution on the precise geometry of the underlying cortical source models. In

conventional neuromagnetic source imaging, individual structural MR images are

utilized in the construction of source space models, particularly for retrieving the

cortical surface segmentation. The normal direction to the so-called cortical patches

in these models is key in determining the lead-field matrix, which are often referred to

as orientation-constrained source models. However, in many available neuroimaging

datasets (including the one analyzed in here), MR images are not available, rely-

ing only on an average head model, instead of one informed by the subject-specific

cortical geometry. In order to mitigate the need for such information, we utilized

a free-orientation volumetric source space in our estimation framework. While this

makes the underlying optimization problem more involved and computationally in-

tensive, it adds more than a compensatory amount of flexibility to the underlying

models and allows them to recover missing information regarding the cortical source

space geometry. To this end, we used rotationally invariant sparsity-inducing pri-

118



ors to regularize the spatiotemporal distribution of the NCRFs. Together with the

aforementioned data-driven source covariance adaptation, this regularization scheme

results in consistent source orientation estimates and provides a degree of immunity

to unwanted side-effects of error-prone coordinate-frame rotations. To confirm these

theoretical expectations, we validated this feature of our framework using simulation

studies with known ground truth. In light of the above, posing NCRF estimation

over an orientation-free volumetric source space can also be thought of as unifying

the virtues of distributed source imaging and single dipole fitting: we aim at estimat-

ing both the orientations and magnitudes of spatially sparse dipole currents within

the head volume that can best linearly predict the MEG responses to continuous

stimuli.

This flexibility encourages applications of Champ-Lasso algorithm beyond MEG,

for example, to EEG or simultaneous M/EEG recordings. In theory, any source lo-

calization method is equally applicable to all such scenarios (albeit with varying

performance, due to the intrinsic differences between MEG and EEG), once the

lead-field matrix is computed precisely. The main challenge is thus the placement of

the current dipoles over the cortical mantle and correctly inferring the orientation

of the dipoles from the structural MR scans. Unfortunately, a large majority of

EEG experiments do not contain structural MR scans, eliminating the possibility of

precise source-space analysis. Our analysis pipeline could be particularly useful for

these scenarios, as the particular formulation aims to eliminate this strict require-

ment on dipole placements by making the solution robust against the unavailability

of the precise geometry of the cortical mantle. The favorable performance of the
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Champ-Lasso algorithm in application to MEG data gives promise of its utility in

application to EEG or simultaneous M/EEG recordings, which would still need to

be verified in future studies.

To facilitate such verification as well as usage by the broader systems neu-

roscience community a python implementation of the Champ-Lasso algorithm is

archived on the open source repository Github [174]. The current implementation

of our algorithm uses the aforementioned regularization scheme to recover tempo-

rally smooth and spatially sparse NCRFs. Due to the plug-and-play nature of the

proposed Bayesian estimation framework, one can easily utilize other relevant reg-

ularization schemes to promote spatial smoothness or incorporate spectro-temporal

prior information, by just modifying the penalty term.
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Part III

Granger Causal Inference from Sparse Autoregressive Models
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Chapter 5: Non-Asymptotic Guarantees for Robust Identification of

Granger Causality via the LASSO

Reliable identification of causal influences is one the central challenges in time-

series analysis, with implications for various domains such as economics [197], neu-

roscience [25, 26, 27] and computational biology [198, 199]. Granger causal (GC)

characterization of time-series is among the widely used methods in this regard.

This framework was pioneered by Granger [28], with subsequent key generalizations

provided by Geweke [29, 30]. The notion of GC influence pertains to assessing the

improvements in predicting the future samples of one time-series by incorporating

the past samples of another one.

While causality, as the relationship between cause and effect, is a philosophi-

cally well-defined concept, it eludes a universal definition in empirical sciences and

engineering. Granger causality is one of many definitions used in time series models

[see 200, 201, for other notions], with an explicit data-driven form that admits sta-

tistical testing. The stochastic nature of the time series model, i.e., the uncertainty

and the direction of time flow are the central features of GC definition. In principle,

given two time-series xt and yt, one asserts that yt has a GC influence on xt when the

posterior densities p(xt|xt−1, xt−2, · · · , yt−1, yt−2, · · · ) and p(xt|xt−1, xt−2, · · · ) differ
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significantly. However, estimating these posterior densities from the observed data

is a difficult task in general, and requires additional modeling assumptions. A pop-

ular set of such assumptions pertains to parametric multi-variate auto-regressive

(MVAR) models along with certain distributional specifications (e.g., zero-mean

Gaussian process noise). In these models, the aforementioned posterior densities

can be fully characterized by the estimates of parameters and prediction error vari-

ances. As a consequence, one first aims at predicting xt+1 by a linear combination of

the joint past observations {xt, · · ·x0}, {yt, · · · y0} (i.e., the full model), followed by

repeating this task by excluding the past observations of yt (i.e., the reduced model).

If the prediction error variance in the former case is significantly smaller than the

latter, we say that yt has a GC influence on xt.

Conventionally, the optimal linear predictors are obtained by the ordinary

least squares (OLS), and the model orders are determined by the AIC [31] or BIC

[32] procedures. Then, the GC measure is defined as the logarithmic ratio of the

two prediction error variances, and its statistical significance is assessed based on

the corresponding asymptotic distributions [33, 34, 202]. While the aforementioned

procedure is relatively simple to carry out, it faces two key challenges. First, in order

to obtain reliable MVAR parameter estimates via OLS, a relatively long observation

horizon is required. In datasets with small sample size (e.g., gene expression data

[203]), the regression models typically over-fit the observed data, causing both pa-

rameter estimation and model order selection to break down [27, 35]. In addition,

AIC/BIC may restrict the order of the MVAR in a way that the resulting model

fails to capture the complex and long-range dynamics of the underlying couplings
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[25, 36]. Secondly, correlated process noise arising from latent processes, may lead

to misidentification of GC influences, which is often referred to as the confounding

effect [37].

These challenges have been successfully addressed in the context of regular-

ized MVAR estimation [204, 205, 206, 207, 208, 209, 210, 211, 212]. In particular,

the theory of sparse estimation via the LASSO [213, 214, 215, 216] provides a prin-

cipled methodology for simultaneous parameter estimation and model selection in

high dimensional MVAR models [205, 206, 207, 208, 209, 210, 217, 218, 219]. In

addition, the Oracle property of the LASSO in presence of correlated noise ensures

robust recovery of the set of MVAR parameters arising from the direct causal influ-

ences while discarding any spurious couplings due to correlated process noise, thus

alleviating the confounding effect. The LASSO and its variants have already been

utilized in existing work to identify graphical GC influences based on the recovered

sparsity patterns [38, 39, 40, 220, 221, 222]. These methods construct the GC graph

based on the estimated model parameters, either directly [38] or by appropriate

thresholding [39, 40] to control false positive errors. This idea has even been ex-

tended to time series models that account for nonlinear dynamics using structured

multilayer perceptrons or recurrent neural networks [223]. Another related class

of results uses de-biasing techniques in order to construct confidence intervals and

thereby identify the significant causal interactions [41, 42, 224, 225, 226, 227, 228].

There is, however, an evident disconnect between these LASSO-based approaches

and the classical OLS-based GC inference: while the LASSO-based approaches aim

at identifying the GC effects based on consistent estimates of the parameters in the
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non-asymptotic regime, the classical GC methodology relies on the comparison of

the prediction errors across the full and reduced models by resorting to asymptotic

distributions. There exist a slew of partial correlation based nonparametric methods

that employ conditional independence tests for causality detection [229, 230, 231],

thus avoiding time-series modeling assumptions altogether.

In this chapter, we close the gap between currently available LASSO-based ap-

proaches and the classical OLS-based GC inference by unifying these two approaches

via introducing a new LASSO-based GC statistic that resembles the classical GC

measure, and by leveraging the consistency properties of the LASSO to character-

ize the non-asymptotic properties of said GC statistic. In particular, we consider

a canonical bivariate autoregressive (BVAR) process with correlated process noise.

We then propose a likelihood-based scaled F-statistic as the relevant GC statistic,

which we call the LGC statistic, and study its non-asymptotic properties under

both the presence and absence of a GC influence. Our analysis reveals that the

well-known sufficient conditions of the LASSO for stable BVAR estimation are also

sufficient for accurate detection of the GC influences, if the strength of the causal

effect satisfies additional mild conditions. Furthermore, by slightly weakening these

sufficient conditions, we characterize the false positive error probability of a simple

thresholding scheme for identification of GC influences.

We present simulation studies to compare the performance of the classical

OLS-based and the proposed LGC-based approaches in detecting GC influences, in

order to demonstrate the validity of our theoretical claims and to explore the key

underlying trade-offs. We also present an application to experimentally-recorded
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neural data from general anesthesia to assess the causal role of the local field po-

tential (LFP) on spiking activity. Our results based on LGC analysis corroborate

existing hypotheses on the causal role of LFP in mediating local spiking activity,

whereas these effects are concealed by the classical GC analysis due to significant

over-fitting.

In summary, our main contribution is to extend the theoretical results of the

LASSO to the classical characterization of GC influences, and to identify the key

trade-offs in terms of sampling requirements and strength of the causal effects that

result in robust GC identification. The rest of this chapter is organized as follows:

Section 5.1 provides background and our problem formulation. Our main theoretical

contributions are given in Section 5.2. Section 5.3 presents application to simulated

and experimentally-recorded neural data, followed by our concluding remarks in

Section 5.4.

5.1 Background and Problem Formulation

5.1.1 Granger Causality in a Canonical BVAR Regression Model

Consider finite-duration observations from two time-series xt and yt, given by

{xt, yt}nt=−p+1, where n is the sample size and p is the order. The BVAR(p) model

can be expressed as:

xt
yt

 = A1

xt−1

yt−1

+ A2

xt−2

yt−2

+ · · ·+ Ap

xt−p
yt−p

+

εt
ε′t

 , (5.1)

126



with Ai ∈ R2×2 for i ∈ {1, 2, · · · , p} denoting the BVAR parameters and [εt, ε
′
t]
>

denoting the process noise with known distribution. It is commonly assumed that

[εt, ε
′
t]
> ∼ N (0,Σε). Using this BVAR(p) model and considering {xt, yt}0

t=−p+1 as

the initial condition, one can form a prediction model of xt as follows:

x = Xθ + ε, (5.2)

where the response x, regressors X, and residuals ε are defined as:

x =



xn

xn−1

...

x1


, X =



xn−1 · · · xn−p yn−1 · · · yn−p

xn−2 · · · xn−p−1 yn−2 · · · yn−p−1

... · · · ...
... · · · ...

x0 · · · x−p+1 y0 · · · y−p+1


, ε =



εn

εn−1

...

ε1


(5.3)

The regression coefficients θ consist of 2p parameters: {θi}pi=1, representing the auto-

regression coefficients obtained from (Ai)1,1, i = 1, 2, · · · , p and {θi}2p
i=p+1 represent-

ing the cross-regression coefficients obtained from (Ai)1,2, i = 1, 2, · · · , p. Hereafter,

we denote the true coefficients by θ∗ ∈ R2p. Also, for a generic coefficient vector

θ ∈ R2p, the corresponding auto- and cross-regression components are denoted by

θ(1) ∈ Rp and θ(2) ∈ Rp, respectively, i.e., θ =: [θ(1);θ(2)].

The GC influence of yt on xt can then be assessed via hypothesis testing,

with the null hypothesis Hy 7→x,0 : θ∗(2) = 0. For testing, one considers the following
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BVAR(p) models:

Full Model: x = Xθ + ε, Reduced Model: x = Xθ̃ + ε̃, with θ̃(2) = 0. (5.4)

In other words, in the full model, all columns of X are used to estimate x, but in

the reduced model, only the first p columns are used. The conventional GC measure

[30] is then defined as the logarithmic ratio of the residual variances: Fy 7→x :=

log (var(ε̃)/var(ε)). Note that when the residuals are Gaussian, Fy 7→x is the log-

likelihood ratio statistic. Given that the reduced model is nested within the full

model, we have Fy 7→x ≥ 0.

In order to compute Fy 7→x from the time-series data, empirical residual vari-

ances are used based on OLS parameter estimates under both models [197]:

θ̂OLS = argmin
θ

1

n
‖x−Xθ‖2 ,

̂̃
θOLS = argmin

θ:θ(2)=0

1

n
‖x−Xθ‖2 . (5.5)

The estimated Fy 7→x is a random variable over R≥0, and typically has a non-

degenerate distribution. Thus, a non-zero Fy 7→x does not necessarily imply a GC

influence. To control for false discoveries, the well-established results on the asymp-

totic normality of maximum likelihood estimators can be utilized: under mild as-

sumptions, nFy 7→x converges in distribution to a chi-square χ2
p with degree p. In

addition, under a sequence of local alternatives Hn
y 7→x,1 : θ∗(2) = δ/

√
n, for some con-

stant vector δ, nFy 7→x converges in distribution to a non-central chi-square χ2
p(ν)

with degree p and non-centrality ν > 0 [33, 34]. These asymptotic results lead to a
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simple thresholding strategy: rejecting the null hypothesis if Fy 7→x exceeds a fixed

threshold. A key consideration in this framework is choosing the model order p.

To this end, criteria such as the AIC [31] and BIC [32] are widely used to strike

a balance between the variance accounted for and the number of coefficients to be

estimated.

While the foregoing procedure works well in practice for large sample sizes,

its performance sharply degrades as the sample size decreases. This performance

degradation has two main reasons:

1. The regression models become under-determined and result in poor estimates

of the parameters, and

2. The conventional model selection criteria fail to capture possible long-range

temporal coupling of the underlying processes.

As a result, the classical GC measure is highly susceptible to over-fitting. In ad-

dition, when the process noise elements εt and ε′t are highly correlated, the OLS

estimates incur additional error in capturing the true BVAR parameters, and hence

result in mis-detection of the GC influences. While some existing non-parametric

methods aim at entirely bypassing MVAR estimation by utilizing spectral matrix

factorization [232] or multivariate embedding [233] for system identification, they

are similarly prone to the adverse effects of small sample size.
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5.1.2 LASSO-based Causal Inference in the High-Dimensional Set-

ting

In the so-called high-dimensional setting, where the model dimension becomes

comparable to or even exceeds the sample size, regularization schemes are em-

ployed to guard against over-fitting. These schemes include Tikonov regularization

[234, 235], `1-regularization or the LASSO [213, 214, 215, 216], smoothly clipped

absolute deviation [236, 237], Elastic-Net [238], and their variants, and have partic-

ularly proven useful in MVAR estimation [204, 205, 206, 207, 211, 212]. Among these

techniques, the LASSO has been widely used and studied in the high-dimensional

sparse MVAR setting, under fairly general assumptions [205, 206, 207]. By aug-

menting the least squares error loss with the `1-norm of the parameters, the LASSO

simultaneously guards against over-fitting and provides automatic model selection

[216, 217, 218, 219, 239, 240], under the hypothesis that the true parameters are

sparse. In the context of MVAR estimation, assuming that the time-series data

admit a sparse MVAR representation, the LASSO estimates enjoy tight bounds on

the estimation and prediction errors under suitable sample size requirements, even

for models with correlated noise [209, 210].

By leveraging the foregoing properties, the LASSO and its variants have

been utilized in existing work to identify GC influences in a graphical fashion

[38, 39, 40, 220, 221, 222]. These approaches construct the GC graph either di-

rectly from the estimated coefficients (e.g., [38]) or by appropriate thresholding (e.g.,

[39, 40]) to control false positive errors. Alternatively, de-biasing techniques have
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been introduced for constructing confidence intervals over the estimated parameters

and thereby identifying the significant causal effects [41, 42, 224, 225, 226, 227, 228].

5.1.3 Unifying the Classical OLS-based and LASSO-based Approach-

es

Comparing the classical OLS-based and the recent LASSO-based approaches

to causal inference reveals an evident disconnect: the latter approach directly uti-

lizes the estimated parameters in a single model to identify the GC influence with

non-asymptotic performance guarantees, while the former is based on comparing

the prediction performance of two different models by resorting to asymptotic dis-

tributions for statistical testing.

Our main goal here is to close this gap by unifying these two approaches. To

this end, we first replace OLS estimation in Eq. (5.5) by its LASSO counterpart:

θ̂ = argmin
θ

1

n
‖x−Xθ‖2 + λn‖θ‖1,

̂̃
θ = argmin

θ:θ(2)=0

1

n
‖x−Xθ‖2 + λn‖θ‖1, (5.6)

where λn denotes the regularization parameter. Let `(θ(1),θ(2)) := 1
n
‖x−Xθ‖2

with θ = [θ(1);θ(2)]. By similarly grouping the solutions of Eq. (5.6) as θ̂ =

[θ̂(1); θ̂(2)] and
̂̃
θ = [

̂̃
θ(1); 0], we then propose to use the following statistic:

Ty 7→x :=
`
(̂̃
θ(1),0

)
`
(
θ̂(1), θ̂(2)

) − 1 =
`
(̂̃
θ(1),0

)
− `
(
θ̂(1), θ̂(2)

)
`
(
θ̂(1), θ̂(2)

) , (5.7)

akin to a scaled likelihood-based version of the F-statistic, which we call the LASSO-
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based GC (LGC) statistic. Note that the LGC statistic can be related to the conven-

tional GC statistic as Ty 7→x = exp(Fy 7→x)−1, when λn = 0. Therefore, it is expected

for Ty 7→x to be near 0 under the null hypothesis. One advantage of using this statis-

tic is that a simple thresholding strategy, similar to that used for the classical GC

statistic, can be used to reject the null hypothesis Hy 7→x,0 : θ∗(2) = 0. In the next

section, we will characterize the non-asymptotic properties of the LGC statistic and

seek conditions that allow us to distinguish between the null (i.e., absence of a GC

effect) and a suitably defined alternative (i.e., presence of a GC effect) hypothesis.

5.2 Main Theoretical Results

Our main theoretical contribution in this section is to characterize Ty 7→x under

both the null and a suitably chosen alternative hypothesis, and establish sufficient

conditions that guarantee distinguishing these hypotheses with high probability.

We will also analyze the false positive error probability corresponding to the afore-

mentioned thresholding strategy, under slightly weakened sufficient conditions. The

latter result can be used to obtain suitable thresholds in practice, as we will demon-

strate in Section 5.3.

Before presenting the main results, we state our key assumptions:

Assumption 5.I. We assume {xt, yt}nt=−p+1 to be a part of a realization of zero-

mean bivariate stationary process† that admits a stable and invertible BVAR(p)

representation, with a zero-mean i.i.d. Gaussian process noise with positive definite

†i.e., the initial condition is such that the samples under consideration attained the stationary
distribution.
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covariance Σε. We further assume that ‖θ∗‖0 = k, i.e., θ∗ is k-sparse (See Section

C.1 for more details and discussion).

Our main theorem can be stated as follows:

Theorem 5.1 (Main Theorem). Suppose that the key assumptions (5.I) hold. Then,

for the proposed LGC statistic Ty 7→x evaluated at the BVAR(p) parameter estimates

from the solutions of Eq. (5.6) with a regularization parameter λn = 4A
√

log(2p)/n,

there exists a threshold that correctly distinguishes the null and the local alternative

hypothesis Hn
y 7→x,1 : ‖θ∗(2)‖2

2 ≥ Bk log(2p)/n with probability at least 1 − K/pd, if

n ≥ max{C, Dk} log(2p), with A, B, C, D, K and d > 0 denoting constants that

are explicitly given in the Appendix C.

Proof Sketch. We present the proof sketch here, and defer the detailed proof to

Section C.2. Under assumptions (5.I), it can be shown that the following conditions,

adapted from [209], hold with high probability as long as n = O(k log(2p)) (See

Section C.3):

Condition C1 (Restricted eigenvalue (RE) condition). The symmetric matrix Σ̂ =

X>X/n ∈ R2p×2p satisfies restricted eigenvalue condition with curvature α > 0 and

tolerance τ ≥ 0, i.e., Σ̂ ∼ RE(α, τ):

φ>Σ̂φ ≥ α‖φ‖2
2 − τ‖φ‖2

1, ∀ φ ∈ R2p,

with τ := m−1
m

α
32k

for some constant m > 1.
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Condition C2 (Deviation condition). There exist deterministic functionsQ(θ∗,Σε)

and Q′(θ∗,Σε) such that

∥∥∥∥ 1

n
X>(x−Xθ∗)

∥∥∥∥
∞
≤ Q(θ∗,Σε)

√
log(2p)

n
, and∥∥∥∥ 1

n
X>(1)

(
x−X(1)θ̃

∗
(1)

)∥∥∥∥
∞
≤ Q′(θ∗,Σε)

√
log(2p)

n
,

where X(1) denotes the first p columns of X, and θ̃∗(1) is a suitably defined surrogate

of the true parameters under the reduced model (See Section C.1 for details).

Conditions (C1) and (C2) guarantee the consistency of the LASSO estimates

with the given choice of λn, which allows us to obtain the following deviation inequal-

ities for `(θ̂(1), θ̂(2)) and `(
̂̃
θ(1),0), under the full and reduced models, respectively:

∣∣∣`(θ̂(1), θ̂(2)

)
− `
(
θ∗(1),θ

∗
(2)

)∣∣∣ ≤ ∆F and

∣∣∣∣`(̂̃θ(1),0
)
− `
(
θ̃∗(1),0

)∣∣∣∣ ≤ ∆R, (5.8)

where ∆R and ∆F are quantities explicitly given in Section C.2. Also, it can be

shown that:

`
(
θ̃∗(1),0

)
− `
(
θ∗(1),θ

∗
(2)

)
−∆R −∆F

`
(
θ∗(1),θ

∗
(2)

)
+ ∆F

≤ Ty 7→x ≤
`
(
θ̃∗(1),0

)
− `
(
θ∗(1),θ

∗
(2)

)
+ ∆R + ∆F

`
(
θ∗(1),θ

∗
(2)

)
−∆F

.

(5.9)

Under Hy 7→x,0 : θ∗(2) = 0, we can simplify the upper bound on Ty 7→x by the facts that
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`
(
θ̃∗(1),0

)
= `

(
θ∗(1),θ

∗
(2)

)
and ∆R = ∆F , to get:

Ty 7→x ≤
∆R + ∆F

`
(
θ∗(1),θ

∗
(2)

)
−∆F

≤ 2∆F

(Σε)1,1 −∆N −∆F

, (5.10)

with probability at least 1− 2 exp
(
−n∆2

N/8(Σε)
2
1,1

)
, for some constant ∆N > 0 to

be specified. On the other hand, under a general alternative Hy 7→x,1 : θ∗(2) 6= 0, we

can show that:

Ty 7→x ≥
D − (∆D + ∆R + ∆F )

(Σε)1,1 + ∆N + ∆F

, (5.11)

with probability at least 1−2/(2p)c11−2 exp
(
−n∆2

N/8(Σε)
2
1,1

)
, where D and ∆D are

deterministic quantities that are given in Section C.4, and c11 is a constant explicitly

given in Lemma C.8. In order to be able to distinguish the null and alternative

hypotheses, we show that it is sufficient to restrict the alternative hypothesis to

take a local form Hn
y 7→x,1 : ‖θ∗(2)‖2

2 ≥ Bk log(2p)/n. Finally, by incorporating the

probability that conditions (C1) and (C2) hold, the claim of the theorem can be

shown to hold with probability at least 1−K/pd for some constants K and d > 0.

By slightly weakening the sufficient condition n ≥ Dk log(2p) in Theorem 5.1,

we arrive at the following corollary that upper bounds the false positive error prob-

ability:

Corollary 5.1.1 (False Positive Error Probability). Suppose that assumptions (5.I)

and conditions (C1) and (C2) in the proof of Theorem 5.1 hold. Then, for any

t0 > 0, thresholding the proposed LGC measure Ty 7→x at a level t > 0 for re-
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jecting the null hypothesis results in a false positive error probability of at most

2 exp

(
−n
/

8
(

1 + γt0
√

log(2p)/n
)2
)

with γ := (t+ 2)/t, if

n ≥
(
D̃/t0

)2

k2 log(2p) + 2D̃γk log(2p),

for some constant D̃ that is explicitly given in the Appendix C.

Proof Sketch. Note that under conditions (C1) and (C2) there exists some real num-

bers s, t > 0 such that,

∣∣∣`(θ∗(1),θ
∗
(2)

)
− (Σε)1,1

∣∣∣ ≤ (Σε)1,1/s and ∆F ≤ (Σε)1,1t/s. (5.12)

Then the upper bound on Ty 7→x under the null hypothesis given in Eq. (C.8) sim-

plifies to:

Ty 7→x ≤
2t/s

1− (1 + t)/s
, (5.13)

which allows us to set a problem independent threshold. Now, for any threshold

t> 0, we can solve for s in terms of t and t as:

s = 1 +
2 + t

t
t. (5.14)

With a choice of t = t0
√

log(2p)/n, the inequalities in Eq. (5.12) provide the false

positive error probability expression and sampling requirement, respectively, to give

the statement of the corollary. The detailed proof is given in Section C.2.
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To discuss the implications of these results, some remarks are in order:

Remark 5.1. Intuitively, detecting a GC effect arising from a small cross-regression

coefficient θ∗(2) is challenging, and often requires a long observation horizon to be

identified. Theorem 5.1 quantifies this intuition via a lower bound on the norm of

the cross-regression coefficients in terms of the spectral properties of the process

(via B), sparsity k, sample size n and model order p. In particular, as ‖θ∗(2)‖2 → 0,

a scaling of n = O(k log(2p)/‖θ∗(2)‖2
2) maintains the sensitivity/specificity of Ty 7→x

with high probability. The lower bound on ‖θ∗(2)‖2 exhibits the same scaling as

that in the thresholding procedure of [39] (i.e., the scaling of the LASSO estimation

error), as well as the classical scaling of [33, 34] (up to logarithmic factors), and we

thus believe is not significantly improvable.

Remark 5.2. Unlike the conventional estimation error results of the LASSO that

specify a lower bound on the regularization parameter λn, Theorem 5.1 prescribes

a fixed choice of λn for both the full and reduced estimation problems in Eq. (5.6).

This is due to an interesting phenomenon revealed by our analysis: while conven-

tional analyses of LASSO focus on the estimation performance of a single model

and thus provide a lower bound on λn, in our framework we have two competing

models (i.e., full and reduced) which need to be distinguishable under the null and

alternative hypotheses in order to reliably detect the GC influences. The latter

imposes an upper bound on λn. As such, there is a suitable interval for choosing

λn that results in both consistent estimation and discrimination of the two models.

We have presented our results using a single λn in this interval for both models,
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which is appealing from the user’s perspective in practice, where cross-validation

is often used for tuning λn. The user can select λn via cross-validation in solving

the LASSO problem for the full model, and then use the same value of λn for the

reduced model, thus avoiding extra computational costs of cross-validation.

Remark 5.3. Corollary 5.1.1 bounds the false positive error probability, i.e., Type I

error rate, for a simple thresholding scheme for detecting GC influences from Ty 7→x,

under a slightly weakened sufficient condition on n, i.e., n = O(k2 log(2p)) instead

of n = O(k log(2p)). This non-asymptotic result provides a principled guideline for

choosing a threshold that controls the false positive error rate. As such, this result

extends the conventional statistical testing framework based on the asymptotics

of log-likelihood ratio statistic using OLS to the non-asymptotic setting using the

LASSO.

Remark 5.4. We have presented our results for a BVAR model in order to parallel

the classical GC analysis. Our results can be extended to the general MVAR setting

by using the conditional notion of Geweke [30] in a natural fashion, given that

conditions (C1) and (C2) readily generalize to this setting.

Remark 5.5. The constants in the proof of Theorem 5.1 and Corollary 5.1.1, in-

cluding the ones written in calligraphic letters solely depend on the joint spectrum

of processes xt, yt as well as some absolute constants. As an illustrative example,

by assuming Σε = 0.01I, µmax(A) = 0.9, µmin(A) = µmin(Ă) = 0.01, Λ̃min = 0.7,

‖C−1
11 C12‖2 = 0.5, ‖[C−1

11 C12; I]θ∗(2)‖2 = 1.5, d0 = 4.2 × 10−4, C0 = 10−6, and

c2 = 105, the key constants in Theorem 5.1 take the following numerical values:
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A = 10−3, B = 9.84, C = 236, D = 43, K = 6, and d = 1. These translate to

λn = 10−3
√

log (2p)/n, a requirement of n > max{236, 43k} log(2p), local alterna-

tive hypotheses satisfying ‖θ∗(2)‖2 > 9.84klog (2p)/n, and failure probability < 6/p.

Similarly, for Corollary 5.1.1, we get D̃ = 10.67, translating to a sample size re-

quirement of n > 0.046k2 log(2p) + 393k log(2p) (with t = 0.114 and t0 = 100).

The potentially large numerical values of some of these constants suggest that the

non-asymptotic advantage may come with large values of n and p.

5.3 Application to Simulated and Experimentally-Recorded Data

In this section, we evaluate our theoretical results through application to sim-

ulated and real data, and by comparing the performance of classical OLS-based

method and the LGC statistics in detecting GC influences. We use the fast im-

plementation in [241] to solve the LASSO problems. Unless otherwise stated, the

regularization parameter λn is chosen via five-fold cross-validation performed over

the full model, with the same λn used for the reduced model.

5.3.1 Simulation Studies

We simulated three time-series xt, yt, zt according to the sparse MVAR(11)

model:

xt = −0.67xt−1 + 0.2xt−5 − 0.1xt−11 + 0.05zt−3 + ν1,t

yt = −0.62yt−1 + 0.1yt−5 − 0.2yt−11 − 0.1xt−2 − 0.1xt−3 + 0.5xt−11
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− 0.001zt−4 − 0.004zt−5 +
√

0.6ν2,t

zt = −0.9025zt−2 + ν3,t

where νi,t ∼ N (0, 1), i.i.d. for i = 1, 2, 3. In this model, xt has a direct causal

influence on yt, but there is no causal influence from yt to xt. The latent process

zt, however, influences both xt and yt (Fig. 5.1(a)). As such, the correlated pro-

cess noise components εt and ε′t in Eq. (5.1) are modeled as 0.05zt−3 + ν1,t and

−0.001zt−4 − 0.004zt−5 +
√

0.6ν2,t, respectively. As shown in Fig. 5.1(b), removing

zt from the analysis indeed induces a false (i.e., indirect) causal influence from yt to

xt.

We performed two sets of comprehensive experiments to evaluate the effects of λn,

n, and p on the identification of GC influences between xt and yt based on Ty 7→x and

Tx 7→y:

Evaluating the Effect of λn. Fig. 5.1(c) shows the LGC statistics Ty 7→x (red) and

Tx 7→y (blue) for n = 250 and p = 100, obtained by varying λn in the interval
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Figure 5.1: Simulation Results. (a) Ground truth causality pattern. (b) Estimation
setup, in which zt is latent and thus introduces a spurious causal link (dashed gray
arrow) from yt to xt. (c) Effect of λn on the LGC statistics for n = 250, p = 100.
The LGC statistics Ty 7→x (red) and Tx 7→y (blue) are separable for a suitable range of
λn, marked by the dashed vertical lines (colored hulls show the range of LGC over
30 realizations).
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[10−6, 10−3] uniformly in the log-scale. The dotted lines and colored hulls represent

the average and range of the values, respectively, over 30 realizations. As discussed

in Remark 2, there is an evident range of λn that provides a meaningful separation

between Ty 7→x and Tx 7→y, which is marked by the dashed vertical lines in Fig. 5.1(c).

Evaluating the Effect of the Sample Size n. We fixed a model order of p = 100 and

varied n uniformly in the interval [100, 1000]. Fig. 5.2(a) and (b) show the resulting

LGC statistics Ty 7→x and Tx 7→y corresponding to the LASSO and OLS (λn = 0),

respectively. In Fig. 5.2(a), we also plotted the threshold t corresponding to a false

positive probability of 0.01, according to Corollary 5.1.1 (dashed line). As n grows

larger, the ranges of the two LGC statistics are saliently separated. The proposed

thresholding rule of Corollary 5.1.1 is also able to correctly identify the true GC
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Figure 5.2: Simulation Results (continued). LASSO-based (left) and OLS-based
(λn = 0, right) LGC statistics Ty 7→x (red) and Tx 7→y (blue) obtained by varying n
for fixed p = 100 (top panels (a) and (b)) and varying the model order p for fixed
n = 300 (bottom panels (c) and (d)). The dashed lines in panels (a) and (c) show
the threshold t at a false positive error level of 0.01 (colored hulls show the range
LGC over 30 realizations).
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effects for n ≥ 250.

The OLS results shown in Fig. 5.2(b), however, require much larger values of

n to be stable, whereas the LGC measures provided by the LASSO (Fig. 5.2(a))

are stable even for n < 2p. In addition, OLS requires n ≥ 400 for the ranges of the

GC measures to be distinguishable.

Evaluating the Effect of the Model Order p. Finally, we fixed n = 300 and varied

p in the interval [10, 300] uniformly in the log-scale. Fig. 5.2(c) and (d) show the

corresponding GC measures for the LASSO and OLS, respectively, along with the

threshold t corresponding to a false positive probability of 0.01. For p � n, the

LASSO and OLS exhibit similar performance. But, the OLS-based GC measures

become unstable for p ≈ n, whereas those of the LASSO remain stable throughout.

The LGC statistics also remain saliently separable over a wider range of p for the

LASSO, as compared to their OLS counterparts.

5.3.2 Application to Experimentally-Recoded Neural Data from Gen-

eral Anesthesia

Finally, we present an application to simultaneously recorded local field poten-

tial (LFP) and ensembles of single-unit spike recordings from a human subject under

Propofol-induced general anesthesia (Data from [242]). The LFP signal, electrical

field potential measured at the cortical surface, represents mesoscale dynamics of cor-

tical activity with both cortical and subcortical (e.g., thalamic) origins. Single-unit

spike recordings, on the other hand, represent the neuronal scale cortical dynam-
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Figure 5.3: Analysis of neural data from general anesthesia. (a) LFP (green) and
PSTH (orange) traces for a time window of duration 25.6 s. (b) BVAR parameter
estimates corresponding to the full models for LASSO (top) and OLS (bottom). (c)
Table summarizing the obtained LGC statistics. The LASSO-based measure detects
a GC influence from LFP to the spiking activity (boldface number).

ics. It is believed that the spiking activity of cortical neurons is mediated by slow

brain-wide oscillations under states such as anesthesia and sleep [104, 242, 243, 244].

Specifically, Lewis et al. [104] associate loss of consciousness under general anesthe-

sia with emergence of periodic and profound suppression of neuronal spiking activity

that is strongly phase-locked to the peaks of the LFP slow oscillations. Here, we ex-

amine the role of LFP slow oscillations in mediating the spiking activity by assessing

the GC influences between them.

We use a time window of duration 25.6 s during anesthesia, corresponding to

n = 640 samples (sampling frequency of 25 Hz). The multi-unit spiking activity is

represented by its peristimulus time histogram (PSTH) (i.e., ensemble average over

19 units). Fig. 5.3(a) shows the LFP (green) and PSTH (orange) signals used in

the analysis. We use a model order of p = 100, corresponding to a history length of
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4 second, to ensure that slow oscillations (∼0.25 Hz to 0.5 Hz) can be captured by

the BVAR model.

Fig. 5.3(b) shows the estimated BVAR coefficients by the LASSO (top) and

OLS (bottom). A visual comparison of the two sets of coefficients suggests that

OLS has likely over-fitted the data. The corresponding LGC statistics TLFP 7→PSTH

and TPSTH7→LFP for both methods are reported in the table of panel Fig. 5.3(c). For

a false positive error probability of 0.01, Corollary 5.1.1 prescribes a threshold t =

0.0802, which results in detecting the GC effect LFP 7→ PSTH (boldface number) as

significant, and discarding the GC effect PSTH 7→ LFP. The conventional chi-square

test applied to the classical GC statistics FLFP 7→PSTH and FPSTH7→LFP, however, fails

to detect any GC influence, even at a significance level as high as 0.05. The outcome

of the LASSO-based LGC analysis is therefore consistent with the aforementioned

hypothesis on the role of LFP in mediating spiking activity.

5.4 Concluding Remarks

In this chapter, we proposed a GC statistic based on the LASSO parameter es-

timates, namely the LGC statistic, in order to identify GC influences in a canonical

sparse BVAR model with correlated process noise. By analyzing the non-asymptotic

properties of LGC statistic, we established that the well-known sufficient conditions

for the consistency of LASSO also suffice for accurate identification of GC influences.

By slightly weakening these conditions, we also analyzed the false positive error per-

formance of a simple thresholding rule for detecting GC influences. We validated
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our theoretical claims through application to simulated and experimentally-recorded

neural data from general anesthesia. In particular, we showed that the proposed

LGC statistic is able to identify a GC effect from LFP to spiking activity under

anesthesia, whereas the conventional OLS-based GC analysis does not detect this

effect. Our contribution compared to existing literature is to provide a simple statis-

tic inspired by the classical log-likelihood ratio statistic used for GC analysis, which

can be directly computed from the LASSO estimates without the need to resort

to de-biasing procedures or asymptotic results for testing. Future work includes

extending our results to autoregressive generalized linear models with time-varying

parameters.
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Chapter 6: Concluding Remarks and Future Directions

6.1 Summary of Our Contributions

In this thesis, we devised novel statistical modeling frameworks and developed

fast and efficient algorithms to analyze neuroimaging data from different modalities,

ranging from the mesocale (i.e., M/EEG) to the neuronal level (i.e., singe/multi unit

recordings), in order to investigate the mechanisms underlying brain function.

The first part of the dissertation concerned spectral analysis of spontaneous

neural recordings. We developed a semi-parametric Bayesian framework, namely

the DBMT method, for inferring the evolution of the spectral content in neuroimag-

ing data, by integrating the multitaper method with state-space models. We also

developed the PMTM algorithm, a multitaper method specifically tailored for neu-

ral spiking activity that takes into account the binary nature of the data, in order

to analyze the spectra of underlying latent stationary process that govern spiking

activity. We evaluated the performance of our proposed algorithms using synthetic

and real data applications, and complemented the results with rigorous theoretical

analyses.

In the second part, we focused on identifying the cortical sources responsible

for the TRF components that give rise to the neural dynamics of speech processing
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manifested in M/EEG recordings. We introduced NCRFs for simultaneously deter-

mining the TRFs and their cortical distribution by unifying the TRF and distributed

source localization models. We cast the joint estimation task as a Bayesian estima-

tion problem and provided an efficient inference algorithm, namely the ChampLasso

algorithm. Our simulation studies revealed significant improvements over existing

two-stage methods, in terms of spatial resolution, filter reconstruction, and recov-

ering dipole orientations. Application of our algorithm to experimentally recorded

MEG responses provided new insight into the cortical encoding of various aspects

of speech.

Finally, the third part of the dissertation considered the inference of GC in-

fluences in high-dimensional time series models with sparse coupling. We defined a

LASSO-based statistic for inferring GC influences, which we referred to as the LGC

statistic, and established non-asymptotic guarantees for robust identification of GC

influences via the LGC statistic. Our theoretical and empirical analyses identified

the key trade-offs in terms of sampling requirements and strength of the causal ef-

fects that result in the robust detection of GC influences, thus bridging the gap

between the existing LASSO-based approaches and the classical least-squares based

GC inference procedure.

All of the above methodologies take advantage of the Bayesian modeling frame-

work in order to both employ arbitrarily complex models and learn them from

observed data through solving optimization problems. Furthermore, the complex-

ity of the models are tuned via incorporating domain knowledge in the form of

prior distributions or regularization mechanisms. As demonstrated in this disserta-
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tion, the resulting learned models can be quite useful in providing interpretable and

biologically-plausible descriptions of the underlying principles that govern neural

activity under various tasks and conditions.

6.2 Future Directions

In closing, it is worth pointing out some of the potential future directions of

research enabled by the results on this dissertation:

1. Integrating state-space models with more general notions of non-stationary

spectra, such as the Generalized Evolutionary or Weyl spectra, in order to

further improve the achievable spectrotemporal resolutions.

2. Developing a Bayesian framework to extracting a single set of group level

NCRFs, with individual variations in component lags and amplitudes captured

via appropriate distributions.

3. Exploiting the low-dimensional nature of the NCRFs to directly estimate the

dominant factors and corresponding spatial distribution patterns, which in

tandem describe cortical encoding of speech. One can potentially recover such

factors at different time scales by utilizing Gaussian process priors.

4. Extending the LGC guarantees beyond stationary linear models, by consider-

ing generalized linear models or AR models with time-varying parameters.

Finally, it is noteworthy that our methodologies have potential application

in other domains beyond neural data analysis: for example the spectral analysis
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techniques can prove to be fruitful in domains such as econometrics, data foren-

sics, oceanography, climatology, and seismology; the LASSO-based Granger causal

analysis can be used to extract functional connectivity in social networks or gene

regulatory networks, thanks to the plug-and-play nature of the algorithms used in

our inference framework. To ease the adoption of these methods in the aforemen-

tioned applications, we have archived implementations of our algorithms as open

source repositories on GitHub: https://github.com/proloyd.
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Appendix A: Supplementary Material on Chapter 2

This appendix contains the proof of the theorems charcterizeing the bias and

variance for DBMT estimates as well as discusses the factors appearing in these

theorems in detail.

Recall from Eq. (2.29) that the kth eigen-coefficient estimate at window n can

be written in terms of the observed data as:

x̂
(k)
n|N =

N∑
s=1

Λ|s−n|ΓFH
s ỹ(k)

s , (A.1)

where ỹ
(k)
s = u(k) � ỹs = U(k)ỹs. Given that Q is a diagonal matrix with elements

q(fj), j = 1, 2, · · · , J , it can be shown that Σ∞, Λ and Γ are also diagonal matrices.

Denoting the elements of Σ∞, Γ and Λ, respectively by τ(f), η(f) and γ(f), for

f ∈ {f1, f2, · · · , fJ}, we have η(f) =
α2τ(f) + q(f)

1 + rW (α2τ(f) + q(f))
.

A.1 Proof of Theorem 2.1

First note that Eq. (2.30) implies that

E[dzn(f)dz∗n+t(f
′)] = αtD(f)δ(f − f ′)dfdf ′. (A.2)
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By invoking the Cramér representation, the covariance of the data tapered by the

kth and lth dpss sequences can be expressed as:

E
[
(ỹ(k)

s )j(ỹ
(l)
s′ )∗j′

]
=α|s−s

′|
∫ 1/2

−1/2

Uk(fj − β)D(β)U∗l (fj′ − β)dβ

+

∫ 1/2

−1/2

Uk(fj − β)σ2δ(s− s′)U∗l (fj′ − β)dβ. (A.3)

From Eq. (2.20) and Eq. (A.1), we get:

D̂n|N(fj) =
η2(fj)

K

K∑
k=1

N∑
s=1

N∑
s′=1

γ(fj)
|s−n|γ(fj)

|s′−n|(ỹ(k)
s )j(ỹ

(k)
s′ )∗j . (A.4)

Taking the expectation of both sides and after some simplification, one arrives at:

E[D̂n|N(fj)] =
η2(fj)

K

K∑
k=1

N∑
s=1

N∑
s′=1

γ(fj)
|s−n|γ(fj)

|s′−n|E
[
(ỹ(k)

s )j(ỹ
(k)
s′ )∗j

]
=

[
η(fj)

2

N∑
s=1

N∑
s′=1

γ(fj)
|s−n|γ(fj)

|s′−n|α|s−s
′|
]
×

1

K

K∑
k=1

∫ 1/2

−1/2

Uk(fj − β)D(β)U∗k (fj − β)dβ

+

[
η(fj)

2

N∑
s=1

γ(fj)
2|s−n|

]
σ2. (A.5)

Using the orthogonality of the PSWFs as in [90], and using the fact that

D(β) 6 sup
f
D(f),∀β,
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we get:

∣∣E[D̂n|N(f)]− κn(f)D(f)
∣∣ 6κn(f)(sup

f
{D(f)} −D(f))

(
1− 1

K

K∑
k=1

λk

)

+ µn(f)σ2 + κn(f)o(1), (A.6)

where

κn(f) := η(f)2

N∑
s=1

N∑
s′=1

γ(f)|s−n|γ(f)|s
′−n|α|s−s

′|,

µn(f) := η(f)2

N∑
s=1

γ(f)2|s−n|,

for f ∈ {f1, f2, · · · , fJ}. Using the triangle inequality, the bound of Theorem 2.1 on∣∣E[D̂n|N(f)]−D(f)
∣∣ follows. 2

A.2 Proof of Theorem 2.2

Using the notation of (A.1), we have:

Cov
{
D̂(k)
n (f), D̂(l)

m (f ′)
}

= η(f)4

N∑
s,s′,t,t′=1

γ(f)|s−n|γ(f)|s
′−n|γ(f ′)|t−m|γ(f ′)|t

′−m|×

[
α|s−t|α|s

′−t′|
∫ ∫

Uk(f − β)Ul(f
′ + β)Uk(−β′ − f)Ul(β

′ − f ′)×

(D(β) + σ2δ(s− t))(D(β′) + σ2δ(s′ − t′))dβdβ′+

α|s−t
′|α|s

′−t|
∫ ∫

Uk(f − β)Ul(β − f ′)Uk(−β′ − f)Ul(β
′ + f ′)×

(D(β) + σ2δ(s− t′))(D(β′) + σ2δ(s′ − t))dβdβ′
]

(A.7)
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Note that we have omitted the integral limits, as they are understood to be same as

in (3.2) henceforth. After summing over all tapers and rearranging the summations,

the first expression within the brackets in (A.7) becomes:

∫ ∫ [
η(f)2

N∑
s,t=1

γ(f)|s−n|γ(f ′)|t−m|α|s−t|
]
(D(β) + σ2δ(s− t))×

K∑
k=1

Uk(f − β)Uk(−β′ − f)×

[
η(f)2

N∑
s′,t′=1

γ(f)|s
′−n|γ(f ′)|t

′−m|α|s
′−t′|
]
(D(β′) + σ2δ(s′ − t′))×

K∑
l=1

Ul(f
′ + β)Ul(β

′ − f ′)dβdβ′. (A.8)

Letting

A(n,m, f) :=

[
η2(f)

N∑
s,t=1

γ(f)|s−n|γ(f ′)|t−m|α|s−t|
]
D(f) +

[
η(f)2

N∑
s=1

γ(f)2|s−n|
]
σ2

and using the Schwarz inequality, the integral in Eq. (A.8) can be bounded by:

[∫ ∫ ∣∣∣∣ K∑
k=1

Uk(f − β)Uk(−β′ − f)

∣∣∣∣2A(n,m, β)A(n,m, β′)dβdβ′

×
∫ ∫ ∣∣∣∣∣

K∑
l=1

Ul(f
′ + β)Ul(β

′ − f ′)

∣∣∣∣∣
2

A(n,m, β)A(n,m, β′)dβdβ′

]1/2

, (A.9)

Using bounds on the convolutions of PSWFs from [90], and upper bounding

A(n,m, β) by supf{κn(f)D(f) + µn(f)σ2}, the statement of the theorem on the

variance of the DBMT estimate D̂n(f) follows. 2
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A.3 Characterization of κn(f): Bounds and Parameter Dependence

A.3.1 Lower and Upper Bounds on κn(f)

Consider the scenario where q(f) = q, i.e., flat spectrum. Then, the dependent

of γ(f) and κn(f) on f is suppressed. We have the following bound on κn:

Proposition A.1. For 0 < γ, α < 1, the quantity κn can be bounded as:

∣∣∣∣∣κn −
(

1− γ

α

)2[
1 + αγ − 2(αγ)N

1− αγ
T0 +

γ

(1− γ)2

]∣∣∣∣∣ 6
(

1− γ

α

)2
γ

(1− γ)2
,

where T0 :=
1 + γ2 − γ2n − γ2(N−n+1)

1− γ2
.

Proof. To get an upper bound on κn, we rewrite the expression defining κn as:

κn = η2

N∑
s=1

N∑
s′=1

γ|s−n|γ|s
′−n|α|s−s

′|

= η2

N−1∑
t=−N+1

α|t|
N∑
s=1

γ|s−n|γ|s−t−n|.

Now, let us define Tt :=
∑N

s=1 γ
|s−n|γ|s−t−n|. Then it can be verified that:

Tt+1


= γTt, when t > N − n

6 γTt + γt+1, when 0 6 t < N − n

(A.10)
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and

Tt−1


= γTt, when t 6 −n+ 1

6 γTt + γ|t−1|, when − n+ 1 < t < 0.

(A.11)

Also, we have:

N−1∑
t=0

αtTt 6
N−1∑
t=0

αtγtT0 +
N−n−1∑
t=1

tγt +
N−1∑
t=N−n

(N − n)γt

6
1− (αγ)N

1− αγ
T0 +

γ

(1− γ)2
. (A.12)

Similarly, we have:

0∑
t=−N+1

α|t|Tt 6
1− (αγ)N

1− αγ
T0 +

γ

(1− γ)2
, (A.13)

which along with (A.12) leads to the claimed upper bound. For the lower bound,

we use the fact that

γTt =


6 Tt+1 when t > 0

6 Tt−1 when t 6 0

, (A.14)

which implies
∑N−1

t=0 αtTt >
1−(αγ)N

1−αγ T0 and
∑0

t=−N+1 α
|t|Tt >

1−(αγ)N

1−αγ T0. Using the

latter lower bounds for κn yield the claimed lower bound.
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A.3.2 Relation between κn and Q

The expressions for κn(f) and µn(f) introduced at the beginning of current

chapter depend on γ(f) and α. But γ(f) itself depends on q(f) and α, and it is not

straightforward to give a closed-form expression of γ(f) merely in terms of q(f) and

α, since it requires computation of the filtered error covariance matrix Σn|n given Q.

Again, by invoking the stead-state approximation, and defining Σn|n−1 =: Σ,∀n =

1, 2, · · · , N , the matrix Σ can be obtained by solving the following algebraic Riccati

equation:

Σ = α2Σ− α2ΣFH
n

(
σ2I + FnΣFH

n

)−1
FnΣ + Q (A.15)

and thereby the steady-state error covariance matrix Σn|n =: Σ∞ is given by Σ∞ =

1
α2 (Σ−Q).

Although this procedure can be carried out numerically, in general it is not

possible to solve the Riccati equation to get a closed-form expression for arbitrary Q.

In order to illustrate the explicit dependent of κn(f) on the state-space parameters,

we consider the case of flat spectrum where Q = qI. In this case, it can be shown

that Σ = ζI for some ζ > 0 and the matrix equation (A.15) reduces to a simpler

scalar equation for ζ, given by:

ζ

σ2
= α2 ζ

σ2

[
1− ζ

σ2

(
1− rW (ζ/σ2)

rW (ζ/σ2) + 1

)
rW

]
+

q

σ2
. (A.16)
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Following simplification, a quadratic equation for ζ results, and since ζ > 0, the

positive solution for ζ is given by:

ζ

σ2
=

1

2rW

[
−
(

1− α2 − rW q

σ2

)
+

√(
1− α2 − rW q

σ2

)2

+ 4rW
q

σ2

]
. (A.17)

Then, γ can be computed as γ = 1
α

(
1− q/σ2

ζ/σ2

)
. Using these expressions for γ and α,

the functions κn and µn can be computed. Fig. 2.7B shows the upper and lower

bounds on κn evaluated for n = 50 and different values of α for q/σ2 = 10. The

upper and lower bounds are simple functions of α and q/σ2 and can be used to

further inspect the performance trade-offs of the DBMT algorithm with respect to

the state-space model parameters.
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Appendix B: Supplementary Material on Chapter 4

B.1 Marginalization

To obtain the marginal distribution of Eq. (4.9) from the joint distribution of

Eq. (4.8), one needs to integrate out J from the latter. Alternatively, thanks to the

Gaussian assumption in Eq. (4.5) and Eq. (4.7), the marginalization can be carried

out as follows. We start from the probabilistic generative model:

Y = LJ + W W ∼ N (0,Σw), (B.1)

J = ΦS + V V ∼ N (0,Γ). (B.2)

Substituting the expression for J from Eq. (B.2) in Eq. (B.1), we arrive at:

Y = L(ΦS + V) + W = LΦS + LV + W (B.3)

Using the independence of V and W, the distribution of the stimulus independent

part can be derived as LV + W ∼ N (0,Σw + LΓL>). From here, the marginal

distribution of Y can be written as given by Eq. (4.9).
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B.2 Details of the Regularization Scheme

In this appendix, we provide more details on the regularization scheme used

for NCRF estimation. Recall that the NCRF matrix estimation amounts to the

following maximum likelihood problem:

min
Θ

1

2
‖Y − LΘŜ‖2

(Σw+LΓL>)−1 . (B.4)

given a particular choice of Γ. With this choice, one can find the gradient of the

objective as:

L>(Σw + LΓL>)
−1
(
Y − LΘŜ

)
Ŝ> (B.5)

and thus can attempt to solve the maximum likelihood problem using gradient

descent techniques. The following observations on the gradient, however, show that

the problem is ill-conditioned:

1. The left multiplier of Θ, i.e., L>(Σw + LΓL>)
−1

L is singular.

2. The right multiplier of Θ, i.e, ŜŜ>, which is the empirical stimulus correlation

matrix is likely to be rank-deficient for naturalistic stimuli [128].

Therefore, a direct attempt at solving the problem via the gradient descent results

in estimates of Θ with high variability. In estimation theory, such ill-conditioning is

handled by introducing a bias to the estimator, which contains a priori information

about the problem, in order to reduce the estimation variance. In addition, the
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NCRF model typically has many more free parameters than the observed data

points, and without introducing prior information, the estimation problem is prone

to over-fitting.

The prior information is often incorporated in the form of regularization. A

commonly used regularization scheme in this context is the Tikhonov regularization

and its variants for promoting smoothness [3]. Other estimation schemes such as

boosting and `1-regularization promote sparse solutions [6, 125]. Here, we introduce

a structured regularization by penalizing a specific mixed-norm of the NCRF matrix

to recover spatio-temporally sparse solutions over the Gabor coefficients:

P2,1,1(Θ) =
M∑
m=1

L∑
l=1

‖θm,l‖2 =
M∑
m=1

L∑
l=1

√
θ2
m,l,R + θ2

m,l,A + θ2
m,l,S. (B.6)

In words, for each current dipole location, we penalize the vector-valued response

function by sum of the magnitude of its corresponding Gabor coefficients.

Note that the `1-regularization in this case, i.e.,
∑M

m=1

∑L
l=1 ‖θm,l‖1, is not

compatible with the expected cortical distribution of the NCRFs. Since the `1-

norm is separable with respect to the three 3 coordinates of θm,l, it tends to select

a sparse subset of the 3D coordinates, rendering the recovered NCRF components

parallel to the coordinate axes. In contrast, the proposed penalty aims to select the

NCRF components as a single entity by penalizing the vector magnitudes at each lag.

Indeed, if the current dipoles are constrained to be normal to the cortical patches

in the NCRF formulation, the proposed penalty coincides with `1-regularization.

Another advantage of this mixed-norm penalty is its rotational invariance when
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working with 3D vector-valued response functions. Suppose the coordinate system is

rotated by an orthogonal matrixU ∈ R3×3. Then, the lead-field and NCRF matrices

are transformed by: L→ LŨ> =: L′, Θ→ ŨΘ =: Θ′ where Ũ = IM ⊗U . Then,

L′Θ′ = LŨ>ŨΘ = LΘ and

P2,1,1(Θ′) = η
M∑
m=1

L∑
l=1

‖θ′m,l‖2 = η
M∑
m=1

L∑
l=1

‖Uθm,l‖2 = η
M∑
m=1

L∑
l=1

‖θm,l‖2 = P2,1,1(Θ),

which implies the aforementioned rotational invariance. As a result, the solutions are

not dependent on any particular choice of coordinate system. Also, since the penalty

does not prefer specific source orientations, it makes the solution more resilient to

co-registration error than other approaches that do not consider the vector-valued

nature of the current dipoles or constrain the solutions to be normal to the cortical

surface.

B.3 Statistical Testing Procedures

To asses the statistical significance of the estimated NCRF components at the

group level and across the source space, they need to be compared against suitable

null hypotheses. The fact that the NCRF components are 3D vectors requires

technical care in choosing the null hypotheses. Here, we provide two possible null

hypotheses and testing methodologies: the Length Test, that only considers the

length or magnitude of the NCRFs, and the Vector Test that takes into account

both the magnitude and direction of the NCRFs. The corresponding source codes

that implement these tests can be found at [129].
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The Length Test

This test aims to assess the statistical significance of the NCRF components

by comparing their magnitudes against a baseline ‘null’ NCRF model at the group

level. To control for false positives arising from over-fitting, instead of using an

all-zero null model of the NCRFs, we aim to learn the null model from the dataset

itself. The time-series of the feature variables are split into four equal segments, and

these segments are permuted cyclically to yield three ‘misaligned’ feature time-series.

Then, for each feature variable, three ‘misaligned’ time-series are constructed by

swapping its original time-series with the ‘misaligned’ ones, while keeping the other

two feature variables intact. Then, the average NCRF magnitudes estimated from

these three ‘misaligned’ time-series are considered as the null model for that feature

variable. The NCRF magnitude pairs from the original data and the null model are

tested for significance using mass-univariate tests based on related measures t-tests.

To control for multiple comparisons, nonparametric permutation tests [245,

246] based on the threshold-free cluster-enhancement (TFCE) algorithm [181] are

used. First, at each dipole location and time point, the t-statistic is computed from

the difference between the NCRF magnitude pairs. The resulting statistic-map is

then processed by the TFCE algorithm, which boosts contiguous regions with high

test statistic as compared to isolated ones, based on the assumption that spatial

extent of the true sources is typically broader than those generated by noise. To

find the distribution of these TFCE values under the null hypothesis, TFCE values are

calculated following the same procedure, on 10000 different random permutations
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of the data. In each permutation, the sign of the NCRF magnitude differences

is flipped for a randomly selected set of subjects, without resampling the same

set of subjects. Then, at every permutation, the maximum value of the obtained

TFCE values is recorded, thereby constructing a non-parametric distribution of the

maximum TFCE values under the null hypothesis. The original TFCE values that

exceed the (1− α) percentile of the null distribution are considered significant at a

level of α corrected for multiple comparisons across the sources.

The Vector Test

This test aims at quantifying the significance of the estimated 3D NCRF com-

ponents at the group level, based on the one-sample Hotelling’s T 2 test. In the

one-sample Hotelling’s T 2 test, the population mean of the sample vectors is tested

against the null hypothesis of mean zero, i.e. µ0 = 0. To control for multiple

comparisons, a similar strategy based on nonparametric permutations as in the case

of the Length Test is used. At every time lag, the T 2 statistic for each dipole is

computed as:

T 2 = n(x̄− µ0)>Σ̄−1(x̄− µ0) (B.7)

where x̄, Σ̄ are the population mean and covariance matrix of the vector-valued

NCRF components, respectively. The T 2 statistic quantifies the variability of vector-

valued samples, akin to the role of the t-statistic for 1D samples [247]. The result-

ing T 2-maps are then processed by the TFCE algorithm. As before, to construct
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Figure B.1: Estimated NCRFs for acoustic envelope (A), word frequency (B), se-
mantic composition (C): The anatomical plots show the group-level average NCRFs
projected onto the lateral plane (top and bottom panels) corresponding to selected
visually salient peaks in the temporal profiles (middle panels). The top and bottom
portions of the subplot pertain to left and right hemisphere, respectively. Numerical
labels of each anatomical subplot indicates the corresponding time lag in ms. The
gray portions of the traces indicate statistically insignificant NCRFs at the group
level (significance level of 5%). The significance levels are computed using the Vector
Test, as opposed to the main manuscript where the significance levels are based on
the Length Test. The main features of the NCRFs discussed in the Results section
are similarly recovered by the Vector Test.

a non-parametric distribution of maximum TFCE values under the null hypothesis,

maximum values of the TFCE-processed T 2 maps on 10000 different random per-

mutations of the data are recorded. In each permutation, the vector-valued NCRF

components of each subject undergo uniform random rotations in 3D [248]. The

original TFCE values that exceed the (1− α) percentile of the null distribution are
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considered significant at a level of α, corrected for multiple comparisons across the

sources.

Traditionally, response functions are estimated as scalar functions of the data,

either over the sensor space or over the source space by orientation-constrained

inverse solvers. Considering the directional variability of the NCRF estimates at

the group level, however, takes into account the group level anatomical variability

that may effect the current dipole orientations. In addition, the Vector Test is

less computationally demanding than the Length Test, because it does not require

refitting NCRFs for permuted models. In the Results section of the manuscript,

we presented the NCRFs masked at a significance level of 5%, based on the Length

Test. To demonstrate the difference between these two tests, here we also present

the sames results using the Vector Test (Fig B.1).
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Appendix C: Supplementary Material on Chapter 5

Here, we will first give an overview of the implications of assumptions (A)

in Section C.1. We will then give the proofs of Theorem 5.1 and Corollary 5.1.1

in Section C.2, which utilize a number of auxiliary theorems and technical results.

The auxiliary theorems, mainly on the prediction error analysis of the full and

reduced models, ensure that the standard conditions required for the consistency

of the LASSO hold, and are given in Section C.3. Finally, several technical results

used in the proofs of Sections C.2 and C.3 are given in Section C.4.

C.1 Implications of the key assumptions

In this section, we give an overview of the implications of the key assumptions

(A) on the BVAR model, adopted from Basu et al. [209]. Hereafter, we denote the

maximum and minimum eigen-values of any matrix M by Λmax(M) and Λmin(M),

respectively. We start with the following general assumption:

Assumption C.I. Let Γ(l) be the auto-covariance matrix of the BVAR process

at lag l. The spectral density matrix F(ω) =:
1

2π

∞∑
l=−∞

Γ(l) exp (−ilω) exists, and

its maximum eigen-value is bounded almost everywhere on [−π, π], i.e., M(F) :=

ess sup
ω∈[−π,π]

Λmax(F(ω)) <∞.
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It can be shown that the spectral density exists, if
∑∞

l=0 ‖Γ(l)‖2
2 < ∞. Fur-

thermore, if
∑∞

l=0 ‖Γ(l)‖2 <∞, the spectral density is bounded and continuous, so

that the essential supremum is indeed achieved.

For the BVAR(p) process in Eq. (5.1), let the matrix valued characteristic

polynomial be defined as A(z) := I −
∑p

j=1 Ajz
j. Then, the following conditions

from Assumption 5.I provide a simple characterization of the spectral density matrix:

1. The process noise covariance matrix Σε is positive definite with bounded eigen-

values, i.e., 0 < Λmin(Σε) ≤ Λmax(Σε) <∞.

2. The BVAR process is stable and invertible, i.e., det(A(z)) 6= 0 on or inside

the unit circle {z ∈ C : |z| ≤ 1}.

Under these two conditions, the spectral density matrix satisfies Assumption C.I, is

bounded and continuous, and admits the representation:

F(ω) =
1

2π
A−1(exp (−iω))ΣεA

−H(exp (−iω)).

Additionally, consider the infimum of the spectral density over unit circle:

m(F) := ess inf
ω∈[−π,π]

Λmax(F(ω)).

Then, the following useful bounds hold for the BVAR(p) process in Eq. (5.1):

M(F) ≤ 1

2π

Λmax(Σε)

µmin(A)
, m(F) ≥ 1

2π

Λmin(Σε)

µmax(A)
, (C.1)
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where

µmax (A) := min
|z|=1

Λmax

(
AH(z)A(z)

)
and µmin (A) := max

|z|=1
Λmin

(
AH(z)A(z)

)
.

The bounds in Eq. (C.1) are particularly useful in the prediction analysis of

Section C.3, where we replace the quantities M(F) and m(F) arising from the ap-

plication of [209, Proposition 2.4] by these bounds. The characteristic polynomial

A(z) encodes the temporal dependencies of the process, whereas Σε captures the

correlation between the process noise components, possibly due to latent processes.

Expressing the error bounds in terms of µmax(A), µmin(A),Λmax(Σε),Λmin(Σε), in-

stead of M(F) and m(F), helps to separate the contributions of these two sources

of BVAR dependencies. We also consider the 2p-dimensional alternative BVAR(1)

representation of the 2-dimensional BVAR(p) process: Xt = Ă1Xt−1 + ε̆, where Xt

is the first the row of X in Eq. (5.3) organized as a column vector, and Ă1 and

ε̆ are constructed by the corresponding augmentation of Ai’s and εt’s, respectively.

The process Xt has a characteristic polynomial, Ă(z) := I − Ă1z and is stable if

and only if the original process is stable [249]. However, µmin(Ă) and µmax(Ă) are

generally different than µmin (A) and µmax (A), respectively.

Let the columns of X corresponding to θ(i) be denoted by X(i), for i = 1, 2.

The remaining component of our key assumption is that the BVAR parameters are

k-sparse. The implication of this assumption for the full model is fairly standard,

under both the null and alternative hypotheses. However, for the reduced model

under the alternative hypothesis, where only the auto-regressive parameters are

168



unspecified and the cross-regression parameters are enforced to be 0, we need to

define a suitable surrogate “true” model. To this end, we use the orthogonality

principle to define the surrogate “true” auto-regression coefficients in the reduced

model as:

θ̃∗(1) := θ∗(1) + C−1
11 C12θ

∗
(2),

where

E

[
1

n
X>X

]
=


E

[
1

n
X>(1)X(1)

]
E

[
1

n
X>(1)X(2)

]
E

[
1

n
X>(2)X(1)

]
E

[
1

n
X>(2)X(2)

]
 =:

C11 C12

C21 C22

 =: C.

Note that even though the MVAR coefficients under the alternative hypothesis are

k-sparse, the surrogate ”true” auto-regression coefficients under the reduced model

may not be. To deal with this issue, we follow the treatment of Negahban et al.

[215] in analyzing the LASSO under weakly sparse or compressible parameters, and

further impose the norm condition on θ∗(2) (given in the statement of Theorem 5.1)

to restrict the alternative hypothesis. The latter ensures that the full and reduced

models are distinguishable under the alternative hypothesis (See Section C.3 for

details).

C.2 Proofs of Theorem 5.1 and Corollary 5.1.1

The key idea in the proofs of Theorem 5.1 and Corollary 5.1.1 is to simul-

taneously analyze the full and reduced models, and to balance their consistency
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requirements in a unified fashion. These requirements for the full model are the

same as those in standard sparse MVAR estimation. However, analysis of the re-

duced model, where the cross-regression coefficients are forced to be zero, requires

further technical care.

C.2.1 Proof of Theorem 5.1

The proof has two main steps. First, we bound the deviation of the empirical

quantities `(θ̂(1), θ̂(2)) (full model) and `(
̂̃
θ(1),0) (reduced model) with respect to

their counterparts evaluated at the true parameters. In doing so, we first assume

that the following conditions hold:

(C1) Restricted eigenvalue (RE) condition: the symmetric matrix Σ̂ = X>X/n ∈

R2p×2p satisfies restricted eigenvalue condition with curvature α > 0 and tolerance

τ ≥ 0, i.e., Σ̂ ∼ RE(α, τ):

φ>Σ̂φ ≥ α‖φ‖2
2 − τ‖φ‖2

1, ∀ φ ∈ R2p,

with τ := m−1
m

α
32k

for some constant m > 1.

(C2) Deviation condition: there exist deterministic functions Q(θ∗,Σε), Q
′(θ∗,Σε)

such that

∥∥∥∥ 1

n
X>(x−Xθ∗)

∥∥∥∥
∞
≤ Q(θ∗,Σε)

√
log 2p

n
,∥∥∥∥ 1

n
X>(1)

(
x−X(1)θ̃

∗
(1)

)∥∥∥∥
∞
≤ Q′(θ∗,Σε)

√
log 2p

n
.
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As a result, we can lower bound Ty 7→x under the alternative hypothesis and upper

bound it under the null hypothesis, and invoke suitable concentration results to

control these bounds. We then seek conditions under which the bounds do not

coincide, which further restricts the alternative hypothesis. The second step of the

proof establishes that (C1) and (C2) indeed hold with high probability.

Step 1. For the full model, we have:

`
(
θ̂(1), θ̂(2)

)
− `
(
θ∗(1),θ

∗
(2)

)
=

1

n
(θ̂ − θ∗)>X>X(θ̂ − θ∗)

+
2

n
(θ̂ − θ∗)>X>(x−Xθ∗). (C.2)

Using the consistency results of the LASSO (Theorem C.1), we can upper bound

Eq. (C.2) as:

∣∣∣`(θ̂(1), θ̂(2)

)
− `
(
θ∗(1),θ

∗
(2)

)∣∣∣ ≤ 1

n
(θ̂ − θ∗)>X>X(θ̂ − θ∗)

+
∥∥∥θ̂ − θ∗∥∥∥

1

∥∥∥∥ 2

n
X>(x−Xθ∗)

∥∥∥∥
∞

(C.3)

≤ 18m

m+ 1

kλ2
n

α
+ 2

12m

m+ 1

kλ2
n

α

=
42

m+ 1

kλ2
n

α/m
=: ∆F . (C.4)

Let J denote the index set of the support of θ∗(1), with its complement denoted

by J c. Note that |J | ≤ k. We use the shorthand notation θJ to denote the restriction

of a vector θ to its indices given by J . In a similar fashion to Eq. (C.4), by invoking
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the consistency of the reduced model (Theorem C.2) we have:

∣∣∣∣`(̂̃θ(1),0
)
− `
(
θ̃∗(1),0

)∣∣∣∣ ≤ 21
kλ2

n

α/m
+ 28

√
kλ3

n

α/m

√∥∥∥θ̃∗(1)Jc

∥∥∥
1

+
(

14
(√

2m+ 1
)

+ 2
)
λn

∥∥∥θ̃∗(1)Jc

∥∥∥
1

≤35
kλ2

n

α/m
+
(

14
(√

2m+ 1
)

+ 16
)
λn

∥∥∥θ̃∗(1)Jc

∥∥∥
1

=: ∆R, (C.5)

where we have used the inequality of arithmetic and geometric means to further

upper bound the middle term in the right hand side of the first line in Eq. (C.5).

Using the bounds in Eqs. (C.4) and (C.5), we get:

`
(
θ̃∗(1),0

)
−∆R

`
(
θ∗(1),θ

∗
(2)

)
+ ∆F

≤
`
(̂̃
θ(1),0

)
`
(
θ̂(1), θ̂(2)

) ≤ `
(
θ̃∗(1),0

)
+ ∆R

`
(
θ∗(1),θ

∗
(2)

)
−∆F

, (C.6)

which gives the following lower and upper bounds on Ty 7→x:

`
(
θ̃∗(1),0

)
− `
(
θ∗(1),θ

∗
(2)

)
−∆R −∆F

`
(
θ∗(1),θ

∗
(2)

)
+ ∆F

≤ Ty 7→x

≤
`
(
θ̃∗(1),0

)
− `
(
θ∗(1),θ

∗
(2)

)
+ ∆R + ∆F

`
(
θ∗(1),θ

∗
(2)

)
−∆F

(C.7)

Now, under the null hypothesis Hy 7→x,0 : θ(2) = 0, we have `
(
θ̃∗(1),0

)
= `
(
θ∗(1),θ

∗
(2)

)
and ∆R = ∆F , which implies:

Ty 7→x ≤
∆R + ∆F

`
(
θ∗(1),θ

∗
(2)

)
−∆F

≤ 2∆F

(Σε)1,1 −∆N −∆F

, (C.8)
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with probability at least 1− 2 exp

(
− n∆2

N

8(Σε)2
1,1

)
, for some constant ∆N (to be spec-

ified). This concentration result for `
(
θ∗(1),θ

∗
(2)

)
is established in Lemma C.7.

On the other hand, under a general alternative hypothesis Hy 7→x,0 : θ∗(2) 6= 0,

Lemma C.8 can be used to show that:

Ty 7→x ≥
`
(
θ̃∗(1),0

)
− `
(
θ∗(1),θ

∗
(2)

)
−∆R −∆F

`
(
θ∗(1),θ

∗
(2)

)
+ ∆F

≥ D − (∆D + ∆R + ∆F )

(Σε)1,1 + ∆N + ∆F

, (C.9)

with probability at least 1−2 exp

(
− n∆2

N

8(Σε)2
1,1

)
− 2

(2p)c11
, whenever n ≥ c11

c
log(2p),

for specific constants D, ∆D, c, and c11 defined in Lemma C.8).

From the upper and lower bounds in Eq. (C.8) and Eq. (C.9), it is possible

to choose a threshold to distinguish between the two hypothesis without ambiguity,

if:

D − (∆D + ∆R + ∆F )

(Σε)1,1 + ∆N + ∆F

>
2∆F

(Σε)1,1 −∆N −∆F

, (C.10)

which after rearrangement translates to:

D > ∆D + ∆R + ∆F

(
1 + 2

(Σε)1,1 + ∆N + ∆F

(Σε)1,1 − (∆N + ∆F )

)
. (C.11)

Next, we choose ∆N = (Σε)1,1
4

. Then, assuming ∆F ≤ (Σε)1,1
4

, the bound of Eq.

(C.11) further simplifies to D > ∆D + ∆R + 7∆F . Note that this assumption on ∆F

requires:

42

m+ 1

kλ2
n

α/m
≤ (Σε)1,1

4
. (C.12)
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and imposes an upper bound on λn, as discussed in Remark 2 in Section 3.

Using the following inequality:

∥∥∥θ̃(1)Jc

∥∥∥
1
≤
∥∥C−1

11 C12θ
∗
(2)

∥∥
1
≤
∥∥C−1

11 C12

∥∥
1

∥∥θ∗(2)

∥∥
1
,

and with the choice of λn = 4A
√

log 2p
n

, for A satisfying (See Proposition C.4 and

Proposition C.5):

A≥ max {Q(θ∗,Σε),Q
′(θ∗,Σε)} ,

we obtain:

∆D + ∆R + 7∆F ≤ a

√
log 2p

n

∥∥θ∗(2)

∥∥2

2
+ b

√
k log 2p

n

∥∥θ∗(2)

∥∥
2

+ c
k log 2p

n

where

a = c10,

b =
[
4A
((

14
(√

2m+ 1
)

+ 16
)

+
(∥∥C−1

11 C12

∥∥
1

+ 1
))]

,

c =
16A2

α/m

(
294

m+ 1
+ 35

)
,

with c10 given in Lemma C.8. Also D in Lemma C.8 can be lower bounded as

D ≥ Λ̃min

∥∥θ∗(2)

∥∥2

2
, with Λ̃min := Λmin

(
C22 −C21C

−1
11 C12

)
, which gives the following
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sufficient condition for inequality (C.11) to hold:

Λ̃min

∥∥θ∗(2)

∥∥2

2
≥ a

√
log 2p

n

∥∥θ∗(2)

∥∥2

2
+ b

√
k log 2p

n

∥∥θ∗(2)

∥∥
2

+ c
k log 2p

n
. (C.13)

By further requiring n ≥ (2c10/Λ̃min)2 log(2p), we have Λ̃min−a
√

log 2p/n ≥ Λ̃min/2.

The latter combined with Eq. (C.13), and an application of Lemma C.9 gives the

sufficient condition:
∥∥θ∗(2)

∥∥2

2
≥ Bk log 2p/n for unambiguous discrimination between

the null and the local alternative hypothesis Hn
y 7→x,0 :

∥∥θ∗(2)

∥∥2

2
≥ Bk log 2p/n, as long

as n ≥ max{C′, D′k} log(2p), with probability at least

1− 2 exp
(
− n

128

)
− 2

(2p)c11
, (C.14)

where

B=

(
4b2

Λ̃2
min

+
4c

Λ̃min

)
, C′ =

c11

c
max

{
1,

2Λmax(Σε)(‖C−1
11 C12‖2

2 + 1)

Λ̃minµmin(Ă)

}2

,

(C.15)

and D′ :=
2688m

m+ 1

A2

α(Σε)1,1

.

(C.16)

Note that the condition n ≥ D′k log(2p) ensures the upper bound (C.12) on λn.

Step 2. Proposition C.3 establishes that (C1) holds with probability at least

1− c1 exp(−c2nmin{ζ−2, 1}), (C.17)
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if n ≥ C0 max{ζ2, 1}k log 2p, for some constants C0, c1, c2, and ζ (> 0). Also, Propo-

sition C.4 and Proposition C.5 establish that condition (C2) holds with probability

at least

1− d1

(2p)d2
− d′1

(2p)d
′
2
, (C.18)

if n ≥ max{D0, D
′
0} log(2p), for some constants d1, d

′
1, d2, d′2, D0, and D′0 (> 0).

Combining the two steps, the claim of the theorem holds with probability at

least

1− 2 exp
(
− n

128

)
− 2

(2p)c11
− d1

(2p)d2
− d′1

(2p)d
′
2
− c1 exp(−c2nmin{ζ−2, 1}), (C.19)

if n ≥ max{C′′, D′′k} log(2p), where D′′ := max{D′, C0 max{ζ2, 1}} and C′′ =

max{C′, D0, D
′
0}. Finally, the probability in Eq. (C.19) can be further lower

bounded by

1− K

pd
(C.20)

where

d := min{1, c11, d2, d
′
2}

K := max

{
4 + c1

2c11
,
d1

2d2
,
d′1
2d
′
2

}
,

if n ≥ max{C, Dk} log(2p), with

C := max

{
c11

c
max

{
1,

2Λmax(Σε)(‖C−1
11 C12‖2

2 + 1)

Λ̃minµmin(Ă)

}2

,
1

c2 min{ζ−2, 1}
,
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128, D0, D
′
0

}
, (C.21)

D := max

{
2688m

m+ 1

A2

α(Σε)1,1

, C0 max{ζ2, 1}
}
. (C.22)

This concludes the proof of Theorem 5.1. 2

C.2.2 Proof of Corollary 5.1.1

First we note that under conditions (C1) and (C2) there exists some real

numbers s, t > 0 such that,

∣∣∣`(θ∗(1),θ
∗
(2)

)
− (Σε)1,1

∣∣∣ ≤ (Σε)1,1/s and ∆F ≤ (Σε)1,1t/s. (C.23)

This allows us to set a problem indenpendent threshold, since the upper bound on

Ty 7→x under the null hypothesis given in Eq. (C.8) simplifies to:

Ty 7→x ≤
2t/s

1− (1 + t)/s
. (C.24)

Now, given any threshold t> 0, we can solve for s in terms of t and t as:

s = 1 +
2 + t

t
t. (C.25)

To ensure ∆F ≤ (Σε)1,1t/s, we need the following to hold:

(m+ 1)α

42m

(Σε)1,1

16A2

n

k log(2p)
− 1

t
− 2 + t

t
≥ 0 (C.26)
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On the other hand, using the expression for s from Eq. (C.25) and invoking

Lemma C.7 yield the following statement that can be used to bound the false positive

error probability:

P

[∣∣∣`(θ∗(1),θ
∗
(2)

)
− (Σε)1,1

∣∣∣ ≥ (Σε)1,1

s

]
≤ 2 exp

(
− n

8 (1 + γt)2

)
. (C.27)

With a choice of t = t0
√

log(2p)/n for any t0 > 0, applying Lemma C.9 on Eq.

(C.26) then gives the sampling requirement, n ≥ D̃2

t20
k2 log(2p)+2D̃γk log(2p), where

D̃ =
42m

(m+ 1)α

16A2

(Σε)1,1

and γ := (2 + t)/t

and the false positive error probability given in the corollary. 2

Remark C.1. Note that in this case the lower bound on Ty 7→x under the alternative

hypothesis given by Eq. (C.9) simplifies to:

Ty 7→x ≥

(
D −∆D −

(
14
(√

2m+ 1
)

+ 16
)
λn

∥∥∥θ̃∗(1)Jc

∥∥∥
1

)
/(Σε)1,1 − 2t/s

1 + (1 + t)/s
. (C.28)

To ensure that the right hand side of Eq. (C.24) is less than the right hand side of

Eq. (C.28), we need:

D −∆D −
(
14
(√

2m+ 1
)

+ 16
)
λn

∥∥∥θ̃∗(1)Jc

∥∥∥
1

(Σε)1,1

≥ 4t/s

1− (1 + t)/s
≥ 2t. (C.29)

Assuming that ∆D and λn
∥∥θ̃∗(1)Jc

∥∥
1

are small fractions of D, this condition im-

plies that thresholding at a level t can also detect GC influences with “effect size”
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D/(Σε)1,1 as small as 2t.

C.3 Prediction error analysis of the full and reduced models

In this section, we establish that conditions (C1) and (C2) hold with high prob-

ability, under both the full and reduced models. Note that both the full and reduced

models share the same RE condition (C1), since the reduced model is nested within

the full model. However, the deviation conditions required in (C2) are different for

the two models. For the reduced model, we require:

∥∥∥∥ 1

n
X>(x−Xθ∗)

∥∥∥∥
∞
≤ Q(θ∗,Σε)

√
log 2p

n
, (C.30)

for some deterministic functionQ(θ∗,Σε). In the reduced model, however, we require

∥∥∥∥ 1

n
X>(1)

(
x−X(1)θ̃

∗
(1)

)∥∥∥∥
∞
≤ Q′(θ∗,Σε)

√
log 2p

n
(C.31)

for another deterministic function Q′(θ∗,Σε).

First, we state a result adapted from Basu et al. [209] on the prediction error

of LASSO under the full model:

Theorem C.1 (Prediction Error for the full Model). Suppose Σ̂ ∼ RE (α, τ), with τ

satisfying 32kτ/α = (m− 1)/m for some m > 1 and (X,x) satisfying the deviation

bound (C.30). Then for any λn ≥ 4Q(θ∗,Σε)
√

log(2p)/n, the solution to the full
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model in Eq. (5.6) satisfies:

‖θ̂ − θ∗‖2 ≤
3m

m+ 1

√
kλn
α

, (C.32)

‖θ̂ − θ∗‖1 ≤
12m

m+ 1

kλn
α
, (C.33)

(θ̂ − θ∗)>Σ̂(θ̂ − θ∗) ≤ 18m

m+ 1

kλ2
n

α
. (C.34)

Proof. The proof closely follows that of Basu et al. [209, Proposition 4.1], and is

thus omitted for brevity.

In what follows, we show that the particular choice of τ satisfying 32kτ/α =

(m− 1)/m for some m > 1 will simplify the prediction error analysis of the reduced

model. As for the reduced model, the main technical difficulty in establishing pre-

diction error bounds stems from the fact that θ̃∗(1) is no longer k–sparse. We will

address this issue in the following theorem:

Theorem C.2 (Prediction Error for the reduced Model). Suppose Σ̂ ∼ RE (α, τ),

with τ satisfying the relation in Theorem C.1 and (X(1),x) satisfying the deviation

bound (C.31). Let J denote the support of θ∗(1), with its complement denoted by J c.

Then, for any λn ≥ 4Q′(θ∗,Σε)
√

log 2p/n, the solution to reduced model in Eq.

(5.6) satisfies:

∥∥∥∥̂̃θ(1) − θ̃∗(1)

∥∥∥∥
2

≤ 3

2

λn
√
k

α/m
+

√
2m

k

∥∥∥θ̃∗(1)Jc

∥∥∥
1

+

√
4λn
α/m

∥∥∥θ̃∗(1)Jc

∥∥∥
1
,

∥∥∥∥̂̃θ(1) − θ̃∗(1)

∥∥∥∥
1

≤ 6
λnk

α/m
+ 4(
√

2m+ 1)
∥∥∥θ̃∗(1)Jc

∥∥∥
1

+ 8

√
λnk

α/m

√∥∥∥θ̃∗(1)Jc

∥∥∥
1
,

180



1

n

(̂̃
θ(1) − θ̃∗(1)

)>
X>(1)X(1)

(̂̃
θ(1) − θ̃∗(1)

)
≤ 9

λ2
nk

α/m
+
(

6
(√

2m+ 1
)

+ 2
)
λn

∥∥∥θ̃∗(1)Jc

∥∥∥
1

+12

√
λ3
nk

α/m

√∥∥∥θ̃∗(1)Jc

∥∥∥
1
.

Proof. Recall that θ̃∗(1) := θ∗(1) + C−1
11 C21θ

∗
(2). Let us define

F (θ(1)) :=
1

n

∥∥x−X(1)θ(1)

∥∥2

2
+ λn‖θ(1)‖1.

and consider the quantity, ∆F
(̂̃
θ(1)

)
:= F

(̂̃
θ(1)

)
−F

(
θ̃∗(1)

)
. Also, let v := θ∗(1)−

̂̃
θ(1)

and ṽ := v + C−1
11 C12θ

∗
(2). Then, ∆F

(̂̃
θ(1)

)
can be simplified as:

∆F
(̂̃
θ(1)

)
= F

(̂̃
θ(1)

)
− F

(
θ̃∗(1)

)
=

1

n
v>X>(1)X(1)v +

2

n
ε>X(1)v +

2

n
θ∗>(2)X

>
(2)X(1)v

+
2

n
θ∗>(2)X

>
(2)X(1)C

−1
11 C21θ

∗
(2) −

1

n
(C−1

11 C21θ
∗
(2))
>X>(1)X(1)C

−1
11 C21θ

∗
(2)

+
2

n
ε>X(1)C

−1
11 C21θ

∗
(2) + λn

(∥∥∥̂̃θ(1)

∥∥∥
1
−
∥∥∥θ̃∗(1)

∥∥∥
1

)
=

1

n
ṽ>X>(1)X(1)ṽ +

2

n

(
ε> + θ∗>(2)X

>
(2) − (C−1

11 C21θ
∗
(2))
>X>(1)

)
X(1)ṽ

+ λn

(∥∥∥̂̃θ(1)

∥∥∥
1
−
∥∥∥θ̃∗(1)

∥∥∥
1

)
.

Using the facts that

∥∥∥∥ 2

n

(
ε> + θ∗>(2)X

>
(2)−(C−1

11 C21θ
∗
(2))
>X>(1)

)
X(1)

∥∥∥∥
∞

=

∥∥∥∥ 2

n
X>(1)

(
x−X(1)θ̃

∗
(1)

)∥∥∥∥
∞
,
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which is also greater than λn/2, we get:

∆F
(̂̃
θ(1)

)
≥ 1

n
ṽ>X>(1)X(1)ṽ −

λn
2

(‖ṽJ‖1 + ‖ṽJc‖1)

+ λn

(
‖ṽJc‖1 − ‖ṽJ‖1 − 2

∥∥∥θ̃∗(1)Jc

∥∥∥
1

)
.

Since ṽ>X>(1)X(1)ṽ is non-negative, we get:

0 ≥ −λn
2

(‖ṽJ‖1 + ‖ṽJc‖1) + λn

(
‖ṽJc‖1 − ‖ṽJ‖1 − 2

∥∥∥θ̃∗(1)Jc

∥∥∥
1

)
= −λn

2

(
3‖ṽJ‖1 − ‖ṽJc‖1 + 4

∥∥∥θ̃∗(1)Jc

∥∥∥
1

)
. (C.35)

The rest of the treatment follows the derivation of weakly sparse or compressible

models (See, for example, the derivation of the main theorem in Negahban et al.

[215]). To this end, we split the error ṽ into components within J and components

within J c. Using the inequality (C.35), we get:

‖ṽ‖1 = ‖ṽJ‖1 + ‖ṽJc‖1 ≤ 4‖ṽJ‖1 + 4
∥∥∥θ̃∗(1)Jc

∥∥∥
1
≤4
√
k‖ṽJ‖2 + 4

∥∥∥θ̃∗(1)Jc

∥∥∥
1
, (C.36)

where the last inequality follows from the fact |J | ≤ k. Using the inequality (C.36)

together with the RE condition and τ satisfying the relation in Theorem C.1, we

can write:

1

n
ṽ>X>(1)X(1)ṽ≥α‖ṽ‖2

2 − α
m− 1

m
‖ṽ‖2

2 −
α

m

m− 1

k

∥∥∥θ̃∗(1)Jc

∥∥∥2

1

≥ α

m
‖ṽ‖2

2 −
α

m

m− 1

k

∥∥∥θ̃∗(1)Jc

∥∥∥2

1
,
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were we have used the fact
√

2(a2 + b2) ≥ (a+ b). We finally arrive at:

∆F
(̂̃
θ(1)

)
≥ α

m
‖ṽ‖2

2 −
α

m

m− 1

k

∥∥∥θ̃∗(1)Jc

∥∥∥2

1
− λn

2

(
3‖ṽJ‖1 − ‖ṽJc‖1 + 4

∥∥∥θ̃∗(1)Jc

∥∥∥
1

)
≥ α

m
‖ṽ‖2

2 −
α

m

m− 1

k

∥∥∥θ̃∗(1)Jc

∥∥∥2

1
− λn

2

(
3
√
k‖ṽ‖2 + 4

∥∥∥θ̃∗(1)Jc

∥∥∥
1

)
(C.37)

where the last step follows from the inequalities ‖ṽJ‖1 ≤
√
k‖ṽJ‖2 ≤

√
k‖ṽ‖2 and

‖ṽJc‖1 ≥ 0. An application of Lemma C.9 establishes that the right hand side of

the inequality (C.37) will be positive if:

‖ṽ‖2 ≥ 9

4

λ2
n

α2/m2
k +

λn
α/m

(
2

λn

α

m

m− 1

k

∥∥∥θ̃∗(1)Jc

∥∥∥2

1
+ 4
∥∥∥θ̃∗(1)Jc

∥∥∥
1

)
. (C.38)

From the latter inequality, the first claim of the theorem follows using the fact that

‖a‖1 ≥ ‖a‖2; the second claim follows form the first claim together with Eq. (C.36);

the last claim follows from the fact that:

1

n
ṽ>X>(1)X(1)ṽ ≤

λn
2

(
3‖ṽJ‖1 − ‖ṽJc‖1 + 4

∥∥∥θ̃∗(1)Jc

∥∥∥
1

)
, (C.39)

which concludes the proof of the theorem.

Having established Theorem C.1 and Theorem C.2, the following proposition

establishes that the RE condition (C1) holds with high probability:

Proposition C.3 (Verifying RE for Σ̂ = X>X/n)). Let

ζ := 54
Λmax(Σε)/µmin(Ă)

Λmin(Σε)/µmax(A)
, α :=

Λmin(Σε)

2µmax(A)
, τ :=

4αmax{ζ2, 1}
c

log 2p

n
.
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Then, for n ≥ C0 max{ζ2, 1}k log 2p, there exist constants c1, c2 such that

P
[
Σ̂ ∼ RE (α, τ)

]
≥ 1− c1 exp(−c2nmin{ζ−2, 1}). (C.40)

Proof. The proof closely follows that of [209, proof of Proposition 4.2], and is thus

omitted for brevity.

Remark C.2. In order for τ to satisfy 32kτ/α = (m− 1)/m for some m > 1, we

precisely need n ≥ (128/c)(m/(m− 1)) max{ζ2, 1}k log(2p).

Finally, the following two propositions establish that the deviation conditions

(C2) hold with high probability.

Proposition C.4 (Deviation Condition for the full Model). For n ≥ D0 log(2p),

there exist constants d0, d1 and d2 > 0 such that

P

[∥∥∥∥ 1

n
X>(x−Xθ∗)

∥∥∥∥
∞
≥ Q(θ∗,Σε)

√
log 2p

n

]
≤ d1

(2p)d2
, (C.41)

where

Q(θ∗,Σε) := d0Λmax(Σε)

(
1 +

1 + µmax(A)

µmin(A)

)
.

Proof. The proof follows that of [209, Proposition 4.3], and is thus omitted for

brevity.

Proposition C.5 (Deviation Condition for the reduced Model). For n ≥ D′0 log(2p),
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there exist constants d′0, d
′
1, and d′2 > 0 such that

P

[∥∥∥∥ 1

n
X>(1)

(
x−X(1)θ̃

∗
(1)

)∥∥∥∥
∞
≥ Q′(θ∗,Σε)

√
log 2p

n

]
≤ d′1

(2p)d
′
2
, (C.42)

where

Q′(θ∗,Σε) := d′0Λmax(Σε)

1 +
1 + µmax(A)

µmin(A)
+

3
∥∥∥[−C−1

11 C12θ
∗
(2);θ

∗
(2)

]∥∥∥
2

µmin(Ă)

 .

Proof. In the reduced model, the deviation can be expressed as:

1

n
X(1)

(
x−X(1)θ̃

∗
(1) −X(2)0

)
=

1

n
X>(1)

(
−X(1)C

−1
11 C12θ

∗
(2) + X(2)θ

∗
(2) + ε

)
= − 1

n
X>(1)X(1)C

−1
11 C12θ

∗
(2) +

1

n
X>(1)X(2)θ

∗
(2) +

1

n
X>(1)ε

The last term can be bounded in a similar fashion as done for the deviation in

Proposition C.4. The ith component of the first two terms can be expressed as

e>i
1
n
X>X

[
−C−1

11 C12θ
∗
(2);θ

∗
(2)

]
, for i = 1, 2, · · · , p where ei’s are the standard unit

bases in R2p. Invoking Basu et al. [209, Proposition 2.4(a)] and noting thatM(F) ≤

Λmax(Σε)
/
µmin(Ă), we get:

P

[∣∣∣∣e>i 1

n
X>X

[
−C−1

11 C12θ
∗
(2);θ

∗
(2)

]∣∣∣∣ ≥ 3
Λmax(Σε)

µmin(Ă)
η
∥∥[−C−1

11 C12θ
∗
(2);θ

∗
(2)

]∥∥
2

]
≤

6 exp[−cnmin{η, η2}].
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Using the union bound, we can then get:

P

∣∣∣∣e>i 1

n
X>X

[
−C−1

11 C12θ
∗
(2);θ

∗
(2)

]
+ e>i

1

n
X(1)ε

∣∣∣∣ ≥ Λmax(Σε)

1 +
1 + µmax(A)

µmin(A)
+

+
3
∥∥∥[−C−1

11 C12θ
∗
(2);θ

∗
(2)

]∥∥∥
2

µmin(Ă)

 η

 ≤ 12 exp[−cnmin{η, η2}].

Using the latter inequality, the statement of the proposition follows from the same

arguments used in the proof of Basu et al. [209, Proposition 4.3].

C.4 Concentration inequalities and technical lemmas

Lemma C.6. Given i.i.d. samples from a normal distribution, i.e., wt ∼ N (0, σ2),

the following holds:

P

[∣∣∣∣∣ 1n
n∑
t=1

w2
t

σ2
− 1

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−nt

2

8

)
(C.43)

Proof. define zt = wt
σ
∼ N (0, 1).

∑n
t=1 z

2
t ∼ χ2(n). z2

t is sub-exponential with

parameter (2, 4), so is the sum
∑n

t=1 z
2
t with parameter (2

√
n, 4). The claim of the

lemma then follows from standard sub-exponential tail bounds.

Lemma C.7 (Concentration of the full Model Deviation). Under the full model,

we have:

P
[∣∣∣`(θ∗(1),θ

∗
(2)

)
− (Σε)1,1

∣∣∣ ≥ ∆N

]
≤ 2 exp

(
− n∆2

N

8(Σε)2
1,1

)
.
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Proof. Note that `
(
θ∗(1),θ

∗
(2)

)
=
∑n

t=1 ε
2
t/n. Since εt ∼ N (0, (Σε)1,1), using Lemma C.6

we get:

P

[∣∣∣∣∣ 1n
n∑
t=1

ε2t
(Σε)1,1

− 1

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−nt

2

8

)
. (C.44)

By letting ∆N := t(Σε)1,1, the claim of the lemma follows.

Lemma C.8. Suppose that the deviation conditions (C2) hold. Then, there exist

constants c > 0, c10 and c11 > 0 such that

∣∣∣`(θ̃∗(1),0
)
− `
(
θ∗(1),θ

∗
(2)

)
−D

∣∣∣ ≤ ∆D, (C.45)

with probability at least 1− 2/(2p)c11, if n ≥ (c11/c)log(2p), where

∆D :=

(
Q(θ∗,Σε)(‖C−1

11 C12‖1 + 1)
∥∥∥θ∗(2)

∥∥∥
1

+ c10

∥∥∥θ∗(2)

∥∥∥2

2

)√
log 2p

n
,

and

D := θ∗(2)
>(C22 −C21C

−1
11 C12)θ∗(2).

Proof. Since θ̃∗(1) = θ∗(1) + C−1
11 C12θ

∗
(2), we have:
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where ϑ :=

[
(−C−1

11 C12θ
∗
(2))
>,θ∗>(2)

]>
. Using the deviation conditions (C2), we get:

∣∣∣∣ 1nε>Xϑ

∣∣∣∣ ≤ ∥∥∥∥ 1

n
X>ε
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∞
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≤ Q(θ∗,Σε)
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√
log 2p

n

(∥∥C−1
11 C12

∥∥
1

+ 1
) ∥∥∥θ∗(2)

∥∥∥
1
.

Furthermore, from Basu et al. [209, Proposition 2.4], for any ϑ ∈ R2p and η ≥ 0,

there exists a constant c > 0 such that:

P

[∣∣∣∣ϑ>(1

n
X>X−C

)
ϑ

∣∣∣∣ ≥ η‖ϑ‖2 Λmax(Σε)

µmin(Ă)

]
≤ 2 exp[−cnmin{η, η2}]

By further bounding ϑ, we get:

P

[∣∣∣∣ϑ>(1

n
X>X−C

)
ϑ
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11 C12‖2
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]

≤ 2 exp[−cnmin{η, η2}],

where we have used ϑ>Cϑ = θ∗>(2)(C22 −C21C
−1
11 C12)θ∗(2). Next, with the choice of

η = c10

√
log 2p

n

µmin(Ă)

Λmax(Σε)

1

‖C−1
11 C12‖2

2 + 1
,

for some constant c10, the latter concentration inequality establishes that:

∣∣∣∣ϑ>( 1

n
X>X

)
ϑ− θ∗>(2)(C22 −C21C
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11 C12)θ∗(2)

∣∣∣∣ ≤ c10

√
log 2p
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with probability at least 1− 2/(2p)c11 , where

c11 := c2
10c

(
µmin(Ă)

Λmax(Σε)

1

‖C−1
11 C12‖2

2 + 1

)2

,

if n ≥ (c11/c)log(2p). This concludes the proof of the lemma.

Finally, the following elementary lemma provides a useful technical tool for

simplifying some of the algebraic inequalities:

Lemma C.9. The quadratic function f(x) = ax2− bx− c with a, b, c > 0 is positive

for all real x satisfying x2 ≥
(
b

a

)2

+ 2
c

a
.

Proof. Noting that,

√
1 + z ≤ 1

2
z + 1 ∀ z > 0, (C.46)

the positive root of f(x), denoted by x+ can be upper bounded:

x2
+ =

 b

2a
+

√(
b

2a

)2

+
c

a

2

(C.47)

= 2

(
b

2a
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+
c

a
+ 2

b

2a

√(
b

2a

)2

+
c

a
(C.48)

≤ 2

(
b

2a

)2

+
c

a
+ 2

(
b

2a

)2
(

1

2

(
2a

b

)2
c

a
+ 1

)
(C.49)

=

(
b

a

)2

+ 2
c

a
. (C.50)

Then, x2 ≥ x2
+ implies ax2 − bx− c > 0.
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[160] M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa.
Magnetoencephalography—theory, instrumentation, and applications to non-
invasive studies of the working human brain. Rev. Mod. Phys., 65(2):413–497,
Apr 1993. doi: 10.1103/RevModPhys.65.413.

[161] D. A. Engemann and A. Gramfort. Automated model selection in covariance
estimation and spatial whitening of MEG and EEG signals. Neuroimage, pages
328–342, 2015. doi: 10.1016/j.neuroimage.2014.12.040.

202

http://dx.doi.org/10.1152/jn.00373.2016
http://dx.doi.org/10.1016/j.neuroimage.2013.10.027
http://dx.doi.org/10.1016/j.neuroimage.2013.10.027
http://dx.doi.org/10.1002/hbm.10079
http://dx.doi.org/10.1162/jocn.1993.5.2.162
http://dx.doi.org/10.1162/jocn.1993.5.2.162
http://dx.doi.org/10.1101/810267
http://dx.doi.org/10.1101/810267
http://dx.doi.org/10.1088/0031-9155/32/1/004
http://dx.doi.org/10.1088/0031-9155/32/1/004
http://dx.doi.org/10.1109/10.748978
http://dx.doi.org/10.1103/RevModPhys.65.413
http://dx.doi.org/10.1016/j.neuroimage.2014.12.040


[162] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Rev., 43(1):129–159, 2001. doi: 10.1137/S1064827596304010.

[163] H. G. Feichtinger and T. Strohmer. Gabor analysis and algorithms: Theory
and applications. Springer Science & Business Media, 2012.

[164] F.-H. Lin, T. Witzel, S. P. Ahlfors, S. M. Stufflebeam, J. W. Belliveau, and
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