293 research outputs found

    On the monotone and primal-dual active set schemes for ℓp\ell^p-type problems, p∈(0,1]p \in (0,1]

    Full text link
    Nonsmooth nonconvex optimization problems involving the ℓp\ell^p quasi-norm, p∈(0,1]p \in (0, 1], of a linear map are considered. A monotonically convergent scheme for a regularized version of the original problem is developed and necessary optimality conditions for the original problem in the form of a complementary system amenable for computation are given. Then an algorithm for solving the above mentioned necessary optimality conditions is proposed. It is based on a combination of the monotone scheme and a primal-dual active set strategy. The performance of the two algorithms is studied by means of a series of numerical tests in different cases, including optimal control problems, fracture mechanics and microscopy image reconstruction

    On inconsistency in frictional granular systems

    Get PDF
    International audienceNumerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested

    Annual Research Report 2020

    Get PDF

    Deflation for semismooth equations

    Full text link
    Variational inequalities can in general support distinct solutions. In this paper we study an algorithm for computing distinct solutions of a variational inequality, without varying the initial guess supplied to the solver. The central idea is the combination of a semismooth Newton method with a deflation operator that eliminates known solutions from consideration. Given one root of a semismooth residual, deflation constructs a new problem for which a semismooth Newton method will not converge to the known root, even from the same initial guess. This enables the discovery of other roots. We prove the effectiveness of the deflation technique under the same assumptions that guarantee locally superlinear convergence of a semismooth Newton method. We demonstrate its utility on various finite- and infinite-dimensional examples drawn from constrained optimization, game theory, economics and solid mechanics.Comment: 24 pages, 3 figure

    Annual Research Report 2021

    Get PDF
    • …
    corecore