172 research outputs found

    Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population

    Full text link
    We develop here several goodness-of-fit tests for testing the k-monotonicity of a discrete density, based on the empirical distribution of the observations. Our tests are non-parametric, easy to implement and are proved to be asymptotically of the desired level and consistent. We propose an estimator of the degree of k-monotonicity of the distribution based on the non-parametric goodness-of-fit tests. We apply our work to the estimation of the total number of classes in a population. A large simulation study allows to assess the performances of our procedures.Comment: 32 pages, 8 figure

    A flexible ratio regression approach for zero-truncated capture–recapture counts

    No full text
    Capture–recapture methods are used to estimate the size of a population of interest which is only partially observed. In such studies, each member of the population carries a count of the number of times it has been identified during the observational period. In real-life applications, only positive counts are recorded, and we get a truncated at zero-observed distribution. We need to use the truncated count distribution to estimate the number of unobserved units. We consider ratios of neighboring count probabilities, estimated by ratios of observed frequencies, regardless of whether we have a zero-truncated or an untruncated distribution. Rocchetti et al. (2011) have shown that, for densities in the Katz family, these ratios can be modeled by a regression approach, and Rocchetti et al. (2014) have specialized the approach to the beta-binomial distribution. Once the regression model has been estimated, the unobserved frequency of zero counts can be simply derived. The guiding principle is that it is often easier to find an appropriate regression model than a proper model for the count distribution. However, a full analysis of the connection between the regression model and the associated count distribution has been missing. In this manuscript, we fill the gap and show that the regression model approach leads, under general conditions, to a valid count distribution; we also consider a wider class of regression models, based on fractional polynomials. The proposed approach is illustrated by analyzing various empirical applications, and by means of a simulation study

    Models beyond the Dirichlet process

    Get PDF
    Bayesian nonparametric inference is a relatively young area of research and it has recently undergone a strong development. Most of its success can be explained by the considerable degree of exibility it ensures in statistical modelling, if compared to parametric alternatives, and by the emergence of new and ecient simulation techniques that make nonparametric models amenable to concrete use in a number of applied statistical problems. Since its introduction in 1973 by T.S. Ferguson, the Dirichlet process has emerged as a cornerstone in Bayesian nonparametrics. Nonetheless, in some cases of interest for statistical applications the Dirichlet process is not an adequate prior choice and alternative nonparametric models need to be devised. In this paper we provide a review of Bayesian nonparametric models that go beyond the Dirichlet process.

    Models beyond the Dirichlet process

    Get PDF
    Bayesian nonparametric inference is a relatively young area of research and it has recently undergone a strong development. Most of its success can be explained by the considerable degree of flexibility it ensures in statistical modelling, if compared to parametric alternatives, and by the emergence of new and efficient simulation techniques that make nonparametric models amenable to concrete use in a number of applied statistical problems. Since its introduction in 1973 by T.S. Ferguson, the Dirichlet process has emerged as a cornerstone in Bayesian nonparametrics. Nonetheless, in some cases of interest for statistical applications the Dirichlet process is not an adequate prior choice and alternative nonparametric models need to be devised. In this paper we provide a review of Bayesian nonparametric models that go beyond the Dirichlet process.

    Ratio plot and ratio regression with applications to social and medical sciences

    No full text
    We consider count data modeling, in particular, the zero-truncated case as it arises naturally in capture–recapture modeling as the marginal distribution of the count of identifications of the members of a target population. Whereas in wildlife ecology these distributions are often of a well-defined type, this is less the case for social and medical science applications since study types are often entirely observational. Hence, in these applications, violations of the assumptions underlying closed capture–recapture are more likely to occur than in carefully designed capture–recapture experiments. As a consequence, the marginal count distribution might be rather complex. The purpose of this note is to sketch some of the major ideas in the recent developments in ratio plotting and ratio regression designed to explore the pattern of the distribution underlying the capture process. Ratio plotting and ratio regression are based upon considering the ratios of neighboring probabilities which can be estimated by ratios of observed frequencies. Frequently, these ratios show patterns which can be easily modeled by a regression model. The fitted regression model is then used to predict the frequency of hidden zero counts. Particular attention is given to regression models corresponding to the negative binomial, multiplicative binomial and the Conway–Maxwell–Poisson distribution
    • …
    corecore