344 research outputs found

    Pattern mining approaches used in sensor-based biometric recognition: a review

    Get PDF
    Sensing technologies place significant interest in the use of biometrics for the recognition and assessment of individuals. Pattern mining techniques have established a critical step in the progress of sensor-based biometric systems that are capable of perceiving, recognizing and computing sensor data, being a technology that searches for the high-level information about pattern recognition from low-level sensor readings in order to construct an artificial substitute for human recognition. The design of a successful sensor-based biometric recognition system needs to pay attention to the different issues involved in processing variable data being - acquisition of biometric data from a sensor, data pre-processing, feature extraction, recognition and/or classification, clustering and validation. A significant number of approaches from image processing, pattern identification and machine learning have been used to process sensor data. This paper aims to deliver a state-of-the-art summary and present strategies for utilizing the broadly utilized pattern mining methods in order to identify the challenges as well as future research directions of sensor-based biometric systems

    Identification of Age Voiceprint Using Machine Learning Algorithms

    Get PDF
    The voice is considered a biometric trait since we can extract information from the speech signal that allows us to identify the person speaking in a specific recording. Fingerprints, iris, DNA, or speech can be used in biometric systems, with speech being the most intuitive, basic, and easy to create characteristic. Speech-based services are widely used in the banking and mobile sectors, although these services do not employ voice recognition to identify consumers. As a result, the possibility of using these services under a fake name is always there. To reduce the possibility of fraudulent identification, voice-based recognition systems must be designed. In this research, Mel Frequency Cepstral Coefficients (MFCC) characteristics were retrieved from the gathered voice samples to train five different machine learning algorithms, namely, the decision tree, random forest (RF), support vector machines (SVM), closest neighbor (k-NN), and multi-layer sensor (MLP). Accuracy, precision, recall, specificity, and F1 score were used as classification performance metrics to compare these algorithms. According to the findings of the study, the MLP approach had a high classification accuracy of 91%. In addition, it seems that RF performs better than other measurements. This finding demonstrates how these categorization algorithms may assist voice-based biometric systems

    A Nonlinear Mixture Autoregressive Model For Speaker Verification

    Get PDF
    In this work, we apply a nonlinear mixture autoregressive (MixAR) model to supplant the Gaussian mixture model for speaker verification. MixAR is a statistical model that is a probabilistically weighted combination of components, each of which is an autoregressive filter in addition to a mean. The probabilistic mixing and the datadependent weights are responsible for the nonlinear nature of the model. Our experiments with synthetic as well as real speech data from standard speech corpora show that MixAR model outperforms GMM, especially under unseen noisy conditions. Moreover, MixAR did not require delta features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM using static as well as delta features. Also, MixAR suffered less from overitting issues than GMM when training data was sparse. However, MixAR performance deteriorated more quickly than that of GMM when evaluation data duration was reduced. This could pose limitations on the required minimum amount of evaluation data when using MixAR model for speaker verification

    Don't Look Back: Robustifying Place Categorization for Viewpoint- and Condition-Invariant Place Recognition

    Full text link
    When a human drives a car along a road for the first time, they later recognize where they are on the return journey typically without needing to look in their rear-view mirror or turn around to look back, despite significant viewpoint and appearance change. Such navigation capabilities are typically attributed to our semantic visual understanding of the environment [1] beyond geometry to recognizing the types of places we are passing through such as "passing a shop on the left" or "moving through a forested area". Humans are in effect using place categorization [2] to perform specific place recognition even when the viewpoint is 180 degrees reversed. Recent advances in deep neural networks have enabled high-performance semantic understanding of visual places and scenes, opening up the possibility of emulating what humans do. In this work, we develop a novel methodology for using the semantics-aware higher-order layers of deep neural networks for recognizing specific places from within a reference database. To further improve the robustness to appearance change, we develop a descriptor normalization scheme that builds on the success of normalization schemes for pure appearance-based techniques such as SeqSLAM [3]. Using two different datasets - one road-based, one pedestrian-based, we evaluate the performance of the system in performing place recognition on reverse traversals of a route with a limited field of view camera and no turn-back-and-look behaviours, and compare to existing state-of-the-art techniques and vanilla off-the-shelf features. The results demonstrate significant improvements over the existing state of the art, especially for extreme perceptual challenges that involve both great viewpoint change and environmental appearance change. We also provide experimental analyses of the contributions of the various system components.Comment: 9 pages, 11 figures, ICRA 201

    Contributions to High-Dimensional Pattern Recognition

    Full text link
    This thesis gathers some contributions to statistical pattern recognition particularly targeted at problems in which the feature vectors are high-dimensional. Three pattern recognition scenarios are addressed, namely pattern classification, regression analysis and score fusion. For each of these, an algorithm for learning a statistical model is presented. In order to address the difficulty that is encountered when the feature vectors are high-dimensional, adequate models and objective functions are defined. The strategy of learning simultaneously a dimensionality reduction function and the pattern recognition model parameters is shown to be quite effective, making it possible to learn the model without discarding any discriminative information. Another topic that is addressed in the thesis is the use of tangent vectors as a way to take better advantage of the available training data. Using this idea, two popular discriminative dimensionality reduction techniques are shown to be effectively improved. For each of the algorithms proposed throughout the thesis, several data sets are used to illustrate the properties and the performance of the approaches. The empirical results show that the proposed techniques perform considerably well, and furthermore the models learned tend to be very computationally efficient.Villegas Santamaría, M. (2011). Contributions to High-Dimensional Pattern Recognition [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10939Palanci

    Kernel-Based Methods for Hypothesis Testing: A Unified View

    Get PDF
    International audienceKernel-based methods provide a rich and elegant framework for developing nonparametric detection procedures for signal processing. Several recently proposed procedures can be simply described using basic concepts of reproducing kernel Hilbert space embeddings of probability distributions, namely mean elements and covariance operators. We propose a unified view of these tools, and draw relationships with information divergences between distributions
    corecore