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1 Introduction

Bayesian nonparametric inference is a relatively young area of research and it has recently under-

gone a strong development. Most of its success can be explained by the considerable degree of flexibility

it ensures in statistical modelling, if compared to parametric alternatives, and by the emergence of

new and efficient simulation techniques that make nonparametric models amenable to concrete use in

a number of applied statistical problems. This fast growth is witnessed by some review articles and

monographs providing interesting and accurate accounts on the state of the art in Bayesian nonpara-

metrics. Among them we mention the discussion paper by Walker, Damien, Laud and Smith (1999),

the book by Ghosh and Ramamoorthi (2003), the lecture notes by Regazzini (2001) and the review

articles by Hjort (2003) and Müller and Quintana (2004). Here we wish to provide an update to all

these excellent works. In particular, we focus on classes of nonparametric priors that go beyond the

Dirichlet process.

The Dirichlet process has been a cornerstone in Bayesian nonparametrics since the seminal paper

by T.S. Ferguson has appeared on the Annals of Statistics in 1973. Its success can be partly explained

by its mathematical tractability and it has tremendously grown with the development of Markov chain

Monte Carlo (MCMC) techniques whose implementation allows a full Bayesian analysis of complex

statistical models based on the Dirichlet process prior. To date the most effective applications of the

Dirichlet process concern its use as a nonparametric distribution for latent variables within hierarchical

mixture models employed for density estimation and for making inference on the clustering structure

of the observations.

Nonetheless, in some cases of interest for statistical applications the Dirichlet process is not an

adequate prior choice and alternative nonparametric models need to be devised. An example is

represented by survival analysis: if a Dirichlet prior is used for the survival time distribution, then

the posterior, conditional on a sample containing censored observations, is not Dirichlet. It is, then,

of interest to find an appropriate class of random distributions which contain, as a special case, the

posterior distribution of the Dirichlet process given censored observations. Moreover, in survival

problems one might be interested in modelling hazard rate functions or cumulative hazards and the

Dirichlet process cannot be used in these situations. On the other hand, in problems of clustering or
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species sampling, the predictive structure induced by the Dirichlet process is sometimes not flexible

enough to capture important aspects featured by the data. Finally, in regression analysis one would

like to elicit a prior which depends on a set of covariates, or on time, and the Dirichlet process is not

able to accommodate for this modelling issue. Anyhow, besides these applied motivations, it is useful

to view the Dirichlet process as a special case of a larger class of prior processes: this allows to gain

a deeper understanding of the behaviour of the Dirichlet process itself.

Most of the priors we are going to present are based on suitable transformations of completely ran-

dom measures: these have been introduced and studied by J.F.C. Kingman and are random measures

giving rise to mutually independent random variables when evaluated on pairwise disjoint measurable

sets. The Dirichlet process itself can be seen as the normalization of a so–called gamma completely

random measure. Here it is important to emphasize that this approach sets up a unifying framework

that we think is useful both for the understanding of the behaviour of commonly exploited priors and

for the development of new models. Indeed, even if completely random measures are quite sophisti-

cated probabilistic tools, their use in Bayesian nonparametric inference leads to intuitive a posteriori

structures. We shall note this when dealing with: neutral to the right priors, priors for cumulative

hazards, priors for hazard rate functions, normalized random measures with independent increments,

hierarchical mixture models with discrete random mixing distribution. Recent advances in this area

have strongly benefited from the contributions of J. Pitman who has developed some probabilistic

concepts and models which fit very well within the Bayesian nonparametric framework.

The final part of the present Section is devoted to a concise summary of some preliminary notions

and concepts that will be used throughout this chapter.

1.1. Exchangeability assumption. Let us start by considering an (ideally) infinite sequence

of observations X(∞) = (Xn)n≥1, defined on some probability space (Ω,F ,P) with each Xi taking

values in a complete and separable metric space X endowed with the Borel σ–algebra X . Throughout

the present chapter, as well as in the most commonly employed Bayesian models, X(∞) is assumed

to be exchangeable. In other terms, for any n ≥ 1 and any permutation π of the indices 1, . . . , n,

the probability distribution (p.d.) of the random vector (X1, . . . , Xn) coincides with the p.d. of

(Xπ(1), . . . , Xπ(n)). A celebrated result of de Finetti, known as de Finetti’s representation theorem,

states that the sequence X(∞) is exchangeable if and only if it is a mixture of sequences of independent

and identically distributed (i.i.d.) random variables.

Theorem 1. (de Finetti, 1937). The sequence X(∞) is exchangeable if and only if there exists a

probability measure Q on the space PX of all probability measures on X such that, for any n ≥ 1 and

A = A1 × · · · ×An × X
∞, one has

P

[

X(∞) ∈ A
]

=

∫

PX

n
∏

i=1

p(Ai)Q(dp)

where Ai ∈ X for any i = 1, . . . , n and X
∞ = X× X× · · · .

In the statement of the theorem, the space PX is equipped with the topology of weak convergence

which makes it a complete and separable metric space. The probability Q is also termed the de Finetti

measure of the sequence X(∞). We will not linger on technical details on exchangeability and its

connections with other dependence properties for sequences of observations. The interested reader

can refer to the exhaustive and stimulating treatments of Aldous (1985) and Kallenberg (2005).
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The exchangeability assumption is usually formulated in terms of conditional independence and

identity in distribution, i.e.

Xi | p̃
iid
∼ p̃ i ≥ 1(1)

p̃ ∼ Q

Hence, p̃n =
∏n
i=1 p̃ represents the conditional p.d. of (X1, . . . , Xn), given p̃. Here p̃ is some random

probability measure defined on (Ω,F ,P) and taking values in PX: its distribution Q takes on the

interpretation of prior distribution for Bayesian inference. Whenever Q degenerates on a finite di-

mensional subspace of PX, the inferential problem is usually called parametric. On the other hand,

when the support of Q is infinite–dimensional then one typically speaks of a nonparametric inferential

problem.

In the following sections we focus our attention on various families of priors Q: some of them

are well–known and occur in many applications of Bayesian nonparametric statistics whereas some

others have recently appeared in the literature and witness the great vitality of this area of research.

We will describe specific classes of priors which are tailored for different applied statistical problems:

each of them generalizes the Dirichlet process in a different direction, thus obtaining more modelling

flexibility with respect to some specific feature of the prior process. This last point can be appreciated

when considering the predictive structure implied by the Dirichlet process, which actually overlooks

some important features of the data. Indeed, it is well–known that, in a model of the type (1), the

family of predictive distributions induced by a Dirichlet process, with baseline measure α, are

P [Xn+1 ∈ A |X1, . . . , Xn] =
α(X)

α(X) + n
P0(A) +

n

α(X) + n

1

n

k
∑

j=1

njδX∗
j
(A) ∀A ∈ X

where δx denotes a point mass at x ∈ X, P0 = α/α(X) and the X∗j ’s with frequency nj denote the

k ≤ n distinct observations within the sample. The previous expression implies that Xn+1 will be

a new observation X∗k+1 with probability α(X)/[α(X) + n], whereas it will coincide with any of the

previous observations with probability n/[α(X)+n]. Since these probability masses depend neither on

the number of clusters into which the data are grouped nor on their frequencies, an important piece

of information for prediction is neglected. It is quite complicated to obtain a tractable generalization

of the Dirichlet process incorporating dependence on both the number of clusters and the frequencies:

however, dependence on the number of clusters is achievable and the two parameter Poisson–Dirichlet

process, with σ ∈ (0, 1) and θ > −σ, represents a remarkable example. Details will be provided later,

but here we anticipate that the predictive distribution implies that Xn+1 will be a new value X∗k+1

with probability [θ + σk]/[θ + n], whereas Xn+1 will coincide with a previously recorded observation

with probability [n − σk]/[θ + n]. Hence, the probability of obtaining new values is monotonically

increasing in k and the value of σ can be used to tune the strength of the dependence on k.

The analysis of general classes of priors implies that, in most of the cases and in contrast to what

happens for the Dirichlet process, one has to work with non–conjugate models. This should not be a big

concern, since conjugacy corresponds to mere mathematical convenience: from a conceptual point of

view, there is no justification for requiring conjugacy. On the contrary, one may argue that conjugacy

constrains the posterior to having the same structure as the prior which, in a nonparametric setup,

may represent a limitation to the desired flexibility. So it is definitely worth exploring the potential of
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random probability measures which do not have this feature and it will be seen that, even if conjugacy

fails, one can find many alternatives to the Dirichlet process which preserve mathematical tractability.

Since most of these general classes of priors are obtained as suitable transformations of completely

random measures, in the next subsection we provide a concise digression on this topic.

1.2. A concise account on completely random measures. We start with the definition of

completely random measure, a concept introduced in Kingman (1967). Denote, first, by MX the

space of boundedly finite measures on (X,X ), this meaning that for any µ inMX and any bounded

set A in X one has µ(A) <∞. Moreover, we let MX stand for the corresponding Borel σ–algebra on

MX. For technical details onMX and the construction of MX, one can refer to Daley and Vere–Jones

(1988).

Definition 1. Let µ̃ be a measurable mapping from (Ω,F ,P) into (MX,MX) and such that for any

A1, . . . , An in X , with Ai∩Aj = ∅ for any i 6= j, the random variables µ̃(A1), . . . , µ̃(An) are mutually

independent. Then µ̃ is termed completely random measure (CRM).

An important property of CRMs is their almost sure discreteness (Kingman, 1993), which means

that their realizations are discrete measures with probability 1. This fact essentially entails discreteness

of random probability measures obtained as transformations of CRMs such as those presented in

Sections 2 and 3. See, e.g., James (2003). Discreteness of the Dirichlet process was first shown in

Blackwell (1973).

A CRM on X can always be represented as the sum of two components: a completely random

measure µ̃c =
∑∞
i=1 JiδXi

, where both the positive jumps Ji’s and the X–valued locations Xi’s are

random, and a measure with random masses at fixed locations. Accordingly

(2) µ̃ = µ̃c +
M
∑

i=1

Vi δxi

where the fixed jump points x1, . . . , xM , with M ∈ {1, 2, . . . ,+∞}, are in X, the (non–negative)

random jumps V1, . . . , VM are mutually independent and they are independent from µ̃c. Finally, µ̃c

is characterized by the Lévy–Khintchine representation which states that

(3) E

[

e−
∫
X
f(x) µ̃c(dx)

]

= exp

{

−

∫

R+×X

[

1− e−sf(x)
]

ν(ds, dx)

}

where f : X→ R is a measurable function such that
∫

|f | dµ̃c <∞ (almost surely) and ν is a measure

on R
+ × X such that

∫

B

∫

R+

min{s, 1} ν(ds, dx) <∞

for any B in X . The measure ν characterizing µ̃c is referred to as the Lévy intensity of µ̃c: it contains

all the information about the distributions of the jumps and locations of µ̃c. Such a measure will play

an important role throughout and many of the results to be presented are stated in terms of ν. For

our purposes it will often be useful to separate the jump and location part of ν by writing it as

(4) ν(ds, dx) = ρx(ds)α(dx)

where α is a measure on (X,X ) and ρ a transition kernel on X × B(R+), i.e. x 7→ ρx(A) is X –

measurable for any A in B(R+) and ρx is a measure on (R
+,B(R+)) for any x in X. If ρx = ρ for
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any x, then the distribution of the jumps of µ̃c is independent of their location and both ν and µ̃c are

termed homogeneous. Otherwise, ν and µ̃c are termed non–homogeneous.

Example 1. (The gamma process). A homogeneous CRM γ̃ whose Lévy intensity is given by

(5) ν(ds, dx) =
e−s

s
ds α(dx)

is a gamma process with parameter measure α on X. It is characterized by its Laplace functional

which is given by E

[

e−
∫
f dγ̃

]

= e−
∫
log(1+f) dα for any measurable function f : X → R such that

∫

log(1 + |f |) dα <∞. Now set f = λ1B with λ > 0, B ∈ X such that α(B) <∞ and 1B denoting

the indicator function of set B. In this case one obtains

E

[

e−λ γ̃(B)
]

= [1 + λ]−α(B),

from which it is apparent that γ̃(B) has a gamma distribution with scale and shape parameter equal

to 1 and α(B), respectively. �

Example 2. (The σ–stable process). Let σ ∈ (0, 1) and consider a CRM µ̃σ with Lévy intensity

defined by

(6) ν(ds, dx) =
σ

Γ(1− σ) s1+σ
ds α(dx)

Then µ̃σ is a σ–stable process with parameter measure α on X. Moreover, for any measurable func-

tion f : X → R such that
∫

|f |σ dα < ∞, the Laplace functional is of the form E

[

e−
∫
f dµ̃σ

]

=

e−
∫
fσ dα. Hence, the Laplace transform of µ̃σ(B) is that of a positive stable random variable, namely

E
[

e−λµ̃σ(B)
]

= e−λ
σ α(B). �

As one may note from (3), CRMs are also closely connected to Poisson processes. Indeed, µ̃c can be

represented as a linear functional of a Poisson process Π̃ on R
+ × X with mean measure ν. To state

this precisely, Π̃ is a random subset of R+ × X and if N(A) = card(Π̃ ∩A) for any A ⊂ B(R+)⊗X

such that ν(A) <∞, then

P[N(A) = k] =
(ν(A))k e−ν(A)

k!
k = 0, 1, 2, . . . .

It can then be shown that

(7) µ̃c(A) =

∫

A

∫

R+

sN(ds, dx) ∀A ∈ X .

A detailed treatment of this subject can be found in the superb book by Kingman (1993).

If µ̃ is defined on X = R, one can also consider the càdlàg random distribution function induced by

µ̃, namely {µ̃((−∞, x]) : x ∈ R}. Such a random function defines an increasing additive process, that

is a process whose increments are non–negative, independent and possibly not stationary. See Sato

(1999) for an exhaustive account. To indicate such processes we will also use the term independent

increments processes, whereas in the Bayesian literature they are more frequently referred to as Lévy

processes: this terminology is not completely appropriate since, in probability theory, the notion of

Lévy process is associated to processes with independent and stationary increments. We rely on CRMs

in most of our exposition since they represent an elegant, yet simple, tool for defining nonparametric

priors. Moreover, one can easily realize that posterior inferences are achieved by virtue of the simple
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structure featured by CRMs conditional on the data. Indeed, in most of the examples we will illustrate,

a posteriori a CRM turns out to be the sum of two independent components: (i) a CRM with no

fixed points of discontinuity and whose Lévy intensity is obtained by applying an updating rule to

the prior Lévy intensity; (ii) a sum of random jumps. These jumps occur at: a) the a priori fixed

points of discontinuities with updated jump distribution; b) the new fixed points of discontinuity

corresponding to the observations with jump distribution determined by the Lévy intensity of the

CRM. Given this common structure, the specific updating of the involved quantities depends on the

specific transformation of the CRM that has been adopted for defining the prior.

Finally, note that, without loss of generality, one can a priori consider CRMs with no fixed points

of discontinuity which implies µ̃ = µ̃c. In the sequel we adopt this assumption when specifying some

of the nonparametric priors we deal with and it will be pointed out how fixed points of discontinuity

arise when evaluating the posterior distribution, given a sample X1, . . . , Xn.

2 Models for survival analysis

Survival analysis has been the focus of many contributions to Bayesian nonparametric theory

and practice. Indeed, many statistical problems arising in the framework of survival analysis require

function estimation and, hence, they are ideally suited for a nonparametric treatment. Moreover,

this represents an area where the interest in generalizations of the Dirichlet process has emerged with

particular emphasis. The main reason for this is due to the particular nature of survival data which

are governed by some censoring mechanism. The breakthrough in the treatment of these issues in a

Bayesian nonparametric setup can be traced back to Doksum (1974) where the notion of neutral to the

right (NTR) random probability is introduced. The law of such a NTR process can be used as a prior

for the distribution function of survival times and the main advantage of Doksum’s definition is that

NTR priors are conjugate (in a sense to be made precise later), even when right–censored observations

are present. While this enables one to model a random distribution function for the survival times, a

different approach yields priors for cumulative hazards and hazard rates. This has been pursued in a

number of papers such as Dykstra and Laud (1981), Lo and Weng (1989), Hjort (1990), Kim (1999),

Nieto–Barajas and Walker (2004) and James (2005). All the proposals we are going to examine arise

as suitable transformations of CRMs.

2.1. Neutral to the right priors. A simple and useful approach for defining a prior on the

space of distribution functions on R
+ has been devised by Doksum (1974) who introduces the notion

of neutral to the right prior.

Definition 2. A random distribution function F̃ on R
+ is neutral to the right (NTR) if, for any

0 ≤ t1 < t2 < · · · < tk <∞ and any k ≥ 1, the random variables

F̃ (t1),
F̃ (t2)− F̃ (t1)

1− F̃ (t1)
, . . . ,

F̃ (tk)− F̃ (tk−1)

1− F̃ (tk−1)

are independent.

The concept of neutrality has been introduced in Connor and Mosimann (1969) and it designates

a random vector (p̃1, . . . , p̃k+1) of proportions with
∑k+1
i=1 p̃i = 1 such that p̃1 is independent from

p̃2/(1− p̃1), (p̃1, p̃2) is independent from p̃3/(1− p̃1− p̃2) and so on. This can be seen as a method for
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randomly splitting the unit interval and, as will be shown in Section 3.4, it is also exploited in order

to define the so–called stick–breaking priors. In the definition above, one has p̃i = F̃ (ti)− F̃ (ti−1) for

any i = 1, . . . , k, where F̃ (t0) = 0.

We recall the connection between NTR priors and CRMs on R
+ which has been pointed out by

Doksum (1974).

Theorem 2. (Doksum, 1974). A random distribution function F̃ = {F̃ (t) : t ≥ 0} is NTR if and only

if it has the same p.d. of the process
{

1− e−µ̃((0,t]) : t ≥ 0
}

, for some CRM µ̃ on X = R
+ such that

P[limt→∞ µ̃((0, t]) =∞] = 1.

This connection with CRMs allows to characterize the prior and describe the posterior distribution of

F̃ in terms of the Lévy intensity ν associated to µ̃. Moreover, the previous characterization allows to

evaluate the prior guess at the shape of F̃ since

E[F̃ (t)] = 1− E

[

e−µ̃((0,t])
]

= 1− e−
∫
(0,t]

∫
R+ [1−e−s] ρx(ds)α(dx).

Another feature which makes NTR priors attractive for applications is their conjugacy property.

Theorem 3. (Doksum, 1974). If F̃ is NTR(µ̃), then the posterior distribution of F̃ , given the data

X1, . . . , Xn, is NTR(µ̃∗) where µ̃∗ is a CRM with fixed points of discontinuity.

In light of the previous result it is worth remarking that, in a Bayesian nonparametric setup, the term

“conjugacy” is used with slightly different meanings. For this reason, we introduce here a distinction

between parametric conjugacy and structural conjugacy. The former occurs when the posterior process

coincides with the prior process with updated parameters: for instance, the posterior distribution of

the Dirichlet process with parameter–measure α, given uncensored data, is still a Dirichlet process

with updated parameter–measure α+
∑n
i=1 δXi

. The latter, namely structural conjugacy, identifies a

model where the posterior process has the same structure of the prior process in the sense that they

both belong to the same general class of random probability measures. Hence, Theorem 3 establishes

that NTR priors are structurally conjugate: the posterior of a NTR(µ̃) process is still NTR. Note

that structural conjugacy does not necessarily imply parametric conjugacy: the posterior CRM µ̃∗

characterizing the NTR process is not necessarily of the same type as the prior. On the other hand,

parametric conjugacy of a specific prior implies structural conjugacy.

An explicit description of the posterior CRM µ̃∗ has been provided in Ferguson (1974). Denote by

Λ̄(x) :=
∑n
i=1 δXi

([x,∞)) the number of individuals still alive at x, i.e. the so–called at risk process.

Moreover, X∗1 , . . . , X
∗
k represent the k distinct observations among X1, . . . , Xn, with 1 ≤ k ≤ n. As

mentioned before, we suppose, for notational simplicity, that µ̃ does not have a priori fixed points of

discontinuity.

Theorem 4. (Ferguson, 1974) If F̃ is NTR(µ̃) and µ̃ has Lévy intensity (4), then

(8) µ̃∗
d
= µ̃∗c +

k
∑

i=1

Ji δX∗
i

where µ̃∗c is independent from J1, . . . , Jk and the Ji’s are mutually independent. Moreover, the Lévy

intensity of the CRM µ̃∗c is updated as

ν∗(ds, dx) = e−Λ̄(x) s ρx(ds)α(dx)
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One can also determine an expression for the p.d. of the jumps Ji at the distinct observations. To

this end, consider the distinct observations in an increasing order X∗(1) < · · · < X∗(k). Moreover,

let ni =
∑n
j=1 δXj

({X∗(i)}) be the frequency of the i–th ordered observation in the sample: in terms

of the at risk process one has ni = Λ̄(X∗(i)) − Λ̄(X∗(i+1)) for any i = 1, . . . , k with the proviso that

X∗(k+1) =∞. The p.d. of Ji is given by

Gi(ds) =
(1− e−s)ni e−s n̄i+1 ρ

X∗
(i)
(ds)

∫

R+(1− e−v)ni e− v n̄i+1 ρ
X∗

(i)
(dv)

where, for the sake of simplicity, we have set n̄i := Λ̄(X∗(i)) =
∑k
j=i nj . If ν is homogeneous, then

ρ
X∗

(i)
= ρ and the distribution of Ji does not depend on the location where the jump occurs.

The above posterior characterization does not take into account the possibility that the data are

subject to a censoring mechanism according to which not all observations are exact. In particular,

in survival analysis, in reliability and in other models for the time elapsing up to a terminal event,

a typical situation is represented by right–censoring. For example, when studying the survival of a

patient subject to a treatment in a hospital, the observation is right–censored if her/his survival time

cannot be recorded after she/he leaves the hospital. Formally, right–censoring can be described as

follows. Suppose c1, . . . , cn are n censoring times which can be either random or nonrandom. For ease

of exposition and with no loss of generality we assume that the ci’s are deterministic. To each survival

time Xi associate ∆i = 1(0,ci](Xi) and set Ti = min{Xi, ci}. Clearly ∆i = 1 if Xi is observed exactly,

and ∆i = 0 if Xi is right–censored and the observed data are then given by (T1,∆1), . . . , (Tn,∆n).

Supposing there are k ≤ n distinct observations among {T1, . . . , Tn}, we record them in an increasing

order as T ∗(1) < · · · < T ∗(k). Correspondingly, define

(9) nci :=
∑

{j: ∆j=0}

δTj
({T ∗(i)}) and ni :=

∑

{j: ∆j=1}

δTj
({T ∗(i)})

as the number of right–censored and exact observations, respectively, occurring at T ∗(i) for any i =

1, . . . , k. Finally, set ñci =
∑k
j=i n

c
j and n̄i =

∑k
j=i nj .

Theorem 5. (Ferguson and Phadia, 1979). Suppose F̃ is NTR(µ̃) where µ̃ has no fixed jump points.

Then the posterior distribution of F̃ , given (T1,∆1), . . . , (Tn,∆n), is NTR(µ̃∗) with

(10) µ̃∗
d
= µ̃∗c +

∑

{i: ni≥1}

Ji δT∗
(i)

Hence, the posterior distribution of F̃ maintains the same structure of the uncensored case and the

jumps occur only at the exact observations, i.e. those distinct observations for which ni is positive.

In (10) µ̃∗c is a CRM without fixed points of discontinuity and it is independent from the jumps Ji.

Its Lévy measure coincides with

ν∗(ds, dx) = e−Λ̄(x)s ρx(ds)α(dx)

where, henceforth, Λ̄(x) =
∑n
i=1 δTi

([x,∞)) is the at risk process based on both exact and censored

observations.
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Moreover, the p.d. of the jump Ji occurring at each exact distinct observation, i.e. T
∗
(i) with ni ≥ 1,

is given by

Gi(ds) =
(1− e−s)ni e−(n̄i+1+ñ

c
i )s ρ

T∗
(i)
(ds)

∫

R+(1− e−v)ni e−(n̄i+1+ñc
i
)v ρ

T∗
(i)
(dv)

.

Also in this case, if ρ
T∗
(i)
= ρ the distribution of Ji does not depend on the location at which the jump

occurs. We close this subsection with a detailed description of two important examples of NTR priors.

Example 3. (The Dirichlet process). One might wonder whether the Dirichlet process defined by

Ferguson (1973) is also a NTR prior. This amounts to asking oneself whether there exists a CRM

µ̃ such that the random distribution function F̃ defined by F̃ (t)
d
= 1 − e−µ̃((0,t]) for any t > 0 is

generated by a Dirichlet process prior with parameter measure α on R
+. The answer to such a

question is affirmative. Indeed, if µ̃ is a CRM whose Lévy intensity is defined by

ν(ds, dx) =
e−s α((x,∞))

1− e−s
α(dx) ds

then F̃
d
= 1 − e−µ̃ is a Dirichlet process with parameter measure α. See Ferguson (1974). One can,

then, apply results from Ferguson and Phadia (1979) in order to characterize the posterior distribution

of a Dirichlet random distribution function given right–censored data. It is to be mentioned that such

an analysis has been originally developed by Susarla and Van Ryzin (1976) without resorting to

the notion of NTR prior. They show that the Dirichlet process features the property of parametric

conjugacy if the observations are all exact, whereas it does not in the presence of right–censored

data. Indeed, Blum and Susarla (1977) characterize the posterior distribution of a Dirichlet process

given right–censored data as a mixture of Dirichlet processes in the sense of Antoniak (1974). In

the present setting, a simple application of Theorem 5 allows to recover the results in Susarla and

Van Ryzin (1976). Moreover, Theorem 5 implies that the Dirichlet process, in the presence of right–

censored observations, is structurally conjugate when seen as a member of the class of NTR priors.

The posterior distribution of the Dirichlet random distribution function F̃ is NTR(µ̃∗) with µ̃∗ as in

(10). The Lévy intensity of µ̃∗c coincides with

ν∗(ds, dx) =
e−{α((x,∞))+Λ̄(x)} s

1− e−s
α(dx) ds

and the distribution of the jump Ji at each exact distinct observation (i.e. T
∗
(i) with ni ≥ 1) coincides

with the distribution of the random variable − log(Bi) where Bi ∼ Beta(α((T ∗(i),∞))+ n̄i+1+ ñ
c
i ; ni).

It can be easily seen that if the observations are all exact, then F̃ given the data is a Dirichlet process

with parameter measure α+
∑n
i=1 δXi

which coincides with the well–known result proved by Ferguson

(1973). �

Example 4. (The beta–Stacy process). Having pointed out the lack of parametric conjugacy of

the Dirichlet process in a typical inferential problem for survival analysis, one might wonder whether,

conditionally on a sample featuring right–censored data, there exists a NTR process prior which

shares both structural and parametric conjugacy. The problem has been successfully faced in Walker

and Muliere (1997), where the authors define the beta–Stacy NTR prior. Its description can be

provided in terms of the Lévy intensity of µ̃ where, as usual, we are supposing that a priori µ̃ does

not have fixed jump points. To this end, suppose that α is some probability measure on R
+ which
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is absolutely continuous with respect to the Lebesgue measure and c : R+ → R
+ some piecewise

continuous function. Use the notation Fα to denote the distribution function corresponding to α, i.e.

Fα(x) = α((0, x]) for any x. A beta–Stacy process F̃ with parameters α and c is NTR(µ̃) if µ̃ is a

CRM whose Lévy intensity is defined by

(11) ν(ds, dx) =
e−s c(x)α((x,∞))

1− e−s
c(x) ds α(dx).

Note that one obtains E[F̃ ] = Fα and that the Dirichlet process arises when c(x) ≡ c. It is to be said,

however, that the definition originally provided in Walker and Muliere (1997) is more general and it

allows possible choices of parameter measures α having point masses. Here, for ease of exposition we

confine ourselves to this simplified case.

Theorem 6. (Walker and Muliere, 1997). Let F̃ be a beta–Stacy process with parameters α and c

satisfying the conditions given above. Then F̃ , given (T1,∆1), . . . , (Tn,∆n), is still a beta–Stacy

process with updated parameters

α∗((0, t]) = 1−
∏

x∈[0,t]

{

1−
c(x) dFα(x) + dΦ(x)

c(x)α([x,∞)) + Λ̃(x)

}

c∗(x) =
c(x)α([x,∞)) + Λ̄(x)−

∑n
i=1 δTi

({x})δ∆i
({1})

α∗([x,∞))

where Φ(x) =
∑n
i=1 δTi

((0, x]) δ∆i
({1}) is the counting process for the uncensored observations qui ho

tolto il recall sulla definizione dell’at risk process.

In the previous statement
∏

x∈[0,t] denotes the product integral, a quite standard operator in the

survival analysis literature. If lm = maxi=1,...,m |xi − xi−1|, the following definition holds true

∏

x∈[a,b]

{1 + dY (x)} := lim
lm→0

∏

j

{1 + Y (xj)− Y (xj−1)}

where the limit is taken over all partitions of [a, b] into intervals determined by the points a = x0 <

x1 < · · · < xm = b and these partitions get finer and finer as m→∞. See Gill and Johanssen (1990)

for a survey of applications of product integrals to survival analysis. Finally, the Bayes estimator of

F̃ , under squared loss, coincides with the distribution function Fα∗ associated to α
∗. Interestingly, if

the function c goes to 0 (pointwise) then Fα∗ converges to the Kaplan–Meier estimator. �

Remark 1. An appealing feature of NTR processes is that they allow for quite a rich prior specification

in terms of the parameters of the Lévy intensity: in addition to the prior guess at the shape E[F̃ ], it is

often also possible to assign a functional form to Var[F̃ ], whereas in the Dirichlet case, after selecting

E[F̃ ], one is left with a single constant parameter to fix. A few details on this can be found in Walker

and Muliere (1997) and Walker and Damien (1998). �

Remark 2. The posterior characterizations in Theorems 4 and 5 may not seem particularly appealing

at first glance: however, they reveal explicitly the posterior structure and constitute the fundamental

element for devising a sampling strategy for achieving posterior inferences. Indeed, relying on some

algorithm for simulating the trajectories of independent increment processes {µ̃((0, x]) : x ≥ 0},

thanks to Theorems 4 and 5 a full Bayesian analysis can be carried out: this allows to derive Bayes

estimates such as E

[

F̃ (t) | data
]

or any other posterior quantity of statistical interest. See e.g. ,
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Ferguson and Klass (1972), Damien, Laud and Smith (1995), Walker and Damien (1998, 2000) and

Wolpert and Ickstadt (1998). �

2.2. Priors for cumulative hazards: the beta process. An alternative approach to inference

for survival analysis, due to Hjort (1990), consists in assessing a prior for the cumulative hazard defined

as

(12) H̃x = H̃x(F̃ ) =

∫ x

0

dF̃ (v)

1− F̃ (v−)

where F (v−) = limz↓0 F (v−z) and the integrand is the hazard rate, i.e. the conditional probability of

observing a death/failure/event at time v given that the individual is still alive (or the system is still

functioning or the event has not yet occurred) at v. From (12) one has the following product integral

representation of F̃ in terms of the cumulative hazard H̃x

(13) F̃ (t) = 1−
∏

x∈[0,t]

{

1− dH̃x

}

.

Hence assessing a prior for the distribution function F̃ is the same as specifying a prior for H̃ = {H̃x :

x ≥ 0} or for the hazard rate. The relation (13) between F̃ and H̃ suggests that the prior for H̃

should be such that

(14) 0 ≤ Hx −Hx− ≤ 1 ∀x

almost surely.

The main idea is, then, to model H̃ as a CRM µ̃ by setting x 7→ H̃x := µ̃((0, x]). However, due to

(14), such a CRM must have all jumps of size less than 1. As shown in Hjort (1990), this happens if

and only if the jump part of the Lévy intensity ν is concentrated on [0, 1], i.e.

(15) ρx((1,∞)) = 0 ∀x > 0.

Within this context, Hjort’s beta process prior stands, in terms of relevance, as the analogue of the

Dirichlet process for modelling probability distributions. Let, again, c : R+ → R
+ be a piecewise

continuous function and H0 be the baseline cumulative hazard which, for simplicity, we assume to

be absolutely continuous. Consider now the beta CRM µ̃ on R
+ which is characterized by the Lévy

intensity

ν(ds, dx) = c(x) s−1 (1− s)c(x)−1 ds dH0,x

for any x ≥ 0 and 0 < s < 1. Then, the beta process is defined as H̃ = {µ̃((0, x]) : x ≥ 0}. In

symbols, we write H̃ ∼ Beta(c,H0). Note that E[H̃x] = H0,x. The relation between modelling the

cumulative hazard with a CRM and specifying a NTR prior for the distribution function is clarified

by the following

Theorem 7. (Hjort, 1990). A random distribution function F̃ is NTR(µ̃) for some CRM µ̃ if and only

if the corresponding cumulative hazard H̃(F̃ ) = {H̃x(F̃ ) : x ≥ 0} is an independent increments process

with Lévy intensity satisfying condition (15).

For an interesting illustration of further connections between priors for cumulative hazards and NTR

processes see Dey, Erickson and Ramamoorthi (2003).
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In analogy with NTR processes, a posterior characterization in terms of an updated CRM with

fixed points of discontinuity corresponding to the exact observations can be given for general CRM

cumulative hazards. See Hjort (1990). For brevity, here we focus on the beta process. Indeed, an

important aspect of the beta process, which makes it appealing for applications to survival analysis, is

its parametric conjugacy with respect to right–censoring. Recall that Φ(x) =
∑n
i=1 δTi

((0, x])δ∆i
({1})

is the number of uncensored observations occurring up to time x and Λ̄(x) =
∑n
i=1 δTi

([x,∞)) is the

at risk process. Non siamo ripetitivi nel ribadire cos’è l’at risk process? Io toglierei questo rifeirmento

qui. Indeed, one has

Theorem 8. (Hjort, 1990). Let (T1,∆1), . . . , (Tn,∆n) be a sample of survival times. If H̃ ∼ Beta(c,H0)

then

(16) H̃ | data ∼ Beta

(

c+ Λ̄,

∫

dΦ + c dH0

c+ Λ̄

)

.

It follows immediately that the Bayes estimators of H̃ and F̃ , with respect to a squared loss function,

are

Ĥx =

∫ x

0

c dH0 + dΦ

c+ Λ̄

and

F̂ (t) = 1−
∏

[0,t]

{

1−
c dH0 + dΦ

c+ Λ̄

}

respectively. Again, if we let the function c tend to zero, one obtains in the limit the Nelson–Aalen

and the Kaplan–Meier estimators for H̃ and F̃ , respectively.

In order to highlight the underlying posterior structure, Theorem 8 can be reformulated as follows.

Suppose there are k ≤ n distinct values among {T1, . . . , Tn} so that the data can be equivalently

represented as (T ∗(1), ñ
c
1, n1), . . . , (T

∗
(k), ñ

c
k, nk) with n

c
i and ni defined as in (9). If H̃ ∼ Beta(c,H0),

then one has

(17) H̃ | data
d
= H̃∗ +

∑

{i: ni≥1}

Ji δT∗
(i)
,

where H̃∗
d
= {µ̃∗((0, x]) : x ≥ 0} and µ̃∗ is a beta CRM with updated Lévy intensity

(18) ν(ds, dx) = s−1 (1− s)c(x)+Λ̄(x)−1c(x) dH0,x.

The random jump at each distinct exact observation (i.e. T ∗(i) with ni ≥ 1) has the following distri-

bution

Ji ∼ Beta
(

[c(T ∗(i)) + Λ̄(T ∗(i))]dH
∗
0,T∗

(i)
; [c(T ∗(i)) + Λ̄(T ∗(i))]

{

1− dH∗0,T∗
(i)

})

.

where dH∗0,x = [dH0,x + dΦ(x)]/[c(x) + Λ̄(x)]. These jumps can be merged with the updated beta

CRM in (18) yielding the posterior representation in (16): note that the posterior baseline hazard in

(16) is not continuous anymore. This sets up an analogy with what happens in the updating of the

Dirichlet process, to be clarified in Section 3.1.

Remark 3. Recently, an interesting Bayesian nonparametric approach for dealing with factorial models

with unbounded number of factors has been introduced in Griffiths and Ghahramani (2006). The

marginal process, termed Indian buffet process, represents the analogue of the Blackwell–MacQueen,
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or Chinese restaurant, process for the Dirichlet model. As shown in Thibaux and Jordan (2007),

the de Finetti measure of the Indian buffet process is a beta process defined on a bounded space

X. Specifically, the Indian Buffet process is an i.i.d. mixture of suitably defined Bernoulli processes

with mixing measure the beta process. Such developments show how classes of random measures can

become important also for completely different applications than the ones they were designed for. This

witnesses the importance of studying general classes of random measures independently of possible

immediate applications. �

Two interesting extensions of Hjort’s pioneering work can be found in Kim (1999) and James

(2006a). The model adopted in Kim (1999) allows for more general censoring schemes. Let Ni =

{Ni,x : x ≥ 0}, for i = 1, . . . , n, be counting processes where Ni,x denotes the number of events (these

being, for instance, deaths or failures) observed up to time x for the i–th counting process. Moreover,

let the process Yi = {Yi,x : x ≥ 0} be the cumulative intensity associated to Ni, thus entailing that

Ni − Yi is a martingale with respect to some filtration (Fx)x≥0. If the cumulative intensity can be

represented as

(19) Yi,x =

∫ x

0

Zi,s dH̃s

where Zi = {Zi,x : x ≥ 0} is an (Fx)x≥0 adapted process, then we have a multiplicative intensity

model, a general class of models introduced in Aalen (1978). Moreover, if survival times X1, . . . , Xn

are subject to right–censoring, with c1, . . . , cn denoting the n (possibly random) censoring times and

a∧b := min{a, b}, then Ni,x = 1(0,x∧ci](Xi) is equal to 1 if the i–th observation is both uncensored and

not greater than x. In this case the process Zi is such that Zi,x = 1(0,Ti](x) where Ti = Xi ∧ ci is the

possibly right–censored survival time (or time to failure or time to an event) for the i–th individual.

On the other hand, when data are both left and right–censored with left and right–censoring times

denoted by e = (e1, . . . , en) and on c = (c1, . . . , cn), respectively, both independent from the Xi’s,

one is led to consider Ni,x = 1(ei,ci∧x](Xi). Hence, conditional on e and on c, Ni is a counting

process governed by a multiplicative intensity model (19) with Zi,x = 1(ei,ci](x), where ei denotes an

entrance time and ci a censoring time. The main result proved in Kim (1999) is structural conjugacy

of H̃ = {H̃x : x ≥ 0} in (19). Specifically, if H̃ is a process with independent increments, then H̃|data

is again a process with independent increments and fixed points of discontinuity in correspondence to

the exact observation with random jumps expressed in terms of the Lévy intensity. For the case of

right–censored observations with H̃ generated by a beta process, Hjort’s result is recovered.

In James (2006a), the author proposes a new family of priors named spatial neutral to the right

processes: this turns out to be useful when one is interested in modelling survival times X coupled

with variables Y which take values in a general space. Typically, Y can be considered as a spatial

component. A spatial neutral to the right process is a random probability measure associated to a

cumulative hazard at y defined by

H̃t(dy) =

∫

(0,t]

µ̃(dx, dy)

where µ̃ is some CRM on R
+ × Y and Y is some complete and separable metric space. Hence, by

(7), µ̃(dx, dy) =
∫

[0,1]
sN(ds, dx, dy) where N is a Poisson random measure on [0, 1]×R

+ ×Y whose

intensity is

ν(ds, dx, dy) = ρx(ds)dA0(x, y).
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In accordance with the previous notation, ρx is, for any x in R
+, a measure on [0, 1] and A0 is some

hazard measure on R
+ × Y which plays the role of baseline hazard. Correspondingly, one has

S̃(t−) = 1− F̃ (t−) = exp

{

∫

[0,1]×(0,t)×Y

log(1− s)N(ds, dx, dy)

}

and p̃(dx, dy) = S̃(x−) µ̃(dx, dy) is the random probability measure on R
+ × Y whose law acts as a

prior for the distribution of (X,Y ). James (2006a) shows also that the posterior distribution of p̃, given

a sample of exchangeable observations (X1, Y1), . . . , (Xn, Yn), arises as the sum of two independent

components: one has a similar form as the prior, the only difference being an updating of S̃ and

µ̃, and the other is given by fixed points of discontinuity corresponding to the distinct observations.

The analysis provided by James (2006a) also offers an algorithm for sampling from the marginal

distribution of the observations, which represents an analogue of the Blackwell-MacQueen urn scheme

for these more general priors. Finally, as pointed out in James (2006a), there are some nice connections

between this area of research in Bayesian nonparametrics and the theory of regenerative composition

structures in combinatorics. See Gnedin and Pitman (2005b).

2.3. Priors for hazard rates. A number of papers have focused on the issue of specifying a

prior for the hazard rate, instead of the cumulative hazard. For simplicity we assume that the data are

generated by a p.d. on R
+ which is absolutely continuous with respect to the Lebesgue measure. Then,

the hazard rate is h(x) = F ′(x)/[1 − F (x−)] and a prior for it can be defined in terms of a mixture

with respect to a CRM. Let k( · | · ) be some kernel on R
+ × Y, i.e. y 7→ k(x|y) is Y –measurable for

any x in X and for any bounded B ∈ B(R+) one has
∫

B
k(x|y) dx <∞ for any y ∈ Y. Then, a prior

for the hazard rate coincides with the p.d. of the random hazard rate defined by

(20) h̃(x) =

∫

Y

k(x|y) µ̃(dy)

where µ̃ is a CRM on (Y,Y ). The cumulative hazard is then given by H̃x =
∫ x

0
h̃(s)ds. From (20),

provided H̃x →∞ for x→∞ almost surely, one can define a random density function f̃ as

f̃(x) = h̃(x) e−H̃x

where S̃(x) = exp(−H̃x) is the survival function at x. Such models are often referred to as life–testing

models. The random hazard h̃ in (20) can also be used to define the intensity rate of a counting

process Ni = {Ni,x : x ≥ 0} as Zi,x h̃(x) where Zi = {Zi,x : x ≥ 0} is a process satisfying the same

conditions pointed out in Kim (1999).

Various specific models proposed in the literature fit within this framework according to the choices

of k, µ̃ and Zi. For example, Dykstra and Laud (1981) consider the case where k(x|y) ≡ 1(0,x](y)β(x)

for some measurable and non–negative function β, Zi = 1(0,Ti] and µ̃ is a gamma process characterized

by the Lévy intensity (5).

The random hazard h̃ = {h̃(x) : x ≥ 0} corresponding to the mixing kernel described above is

termed extended gamma process with parameters α and β in Dykstra and Laud (1981) and is again

an independent increment process with non–homogeneous Lévy intensity

(21) ν(ds, dx) =
e−β(x)

−1 s

s
ds α(dx).
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Lo and Weng (1989) consider h̃ in (20) with a generic kernel k and process Zi, and with µ̃ an

extended gamma process, or weighted gamma process in their terminology. Due to linearity of the

relation in (20), a characterization of the posterior distribution of µ̃ given the data would easily yield

a posterior representation of the hazard rate h̃. In order to determine a posterior characterization

of µ̃, it is convenient to interpret the variable y in the kernel k( · |y) as a latent variable: hence the

posterior distribution of µ̃ arises by mixing the conditional distribution of µ̃, given the data and

the latent, with respect to the posterior distribution of the latent variables, given the data. Such a

strategy is pursued in James (2005) where the author achieves an explicit posterior characterization

for general multiplicative intensity models with mixture random hazards (20) driven by a generic CRM

µ̃. For brevity, here we focus on the simple life–testing model case with exact observations denoted

by X = (X1, . . . , Xn). The likelihood function is then given by

(22) L (µ;x) = e−
∫
Y
Kn(y)µ(dy)

n
∏

i=1

∫

Y

k(xi|y)µ(dy),

whereKn(y) =
∑n
i=1

∫ xi

0
k(s|y)ds. Now, augmenting the likelihood with respect to the latent variables

y = (y1, . . . , yn), (22) reduces to

L (µ;x,y) = e−
∫
Y
Kn(y)µ(dy)

n
∏

i=1

k(xi|yi)µ(dxi) = e−
∫
Y
Kn(y)µ(dy)

k
∏

j=1

µ(dy∗j )
nj

∏

i∈Cj

k(xi|y
∗
j ),

where y∗ = (y∗1 , . . . , y
∗
k) denotes the vector of the k ≤ n distinct latent variables, nj is the frequency

of y∗j and Cj = {r : yr = y∗j }. We are now in a position to state the posterior characterization of the

mixture hazard rate.

Theorem 9. (James, 2005). Let h̃ be a random hazard rate as defined in (20). Then, given X and Y ,

the posterior distribution of µ̃ coincides with

(23) µ̃∗
d
= µ̃∗c +

k
∑

i=1

Ji δY ∗
j

where µ̃∗c is a CRM with intensity measure

(24) ν∗(ds, dy) = e−sKn(y) ρy(d s)α(dy),

the jumps Ji (i = 1, . . . , k) are mutually independent, independent from µ̃∗c and their distribution can

be described in terms of the Lévy intensity of µ̃.

Hence, we have again the posterior structure of an updated CRM with fixed points of discontinuity,

the only difference being that in such a mixture setup one has to deal with both latent and observables.

Moreover, the p.d. of the jumps Ji’s corresponding to the latents Y
∗
i ’s is

Gi(ds) ∝ snie−sKn(y
∗

i )ρy∗
i
(ds).

To complete the description the distribution of the latent variables Y conditionally on the data is

needed. Setting τnj
(u|y) =

∫

R+ s
nje−usρy(ds) for any u > 0, one has

(25) f(dy∗1 , .., dy
∗
k|X) =

∏k
j=1 τnj

(Kn(y
∗
j )|y

∗
j )

∏

i∈Cj
k(xi, y

∗
j )α(dy

∗
j )

∑n
k=1

∑

n∈∆k,n

∏k
j=1

∫

Y
τnj

(Kn(y)|y)
∏

i∈Cj
k(xi, y)α(dx)
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for any k ∈ {1, . . . , n} and n := (n1, . . . , nk) ∈ ∆k,n := {(n1, . . . , nk) : nj ≥ 1,
∑k
j=1 nj = n}. We

also recall that an alternative posterior characterization, valid when modelling decreasing hazard rate

functions, has been provided in Ho (2006) and it is formulated in terms of S–paths. In the light

of Theorem 9, the distribution of µ̃, given X, can in principle be evaluated exactly by integrating

(23) with respect to (25). Performing such an integration is a very difficult task since one needs to

average with respect to all possible partitions of the integers {1, . . . , n}. Nonetheless, the posterior

representation is crucial for devising suitable simulation algorithms such as those provided in Nieto–

Barajas and Walker (2004) and Ishwaran and James (2004). The latter paper contains also a wealth

of applications, which highlight the power of the mixture model approach to multiplicative intensity

models.

A variation of the use of weighted gamma or of beta processes for modelling hazards is suggested in

Nieto–Barajas and Walker (2002). Consider a sequence (tn)n≥1 of ordered points, 0 < t1 < t2 < · · · ,

and set λk to be the hazard in the interval (tk−1, tk]. A first attempt to model the different hazard

rates might be based on independence of the λk’s: this is done in Walker and Mallick (1997) where

the λk’s are taken to be independent gamma random variables. Alternatively, a discrete version

of Hjort’s model implies that, given a set of failure or death times {t1, t2, . . .}, the hazard rates

πk = P[T = tk |T ≥ tk] are independent beta–distributed random variables. However, in both

cases it seems sensible to assume dependence among the λk’s or among the πk’s. The simplest form

of dependence one might introduce is Markovian and this is pursued in Nieto–Barajas and Walker

(2002). Hence, if θk is the parameter of interest, one may set E[θk+1|θ1, . . . , θk] = f(θk) for some

function f . This assumption gives rise to what the authors name Markov gamma and beta processes.

The most interesting feature is that, conditionally on a latent variable, the hazard rates have a very

simple structure which naturally yields an MCMC simulation scheme for posterior inferences. An

early contribution to this approach is due to Arjas and Gasbarra (1994).

3 General classes of discrete nonparametric priors

In this Section we will describe in some detail a few recent probabilistic models that are natural

candidates for defining nonparametric priors Q which select discrete distributions with probability 1.

There are essentially two ways for exploiting such priors: a) they can be used to model directly the

data when these are generated by a discrete distribution; b) they are introduced as basic building

blocks in hierarchical mixtures if the data arise from a continuous distribution. The latter use will be

detailed in Section 4.1.

3.1. Normalized random measures with independent increments. Among the various

generalizations of the Dirichlet process, the one we will illustrate in the present section is inspired

by a construction of the Dirichlet process provided in Ferguson (1973). Indeed, a Dirichlet process

on a complete and separable metric space, X, can also be obtained by normalizing the increments

of a gamma CRM γ̃ with parameter α as described in Example 1: the random probability mea-

sure p̃ = γ̃/γ̃(X) has the same distribution as the Dirichlet process on X with parameter measure

α. Given this, one might naturally wonder whether a full Bayesian analysis can be performed if in

the above normalization the gamma process is replaced by any CRM with a generic Lévy intensity

ν(ds, dx) = ρx(ds)α(dx). Though Bayesians have seldom considered “normalization” as a tool for
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defining random probability measures, this idea has been exploited and applied in a variety of contexts

not closely related to Bayesian inference such as storage problems, computer science, population genet-

ics, ecology, statistical physics, combinatorics, number theory and excursions of stochastic processes.

See Pitman (2006) and references therein. Some important theoretical insight on the properties of

normalized random measures was first given in Kingman (1975), where a random discrete distribution

generated by the σ–stable subordinator is considered. Further developments can be found in Perman,

Pitman and Yor (1992), where a description of the atoms of random probability measures, obtained

by normalizing increasing processes with independent and stationary increments, in terms of a stick-

breaking procedure, is provided. From a Bayesian perspective, the idea of normalization has been

taken up again in Regazzini, Lijoi and Prünster (2003), where a normalized random measure with in-

dependent increments is introduced as a random probability measure on R obtained by normalizing a

suitably time-changed increasing process with independent but not necessarily stationary increments.

A definition stated in terms of CRMs is as follows.

Definition 3. Let µ̃ be a CRM on X such that 0 < µ̃(X) < ∞ almost surely. Then, the random

probability measure p̃ = µ̃/µ̃(X) is termed normalized random measure with independent increments

(NRMI).

Both finiteness and positiveness of µ̃(X) are clearly required for the normalization to be well–defined

and it is natural to express such conditions in terms of the Lévy intensity of the CRM. Indeed, it is

enough to have ρx(R
+) = ∞ for every x and 0 < α(X) < ∞. The former is equivalent to requiring

that the CRM µ̃ has infinitely many jumps on any bounded set: in this case µ̃ is also called an

infinite activity process. The previous conditions can also be strengthened to necessary and sufficient

conditions but we do not pursue this here.

In the following we will speak of homogeneous (non–homogeneous) NRMIs, if the CRM (or, equiva-

lently, the Lévy intensity (4)) defining it is homogeneous (non–homogeneous).

Example 5. (The σ–stable NRMI). Suppose σ ∈ (0, 1) and let µ̃σ be the σ–stable CRM examined in

Example 2 with Lévy intensity (6). If α in (6) is finite, the required positivity and finiteness conditions

are satisfied. One can, then, define a random probability measure p̃ = µ̃σ/µ̃σ(X) which takes on the

name of normalized σ–stable process with parameter σ. Such a random probability measure was

introduced in Kingman (1975) in relation to optimal storage problems. The possibility of application

in Bayesian nonparametric inference was originally pointed out by A.F.M. Smith in the Discussion to

Kingman (1975).

Example 6. (The generalized gamma NRMI). Consider now a generalized gamma CRM (Brix,

1999) which is characterized by a Lévy intensity of the form

(26) ν(ds, dx) =
σ

Γ(1− σ)
s−1−σ e−τsds α(dx),

where σ ∈ (0, 1) and τ > 0. Let us denote it by µ̃σ,τ . Note that if τ = 0 then µ̃σ,0 coincides with the

σ–stable CRM µ̃σ, whereas if σ → 0 the gamma CRM (5) is obtained. If α in (26) is finite, we have

0 < µ̃σ,τ (X) <∞ almost surely and a NRMI p̃ = µ̃σ,τ/µ̃σ,τ (X), which is termed normalized generalized

gamma process. See Pitman (2003) for a discussion on its representation as Poisson–Kingman model,

a class of random distributions described in Section 3.3. The special case of σ = 1/2, corresponding
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to the normalized inverse Gaussian process, has been examined in Lijoi, Mena and Prünster (2005)

who also provide an expression for the family of finite dimensional distributions of p̃. �

Example 7. (The extended gamma NRMI) A non–homogeneous NRMI arises by considering the

extended gamma process of Dykstra and Laud (1981) characterized by the Lévy intensity (21). If

the function β : X → R
+ is such that

∫

X
log[1 + β(x)]α(dx) < ∞, then the corresponding NRMI is

well–defined and will be termed extended gamma NRMI. �

These examples, together with others one could think of by simply providing a Lévy intensity,

suggest that NRMIs identify a very large class of priors and one might then wonder whether they

are amenable of practical use for inferential purposes. A first thing to remark is that, apart from

the Dirichlet process, NMRIs are not structurally conjugate. See James, Lijoi and Prünster (2006).

Nonetheless one can still provide a posterior characterization of NRMIs in the form of a mixture

representation. In the sequel, we will always work with NRMI, whose underlying Lévy intensity has

a non–atomic α in (4). Suppose that the data are exchangeable according to model (1) and Q is the

probability distribution of a NRMI. Since NRMIs are almost surely discrete, data can display ties and

we denote by X∗1 , . . . , X
∗
k the k distinct observations, with frequencies n1, . . . , nk, present within the

sample X = (X1, . . . , Xn). Before stating the posterior characterization, we introduce the key latent

variable. For any n ≥ 1, let Un be a positive random variable whose density function, conditional on

the sample X, is

(27) qX(u) ∝ un−1 e−ψ(u)
k
∏

j=1

τnj
(u|X∗j ),

where ψ is the Laplace exponent of µ̃, i.e. ψ(u) =
∫

X

∫

R+(1− e−u v)ρx(dv)α(dx) and, for any m ≥ 1,

τm(u|x) :=
∫

R+ s
m e−us ρx(ds). The following result states that the posterior distribution of µ̃ and of

p̃, given a sample X, is a mixture of NRMIs with fixed points of discontinuity in correspondence to

the observations and the mixing density is qX in (27).

Theorem 10. (James, Lijoi and Prünster, 2005). If p̃ is a NRMI obtained by normalizing µ̃, then

(28) µ̃ | (X, Un)
d
= µ̃

Un
+

k
∑

i=1

J
(Un)
i δX∗

i
,

where µ̃
Un

is a CRM with Lévy intensity ν(Un)(ds, dx) = e−Uns ρx(ds) α(dx), the non–negative

jumps J
(Un)
i ’s are mutually independent and independent from µ̃

Un
with density function fi(s) ∝

snie−Unsρ
X∗

i

(ds). Moreover,

(29) p̃ | (X, Un)
d
= w

µ̃
Un

µ̃
Un
(X)

+ (1− w)

∑k
i=1 J

(Un)
i δX∗

i

∑k
r=1 J

(Un)
r

where w = µ̃
Un
(X)/[µ̃

Un
(X) +

∑k
i=1 J

(Un)
i ].

The above result displays the same posterior structure, namely CRM with fixed points of discontinuity,

that has already occurred on several occasions in Section 2: here the only difference is that such a

representation holds conditionally on a suitable latent variable, which makes it slightly more elaborate.

This is due to the fact that the structural conjugacy property is not satisfied. Nonetheless, NRMIs
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give rise to more manageable predictive structures than, for instance, NTR processes. See also James,

Lijoi and Prünster (2009).

Since the Dirichlet process is a special case of NRMI, it is interesting to see how the posterior

representation of Ferguson (1973) is recovered. Indeed, if µ̃ is a gamma CRM with parameter measure

α on X such that α(X) = θ ∈ (0,∞), then µ̃
Un
+
∑k
i=1 J

(Un)
i δX∗

i
is a gamma CRM with Lévy intensity

(30) ν(Un)(ds, dx) =
e−(1+Un)s

s
ds α∗n(dx)

where α∗n = α +
∑k
i=1 ni δX∗i . However, since the CRM characterized by (30) is to be normalized,

we can, without loss of generality, set the scale parameter 1 + Un in (30) equal to 1. The random

probability in (29) turns out to be a Dirichlet process with parameter α∗n and its distribution does not

depend on Un. Note also the analogy with the posterior updating of the beta process sketched after

Theorem 8.

In analogy with NTR processes, the availability of a posterior representation is essential for the

implementation of sampling algorithms in order to simulate the trajectories of the posterior CRM. A

possible algorithm suggested by the representation (28) consists in

(i) Sample Un from qX

(ii) Sample the jump J
(Un)
i at X∗i from the density fi(s) ∝ snie−Unsρ

X∗
i

(ds)

(iii) Simulate a realization of µ̃
Un

with Lévy measure ν(Un)(dx, ds) = e−Uns ρx(ds)α(dx) via the

Ferguson and Klass algorithm. See Ferguson and Klass (1972) and Walker and Damien (2000).

For an application of this computational technique see Nieto–Barajas and Prünster (2007).

Example 8. (The generalized gamma NRMI). Consider the normalized generalized gamma process

defined in Example 6. The (posterior) distribution of µ̃, given Un and X, coincides in distribution

with the CRM µ̃
Un

+
∑k
i=1 J

(Un)
i δX∗

i
where µ̃

Un
is a generalized gamma CRM with Lévy intensity

ν(Un)(ds, dx) = σ
Γ(1−σ) s

−1−σ e−(Un+1)sds α(dx), the fixed points of discontinuity coincide with the

distinct observationsX∗i and the i–th jump J
(Un)
i isGamma(Un+1, ni−σ) distributed, for i = 1, . . . , k.

Finally, the density function of Un, conditional on X, is qX(u) ∝ un−1 (1 + u)kσ−n e−α(X)(1+u)
σ

. �

3.2. Exchangeable partition probability function. The nature of the realizations of NRMIs

and, in general, of discrete random probability measures, quite naturally leads to analyze the parti-

tion structures among the observations that they generate. Indeed, given n observations X1, . . . , Xn

generated from model (1), discreteness of p̃ implies that there might be ties within the data, i.e.

P[Xi = Xj ] > 0 for i 6= j. Correspondingly, define Ψn to be a random partition of the integers

{1, . . . , n} such that any two integers i and j belong to the same set in Ψn if and only if Xi = Xj . Let

k ∈ {1, . . . , n} and suppose {C1, . . . , Ck} is a partition of {1, . . . , n} into k sets Ci. Hence, {C1, . . . , Ck}

is a possible realization of Ψn. A common and sensible specification for the probability distribution of

Ψn consists in assuming that it depends on the frequencies of each set in the partition. To illustrate

this point, introduce the set

∆n,k :=

{

(n1, . . . , nk) : ni ≥ 1,

k
∑

i=1

ni = n

}
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For ni = card(Ci), then (n1, . . . , nk) ∈ ∆n,k and

(31) P[Ψn = {C1, . . . , Ck}] = Π
(n)
k (n1, . . . , nk)

A useful and intuitive metaphor is that of species sampling: one is not much interested into the

realizations of the Xi’s, which stand as species labels thus being arbitrary, but rather in the probability

of observing k distinct species with frequencies (n1, . . . , nk) in n ≥ k draws from a population.

Definition 4. Let (Xn)n≥1 be an exchangeable sequence. Then, {Π
(n)
k : 1 ≤ k ≤ n, n ≥ 1} with Π

(n)
k

defined in (31) is termed exchangeable partition probability function (EPPF).

Indeed, the EPPF defines an important tool which has been introduced in Pitman (1995) and

it determines the distribution of a random partition of N. It is worth noting that the fundamental

contributions J. Pitman has given to this area of research have been deeply influenced by, and appear

as natural developments of, some earlier relevant work on random partitions by J.F.C. Kingman. See,

e.g., Kingman (1978, 1982).

From the above definition it follows that, for any n ≥ k ≥ 1 and any (n1, . . . , nk) ∈ ∆n,k,

Π
(n)
k is a symmetric function of its arguments and it satisfies the addition rule Π

(n)
k (n1, . . . , nk) =

Π
(n+1)
k+1 (n1, . . . , nk, 1) +

∑k
j=1Π

(n+1)
k (n1, . . . , nj + 1, . . . , nk). On the other hand, as shown in Pitman

(1995), every non–negative symmetric function satisfying the addition rule is the EPPF of some

exchangeable sequence. See Pitman (1995, 2006) for a thorough and useful analysis of EPPFs.

The availability of the EPPF yields, as a by–product, the system of predictive distributions induced

by Q. Indeed, suppose Q in model (1) coincides with a discrete nonparametric prior and {Π
(n)
k : 1 ≤

k ≤ n, n ≥ 1} is the associated EPPF. If the sample X = (X1, . . . , Xn) contains k distinct values

X∗1 , . . . , X
∗
k and nj of them are equal to X∗j one has

P[Xn+1 = new |X] =
Π
(n+1)
k+1 (n1, . . . , nk, 1)

Π
(n)
k (n1, . . . , nk)

, P[Xn+1 = X∗j |X] =
Π
(n+1)
k (n1, . . . , nj + 1, . . . , nk)

Π
(n)
k (n1, . . . , nk)

If p̃ is a NRMI (with non–atomic parameter measure α), the associated EPPF is

(32) Π
(n)
k (n1, . . . , nk) =

1

Γ(n)

∫ ∞

0

un−1 e−ψ(u)







k
∏

j=1

∫

X

τnj
(u|x)α(dx)







du

and from it one can deduce the system of predictive distributions of Xn+1, given X,

(33) P [Xn+1 ∈ dxn+1 |X] = w
(n)
k P0(dxn+1) +

1

n

k
∑

j=1

w
(n)
j,k δX∗j (dxn+1)

where P0 = α/α(X) and

(34) w
(n)
k =

1

n

∫ +∞

0

u τ1(u|xn+1) qX(u) du w
(n)
j,k =

∫ +∞

0

u
τnj+1(u|X

∗
j )

τnj
(u|X∗j )

qX(u) du

In the homogeneous case, i.e ρx = ρ, the previous formulae reduce to those given in Pitman (2003).

Closed form expressions are derivable for some specific NRMI. For example, if p̃ is the σ–stable NRMI,

then w
(n)
k = k σ/n and w

(n)
j,k = (nj −σ). See Pitman (1996). On the other hand, if p̃ is the normalized

generalized gamma process, one has (33) with

w
(n)
k =

σ

n

∑n
i=0

(

n
i

)

(−1)i βi/σΓ
(

k + 1− i
σ ; β

)

∑n−1
i=0

(

n−1
i

)

(−1)i βi/σ Γ
(

k − i
σ ; β

) w
(n)
j,k =

∑n
i=0

(

n
i

)

(−1)i βi/σ Γ
(

k − i
σ ; β

)

∑n−1
i=0

(

n−1
i

)

(−1)iβi/σ Γ
(

k − i
σ ; β

) (nj − σ).
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See Lijoi, Mena and Prünster (2007a). The availability of closed form expressions of the predictive dis-

tributions is essential for the implementation of Blackwell–MacQueen–type sampling schemes, which

are a key tool for drawing inference in complex mixture models. Nonetheless, even when no closed

form expressions are available, drawing samples from the predictive is still possible by conditioning

on the latent variable Un. Indeed, one has

P[Xn+1 ∈ dxn+1 |X, Un = u] ∝ κ1(u) τ1(u|xn+1)P0(dxn+1) +
k

∑

j=1

τnj+1(u|X
∗
j )

τnj
(u|X∗j )

δ
X∗

j

(dxn+1)

where κ1(u) =
∫

X
τ1(u|x)α(dx). From this one can implement an analog of the Blackwell–MacQueen

urn scheme in order to draw a sample X1, . . . , Xn from p̃. Let m(dx|u) ∝ τ1(u|x)α(dx) and, for any

i ≥ 2, set m(dxi|x1, . . . , xi−1, u) = P[Xi ∈ dxi|X1, . . . , Xi−1, Ui−1 = u]. Moreover, set U0 to be a

positive random variable whose density function is given by q0(u) ∝ e−ψ(u)
∫

X
τ1(u|x)α(dx). The

sampling scheme can be described as follows

1) Sample U0 from q0

2) Sample X1 from m(dx|U0)

3) At step i

3a) Sample Ui−1 from qXi−1
(u), where Xi−1 = (X1, . . . , Xi−1)

3b) Generate ξi from fi(ξ) ∝ τ1(Ui−1|ξ)P0(dξ)

3c) Sample Xi from m(dx|Xi−1, Ui−1) which implies

Xi =

{

ξi prob ∝ κ1(Ui−1)

X∗j,i−1 prob ∝ τnj,i−1+1(Ui−1|X
∗
j,i−1)/τnj,i−1+1(Ui−1|X

∗
j,i−1)

where X∗j,i−1 is the j–th distinct value among X1, . . . , Xi−1 and nj,i−1 is the cardinality of

the set {Xs : Xs = X∗j,i−1, s = 1, . . . , i− 1}.

3.3. Poisson-Kingman models and Gibbs–type priors. Consider a discrete random prob-

ability measure p̃ =
∑

i≥1 p̃iδXi
where the locations Xi’s are i.i.d. from a non–atomic probability

measure P0 on X. Furthermore, suppose the locations are independent from the weights p̃i’s. The

specification of p̃ is completed by assigning a distribution for the weights. Pitman (2003) identifies

a method for achieving this goal: he derives laws, which are termed Poisson–Kingman distributions,

for sequences of ranked random probability masses p̃i’s. To be more specific, consider a homogeneous

CRM µ̃ whose intensity ν(ds, dx) = ρ(ds)α(dx) is such that ρ(R+) =∞ and α = P0 is a non–atomic

probability measure. Denote by J(1) ≥ J(2) ≥ · · · the ranked jumps of the CRM, set T =
∑

i≥1 J(i)

and assume that the p.d. of the total mass T is absolutely continuous with respect to the Lebesgue

measure on R. Next, define

(35) p̃(i) =
J(i)

T

for any i = 1, 2, . . . and denote by S∗ = {(p1, p2, . . .) : p1 ≥ p2 ≥ · · · ≥ 0,
∑

i≥1 pi = 1} the set of all

sequences of ordered non–negative real numbers that sum up to 1.
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Definition 5. Let Pρ,t be the conditional distribution of the sequence (p̃(i))i≥1 of ranked random

probabilities generated by a CRM through (35), given T = t. Let η be a probability distribution on

R
+. The distribution

∫

R+

Pρ,t η(dt)

on S∗ is termed Poisson–Kingman distribution with Lévy intensity ρ and mixing distribution η. It is

denoted by PK(ρ, η).

If η coincides with the p.d. of T , we use the notation PK(ρ) to indicate the corresponding random

probability with masses in S∗. The discrete random probability measure p̃ =
∑

i≥1 p̃(i)δXi
, where the

p̃(i)’s follow a PK(ρ, η) distribution, is termed PK(ρ, η) random probability measure. It is important

to remark that PK(ρ) random probability measures are equivalent to homogeneous NRMIs defined

in Section 3.1. Pitman (2003) derives an expression for the EPPF of a general PK(ρ, η) model but

it is difficult to evaluate. However, in the special case of a PK(ρ) model it reduces to the simple

expression implied by (32) when the dependence on the locations of the jumps is removed. Although

the potential use of general PK(ρ, η) random probability measures for statistical inference is quite

limited, their theoretical importance can be traced back to two main reasons: (i) the two parameter

Poisson–Dirichlet process is a PK(ρ, η) model, whereas it is not a NRMI; (ii) PK(ρ, η) models generate

the class of Gibbs–type random probability measure which possess a conceptually very appealing

predictive structure. Both examples involve PK(ρ, η) models based on the σ–stable CRM.

Example 9. (The two parameter Poisson–Dirichlet process). One of the main reasons of

interest for the class of PK(ρ, η) priors is due to the fact that it contains, as a special case, the two

parameter Poisson–Dirichlet process, introduced in Perman, Pitman and Yor (1992). This process

and the distribution of the ranked probabilities, termed two parameter Poisson–Dirichlet distribution,

were further studied in the remarkable papers by Pitman (1995) and Pitman and Yor (1997a). Its

name is also explained by the fact that it can be seen as a natural extension of the one parameter

Poisson–Dirichlet distribution of Kingman (1975), which corresponds to the distribution of the ranked

probabilities of the Dirichlet process.

Let ρσ be the jump part of the Lévy intensity corresponding to a σ–stable CRM, i.e. ρσ(s) =

σs−1−σ/Γ(1 − σ), and consider a parameter θ > −σ. Further denote by fσ the density of a σ–

stable random variable and define ησ,θ(dt) =
σΓ(θ)
Γ(θ/σ) t

−θ fσ(t) dt. Then, as shown in Pitman (2003),

the PK(ρσ, ησ,θ) random probability measure is a two parameter Poisson–Dirichlet process, to be

abbreviated as PD(σ, θ) process. In many recent papers, especially within the machine learning

community, such a process is often referred to as Pitman–Yor process. In Section 3.4 we will present

an alternative stick–breaking construction of the PD(σ, θ) process.

Among all generalizations of the Dirichlet process, the PD(σ, θ) process stands out for its tractability.

The EPPF, which characterizes the induced random partition, of a PD(σ, θ) process is

(36) Π
(n)
k (n1, . . . , nk) =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k
∏

j=1

(1− σ)nj−1

where (a)n = Γ(a + n)/Γ(a) = a(a + 1) · · · (a + n− 1) for any n ≥ 1 and (a)0 ≡ 1. Note that if one

lets σ → 0 then the EPPF above reduces to Π
(n)
k (n1, . . . , nk) =

θk

(θ)n

∏k
j=1 Γ(nj) which coincides with

the EPPF for the Dirichlet process as provided by Antoniak (1974). On the other hand, if θ = 0, one
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obtains the σ–stable NRMI presented in Example 5. Now, denote bymj ≥ 0, j = 1, . . . , n, the number

of sets in the partition which contain j objects or, using again the species metaphor, the number of

species appearing j–times in a sample of size n. Then, an alternative equivalent formulation of (36),

known as Pitman’s sampling formula, is given by

Π∗(m1, . . . ,mn) = n!

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1
∏n
i=1mi!

n
∏

i=1

[

(1− σ)i−1
i!

]mi

for any n ≥ 1 andm1, . . . ,mn such thatmi ≥ 0 and
∑n
i=1 imi = n. The above expression represents a

two parameter generalization of the celebrated Ewens’ sampling formula in population genetics, which

can be recovered by letting σ → 0. See Ewens (1972). As highlighted in Section 3.2, the availability of

the EPPF in (36) allows one to determine the system of predictive distributions associated with the

PD(σ, θ) process. Indeed, if X = (X1, . . . , Xn) is a sample consisting of k distinct values X
∗
1 , . . . , X

∗
k

and nj of them are equal to X∗j , then

P[Xn+1 ∈ dx |X] =
θ + kσ

θ + n
P0(dx) +

1

θ + n

k
∑

j=1

(nj − σ) δX∗
j
(dx)

As observed in Section 1.1, for the PD(σ, θ) process the probability of observing a new value depends,

in contrast to the Dirichlet process, also on the number of distinct observations. Another distinctive

feature, if compared with the Dirichlet process, is represented by the asymptotic behaviour of the

number of groups Kn generated by the first n observations, as n → ∞. For the Dirichlet process, as

shown in Korwar and Hollander (1973), Kn ∼ θ log(n) almost surely as n →∞. Hence, the number

of distinct observations increases at a logarithmic rate. On the other hand, when the observations are

governed by a PD(σ, θ) process, then Kn ∼ Sσ,θn
σ as n→∞ where Sσ,θ is a positive random variable

whose p.d. has a density on R
+ depending on σ and θ. See Pitman (2003). In other terms, the number

of distinct observations under a PD(σ, θ) increases at a higher rate, nσ, than in the Dirichlet case. �

An interesting and closely related class of random probability measures is given by Gibbs–type

priors, introduced in Gnedin and Pitman (2005a). We first aim at defining such priors and highlighting

some of their features. Afterwards we will explain their connection to Poisson–Kingman models.

By looking at the EPPF of the PD(σ, θ) process (36) one immediately recognizes that it arises as

a product of two factors: the first one depends only on (n, k), whereas the second one depends on the

frequencies (n1, . . . , nk) via the product
∏k
j=1(1 − σ)nj−1. This structure is the main ingredient for

defining a general family of exchangeable random partitions, namely the Gibbs–type random partitions

and the associated Gibbs–type priors.

Definition 6. Let p̃ =
∑

i≥1 p̃i δXi
be a discrete random probability measure for which the locations

Xi’s are independent from the weights p̃i’s and are i.i.d. from a non–atomic probability measure P0

on X. Then p̃ is termed Gibbs–type random probability measure if, for all 1 ≤ k ≤ n and for any

(n1, . . . , nk) in ∆n,k, the EPPF can be represented as

(37) Π
(n)
k (n1, . . . , nk) = Vn,k

k
∏

j=1

(1− σ)nj−1,

for some σ ∈ [0, 1). The random partition of N determined by (37) is termed Gibbs–type random

partition.
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It is worth noting that Gibbs–type random partitions identify particular exchangeable product

partition models of the type introduced by Hartigan (1990). Indeed, if the cohesion function c( · )

in Hartigan’s definition depends on the cardinalities of the groups, a result of Gnedin and Pitman

(2005a) states that it must be of the form c(nj) = (1− σ)nj−1 for j = 1, . . . , k. See Lijoi, Mena and

Prünster (2007a) for more explanations on this connection.

From (37), it follows that the predictive distributions induced by a Gibbs–type prior are of the

form

(38) P
[

Xn+1 ∈ dx
∣

∣X
]

=
Vn+1,k+1
Vn,k

P0(dx) +
Vn+1,k
Vn,k

k
∑

j=1

(nj − σ) δX∗
j
(dx).

The structure of (38) provides some insight into the inferential implications of the use of Gibbs–type

priors. Indeed, the prediction rule can be seen as resulting from a two step procedure: the (n+1)–th

observation Xn+1 is either “new” (i.e. not coinciding with any of the previously observed X∗i ’s) or

“old” with probability depending on n and k but not on the frequencies ni’s. Given Xn+1 is “new”,

it is sampled from P0. Given Xn+1 is “old” (namely Xn+1 is equal to one of the already sampled

X∗i ’s), it will coincide with a particular X∗j with probability (nj − σ)/(n − kσ). By comparing the

predictive distributions (38) with those arising from the models dealt with so far, one immediately

sees that the PD(σ, θ) process (hence, a fortiori the Dirichlet process) and the normalized generalized

gamma process belong to the class of Gibbs priors. Considered as a member of this general class, the

Dirichlet process is the only prior for which the probability of sampling a “new” or “old” observation

does not depend on the number of distinct ones present in the sample. On the other hand, one may

argue that it is desirable to have prediction rules for which the assignment to “new” or “old” depends

also on the frequencies ni’s: however, this would remarkably increase the mathematical complexity

and so Gibbs priors appear to represent a good compromise between tractability and richness of the

predictive structure. An investigation of the predictive structure arising from Gibbs–type priors can

be found in Lijoi, Prünster and Walker (2008a).

An important issue regarding the class of Gibbs–type priors is the characterization of its members.

In other terms, one might wonder which random probability measures induce an EPPF of the form

(37). An answer has been successfully provided by Gnedin and Pitman (2005a). Let ρσ be the jump

part of the intensity of a σ–stable CRM and consider PK(ρσ, η) random probability measures with

arbitrary mixing distribution η: for brevity we refer to them as the σ–stable PK models. Then, p̃ is

a Gibbs–type prior with σ ∈ (0, 1) if and only if it is a σ–stable PK model. Hence, the corresponding

Vn,k, which specify the prior completely, are of the form

Vn,k =

∫

R+

σkt−n

Γ(n− kσ) fσ(t)

∫ t

0

sn−kσ−1fσ(t− s) dsη(dt),

where fσ denotes, as before, the σ–stable density. Moreover, p̃ is a Gibbs–type prior with σ = 0

if and only if it is a mixture, with respect to the parameter θ = α(X), of a Dirichlet process. See

Pitman (2003, 2006) and Gnedin and Pitman (2005a) for more details and interesting connections to

combinatorics. Finally, the only NRMI, which is also of Gibbs–type with σ ∈ (0, 1), is the normalized

generalized gamma process (Lijoi, Prünster and Walker, 2008b).

3.4. Species sampling models. Species sampling models, introduced and studied in Pitman

(1996), are a very general class of discrete random probability measures p̃ =
∑

j≥1 p̃j δXj
defined by the
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assumption that the weights p̃j are independent of the locations Xj . Such a generality provides some

insight on the structural properties of these random probability measures; however, for possible uses

in concrete applications, a distribution for the weights p̃j ’s has to be specified. Indeed, homogeneous

NRMI and Poisson–Kingman models belong to this class and can be seen as completely specified

species sampling models. On the other hand, NTR and non–homogeneous NRMI do not fall within

this framework.

Definition 7. Let (p̃j)j≥1 be a sequence of non–negative random weights such that
∑

j≥1 p̃j ≤ 1 and

suppose that (ξn)n≥1 is a sequence of i.i.d. random variables with non–atomic p.d. P0. Moreover, let

the ξi’s be independent from the p̃j ’s. Then, the random probability measure

p̃ =
∑

j≥1

p̃j δξj +



1−
∑

j≥1

p̃j



 P0

is a species sampling model.

Accordingly, a sequence of random variables (Xn)n≥1, which is conditionally i.i.d. given a species

sampling model, is said to be a species sampling sequence. Moreover, if in the previous definition one

has
∑

j≥1 p̃j = 1, almost surely, then the model is termed proper. We will focus on this specific case

and provide a description of a few well–known species sampling models.

The use of the terminology species sampling is not arbitrary. Indeed, discrete nonparametric priors

are not well suited for modelling directly data generated by a continuous distribution (in such cases

they are used at a latent level within a hierarchical mixture). However, as already noted in Pitman

(1996), when the data come from a discrete distribution as it happens for species sampling problems

in ecology, biology and population genetics, it is natural to assign a discrete nonparametric prior to

the unknown proportions. More precisely, suppose that a population consists of an ideally infinite

number of species: one can think of p̃i as the proportion of the i–th species in the population and ξi

is the label assigned to species i. Since the labels ξi are generated by a non–atomic distribution they

are almost surely distinct: hence, distinct species will have distinct labels attached. The following

characterization provides a formal description of the family of predictive distributions induced by a

species sampling model.

Theorem 11. (Pitman, 1996) Let (ξn)n≥1 be a sequence of i.i.d. random variables with p.d. P0.

Then (Xn)n≥1 is a species sampling sequence if and only if there exists a collection of weights

{pj,n(n1, . . . , nk) : 1 ≤ j ≤ k, 1 ≤ k ≤ n, n ≥ 1} such that X1 = ξ1 and, for any n ≥ 1,

Xn+1 | (X1, . . . , Xn) =







ξn+1 with prob pkn+1,n(n1, . . . , nkn , 1)

X∗n,j with prob pkn,n(n1, . . . , nj + 1, . . . , nkn)

where kn is the number of distinct values X∗n,1, . . . , X
∗
n,kn

among the conditioning observations.

The main issue with the statement above lies in the fact that it guarantees the existence of the

predictive weights pj,n(n1, . . . , nk), but it does not provide any hint on their form. As mentioned

earlier, in order to evaluate the predictive distribution it is necessary to assign a p.d. to the weights.

An alternative to the normalization procedure used for NRMI and PK models, is represented by the
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stick–breaking mechanism which generates species sampling models with stick–breaking weights. Let

(Vi)i≥1 be a sequence of independent random variables taking values in [0, 1] and set

p̃1 = V1, p̃i = Vi

i−1
∏

j=1

(1− Vj) i ≥ 2.

These random weights define a proper species sampling model if and only if
∑

i≥1E [log(1− Vi)] =

−∞. See Ishwaran and James (2001). The rationale of the construction is apparent. Suppose one has

a unit length stick and breaks it into two bits of length V1 and 1− V1. The first bit represents p̃1 and

in order to obtain p̃2 it is enough to split the remaining part, of length 1− V1, into two parts having

respective lengths V2(1 − V1) and (1 − V2)(1 − V1). The former will coincide with p̃2 and the latter

will be split to generate p̃3, and so on. The Dirichlet process with parameter measure α represents a

special case, which corresponds to the Sethuraman (1994) series representation: if α(X) = θ, then the

Vi’s are i.i.d. with Beta(1, θ) distribution. Another nonparametric prior which admits a stick–breaking

construction is the PD(σ, θ) process. If in the stick–breaking construction one takes independent Vi’s

such that

Vi ∼ Beta(θ + iσ, 1− σ),

the resulting p̃ is a PD(σ, θ) process. See Pitman (1995). Moreover, Teh, Görür and Ghahramani

(2007) derived a simple and interesting construction of the beta process, which is based on a variation

of the stick–breaking scheme described above.

Remark 4. There has recently been a growing interest for stick–breaking priors as a tool for specifying

priors within regression problems. Based on an initial idea set forth by MacEachern (1999, 2000, 2001)

who introduced the so–called dependent Dirichlet process, many subsequent papers have provided

variants of the stick–breaking construction so to allow either the random masses p̃j or the random

locations Xi to depend on a set of covariates z ∈ R
d. In this respect, stick–breaking priors are

particularly useful, since they allow to introduce dependence in a relatively simple way either through

the random masses p̃j or through the random locations Xi’s. This leads to a family of random

probability measures {p̃z : z ∈ R
d} where

p̃z =
∑

j≥1

p̃j,z δXj,z
.

A natural device for incorporating dependence on z into the p̃j ’s is to let the variables Vi depend on

z ∈ R
d: for example one might have Vi,z ∼ Beta(az, bz). As for the dependence of the locations on

z, the most natural approach is to take the Xi,z i.i.d. with distribution P0,z. Anyhow, we will not

enter the technical details related to these priors: these, and other interesting proposals, are going to

be described extensively in the chapter written by D. Dunson. �

Turning attention back to the PD(σ, θ) process seen within the species sampling framework, the

weights pj,n defining the predictive distribution induced by p̃ are known. Indeed, if ξ1, . . . , ξn are

i.i.d. random variables with distribution P0, then X1 = ξ1 and, for any i ≥ 2, one has

Xn+1 | (X1, . . . , Xn) =







ξn+1 with prob (θ + σkn)/(θ + n)

X∗n,j with prob (nn,j − σ)/(θ + n)
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with X∗n,j being the j–th of the kn distinct species observed among X1, . . . , Xn and nn,j is the number

of times the j–th species X∗n,j has been observed. Besides the characterization in terms of predictive

distributions, Pitman (1996) has also provided a representation of the posterior distribution of a

PD(σ, θ) process p̃, given the data X. Suppose E[p̃] = P0 and let X = (X1, . . . , Xn) be such that it

contains k ≤ n distinct values X∗1 , . . . , X
∗
k , with respective frequencies n1, . . . , nk. Then

(39) p̃ |X
d
=

k
∑

j=1

p∗j δX∗j +



1−
k

∑

j=1

p∗j



 p̃(k)

where p̃(k) is a PD(σ, θ+kσ) such that E[p̃(k)] = P0 and (p
∗
1, . . . , p

∗
k) ∼ Dir(n1−σ, . . . , nk−σ, θ+kσ).

The posterior distribution of a PD(σ, θ) process can also be described in terms of a mixture with respect

to a latent random variable, thus replicating the structure already encountered for NRMI. Let X be,

as usual, the set of n data with k ≤ n distinct values X∗1 , . . . , X
∗
k and let Uk be a positive random

variable with density

q
σ,θ,k

(u) =
σ

Γ(k + θ/σ)
uθ+kσ−1 e−u

σ

It can be shown that the distribution of a PD(σ, θ) process, conditional on the data X and on Uk,

coincides with the distribution of a normalized CRM

µ̃
Uk
+

k
∑

i=1

J
(Uk)
i δX∗

i

where µ̃
Uk

is a generalized gamma process with ρ
(Uk)
x (ds) = ρ(Uk)(ds) = σ

Γ(1−σ) s
−1−σ e−Uk s ds. The

jumps J
(Uk)
i at the observations X∗i are independent gamma random variables with E[J

(Uk)
i ] = (ni −

σ)/Uk. Moreover, the jumps J
(Uk)
i and the random measure µ̃

Uk
are, conditional on Uk, independent.

This characterization shows quite nicely the relation between the posterior behaviour of the PD(σ, θ)

process and of the generalized gamma NRMI, detailed in Example 8. Finally, note that the posterior

representation in (39) is easily recovered by integrating out Uk.

Remark 5. Species prediction problems based on these models have been considered by Lijoi, Mena and

Prünster (2007b). Specifically, they assume that data are directed by a Gibbs–type prior. Condition-

ally on X1, . . . , Xn, exact evaluations are derived for the following quantities: the p.d. of the number

of new species that will be detected among the observations Xn+1, . . . , Xn+m; the probability that

the observation Xn+m+1 will show a new species. Various applications, such as, e.g., gene discovery

prediction in genomics, illustrate nicely how discrete nonparametric priors can be successfully used to

model directly the data, if these exhibit ties. In this context the need for predictive structures, which

exhibit a more flexible clustering mechanism than the one induced by the Dirichlet process, becomes

apparent.

4 Models for density estimation

Up to now we have mainly focused on nonparametric priors, which select almost surely discrete

probability measures. Due to the nonparametric nature of the models, it is clear the set of such discrete

distributions is not dominated by a fixed σ–finite measure. In the present section we illustrate two

different approaches for defining priors whose realizations yield, almost surely, p.d.’s admitting a
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density function with respect to (w.r.t.) some σ–finite measure λ on X. The results we are going to

describe are useful, for example, when one wants to model directly data generated by a continuous

distribution on X = R.

4.1. Mixture models. A useful and general device for defining a prior on densities has been

first suggested by Lo (1984). The basic idea consists in introducing a sequence of exchangeable latent

variables (θn)n≥1 governed by some discrete random probability measure p̃ on Θ, a Polish space

endowed with the Borel σ–field, which is convoluted with a suitable kernel k. To be more precise,

k is a jointly measurable application from X × Θ to R
+ and, given the dominating measure λ, the

application C 7→
∫

C
k(x, θ)λ(dx) defines a probability measure on X for any θ ∈ Θ. Hence, for any

θ, k( · , θ) is a density function on X w.r.t. λ. A hierarchical mixture model can, then, be defined as

follows

Xi | θi, p̃
ind
∼ k( · , θi)

θi | p̃
iid
∼ p̃

p̃ ∼ Q

This is the same as saying that, given the random density

(40) x 7→ f̃(x) =

∫

Θ

k(x, θ) p̃(dθ) =
∑

j≥1

k(x, θj) p̃j ,

the observations Xi are independent and identically distributed and the common p.d. has density

function f̃ . In (40), the p̃j ’s are the probability masses associated to the discrete mixing distribution

p̃. The original formulation of the model provided by Lo (1984) sets p̃ to coincide with a Dirichlet

process: hence it takes on the name of mixture of Dirichlet process whose acronym MDP is widely used

in the Bayesian literature. It is apparent that one can replace the Dirichlet process in (40) with any

of the discrete random probability measures examined in Section 3. As for the choice of the kernels

the most widely used is represented by the Gaussian kernel: in this case, if the nonparametric prior is

assigned to both mean and variance, then p̃ is defined on Θ = R×R
+. Such an approach to density

estimation yields, as a by–product, a natural framework for investigating the clustering structure

within the observed data. Indeed, given the discreteness of p̃, there can be ties among the latent

variables in the sense that P[θi = θj ] > 0 for any i 6= j. Possible coincidences among the θi’s induce

a partition structure within the observations. Suppose, for instance, that there are k ≤ n distinct

values θ∗1 , . . . , θ
∗
k among θ1, . . . , θn and let Cj := {i : θi = θ∗j } for j = 1, . . . , k. According to such a

definition, any two different indices i and l belong to the same group Cj if and only if θi = θl = θ∗j .

Hence, the Cj ’s describe a clustering scheme for the observations Xi: any two observations Xi and

Xl belong to the same cluster if and only if i, l ∈ Ij for some j. In particular, the number of distinct

values θ∗i among the latent θi’s identifies the number of clusters into which the n observations can be

partitioned. Within the framework of nonparametric hierarchical mixture models, one might, then,

be interested in determining an estimate of the density f̃ and in evaluating the posterior distribution

of the number of clusters featured by the observed data. There are, however, some difficulties that

do not allow for an exact numerical evaluation of the quantities of interest. Just to give an idea of

the computational problems that arise, let L ( · |X) denote the posterior distribution of the k distinct
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latent variables θ∗i , given the data X = (X1, . . . , Xn). If E[p̃] = P0 for some non–atomic p.d. P0, then

one has that

L (dθ∗1 · · · dθ
∗
k |X) ∝ Π

(n)
k (n1, . . . , nk)

k
∏

j=1

∏

i∈Cj

k(Xi, θ
∗
j )P0(dθ

∗
j )

where it is to be emphasized that the partition sets Cj depend on the specific vector (n1, . . . , nk) in

∆n,k and Π
(n)
k is the EPPF induced by p̃. In this case a Bayesian estimate of f̃ would be defined by

E

[

f̃(x)
∣

∣X
]

=
n

∑

k=1

∫

Θk

∫

Θ

k(x, θ)
∑

π∈Pn,k

E [p̃(dθ) | θ∗1 , . . . , θ
∗
k] L (dθ∗1 · · · dθ

∗
k |X)

where Pn,k is the space of all partitions π of {1, . . . , n} into n(π) = k sets. In the previous expres-

sion, the quantity E [p̃(dθ) | θ∗1 , . . . , θ
∗
k] is the predictive distribution which, as seen in the previous

Section, can be determined in closed form for various priors. Hence, the source of problems in the

above expression is the evaluation of the sum over Pn,k. Analogous difficulties need to be faced when

trying to determine the posterior distribution of the number of clusters Kn among the n observations

X1, . . . , Xn. Such technical difficulties can be overcome by resorting to well–established MCMC algo-

rithms applicable to hierarchical mixture models. The main reference in this area is represented by

the algorithm devised in Escobar (1988, 1994) and Escobar and West (1995) and originally developed

for the MDP model. Here below we provide a description which applies to any discrete random prob-

ability measure p̃ for which the EPPF or, equivalently, the induced system of predictive distributions

is known in explicit form, a fact first noted in Ishwaran and James (2001, 2003). In order to sample

θ1, . . . , θn from the posterior L ( · |X), one exploits the following predictive distributions

(41) P[θi ∈ dθi|θ−i,X] = q∗i,0k(Xi, θi)P0(dθi) +

ki,n−1
∑

j=1

q∗i,j δθ∗i,j (dθi)

where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) and ki,n−1 is the number of distinct values θ
∗
i,j in the vector

θ−i, with nj being the frequency of θ
∗
i,j in θ−i. As far as the weights in (41) are concerned, they are

given by

q∗i,0 ∝ Π
(n)
ki,n−1+1

(ni,1, . . . , ni,ki,n−1
, 1)

∫

Θ

k(Xi, θ)P0(dθ)

q∗i,j ∝ Π
(n)
ki,n−1

(ni,1, . . . , ni,j + 1, . . . , ni,ki,n−1) k(Xi, θ
∗
i,j)

and are such that
∑ki,n−1

j=0 q∗i,j = 1. Note that these weights reduce to

q∗i,0 ∝ θ

∫

Θ

k(Xi, θ)P0(dθ), q∗i,j ∝ ni,j k(Xi, θ
∗
i,j),

with ni,j being the frequency with which θ∗i,j appears in θ−i, when p̃ is the Dirichlet process prior.

The algorithm which allows to sample θ1, . . . , θn from the posterior, given X, works as follows

1) Sample i.i.d. initial values θ
(0)
1 , . . . , θ

(0)
n from P0

2) At each subsequent iteration t ≥ 1 generate the vector (θ
(t)
1 , . . . , θ

(t)
n ) from the corresponding

distributions

θ
(t)
1 ∼ P

[

θ
(t)
1 ∈ dθ1

∣

∣ θ
(t−1)
2 , . . . , θ(t−1)n ,X

]
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θ
(t)
2 ∼ P

[

θ
(t)
2 ∈ dθ2

∣

∣ θ
(t)
1 , θ

(t−1)
3 , . . . , θ(t−1)n ,X

]

...
...

θ(t)n ∼ P

[

θ(t)n ∈ dθn
∣

∣ θ
(t)
1 , . . . , θ

(t)
n−1,X

]

Each iteration from the algorithm will yield the number k(t) of clusters and the distinct values

θ∗1,t, . . . , θ
∗
k(t),t

. Using the output of N iterations, after a suitable number of burn–in period sweeps,

one can evaluate a posterior estimate of f̃

f̂(x) =
1

N

N
∑

t=1

∫

Θ

k(x, θ) E
[

p̃(dθ)
∣

∣ θ∗1,t, . . . , θ
∗
k(t),t

]

and the posterior distribution of the number of clusters

P
[

Kn = k
∣

∣X
]

≈
1

N

N
∑

t=1

1{k}

(

k(t)
)

.

Remark 6. There are two possible problems related to the above Gibbs sampling scheme. The first

one consists in a slow mixing of the chain. This drawback usually appears when the weights q∗i,j are

much greater than q∗i,0. A remedy is represented by the addition of a further acceleration step. Once

the number k(t) of distinct latents has been sampled according to the scheme above, one proceeds to

re–sampling the values of the k(t) distinct latent variables from their marginal distribution. In other

terms, given k(t) and the vector θ(t) = (θ∗1,t, . . . , θ
∗
k(t),t

), one re–samples the labels of θ(t) from the

distribution

P

[

θ∗1,t ∈ dθ1, . . . , θ
∗
k(t),t ∈ dθk(t)

∣

∣X,θ(t)
]

∝
k(t)
∏

j=1

∏

i∈Cj,t

k(Xi, θj)P0(dθj)

where the Cj,t are sets of indices denoting the membership to each of the k
(t) clusters at iteration t.

Such an additional sampling step has been suggested in MacEachern (1994) and Bush and MacEachern

(1996). See also Ishwaran and James (2001). Another difficulty arises for non–conjugate models where

it is not possible to compute exactly the integral
∫

Θ
k(Xi, θ)P0(dθ) which defines q

∗
i,0. A variant to

the sampler in this case has been proposed by MacEachern and Müller (1998), Neal (2000) and Jain

and Neal (2007). Note that, even if these remedies where devised for the MDP, they work for any

mixture of random probability measure. �

Remark 7. According to a terminology adopted in Papaspiliopoulos and Roberts (2008), the previous

Gibbs sampling scheme can be seen as a marginal method in the sense that it exploits the integration

with respect to the underlying p̃. The alternative family of algorithms is termed conditional methods:

those rely on the simulation of the whole model and, hence, of the latent random probability measure

as well. The simulation of p̃ can be achieved either by resorting to the Ferguson and Klass (1972)

algorithm or by applying MCMC methods tailored for stick–breaking priors. See Ishwaran and James

(2001, 2003b), Papaspiliopoulos and Roberts (2008) and Walker (2007). Here we do not pursue this

point and refer the interested reader to the above mentioned articles. In particular, Papaspiliopoulos

and Roberts (2008) discuss a comparison between the two methods. It is important to stress that both

approaches require an analytic knowledge of the posterior behaviour of the latent random probability
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measure: for marginal methods the key ingredient is represented by the predictive distributions,

whereas for conditional methods a posterior representation for p̃ is essential. �

We now describe a few examples where the EPPF is known and a full Bayesian analysis for density

estimation and clustering can be carried out using marginal methods.

Example 10. (Mixture of the PD(σ, θ) process). These mixtures have been examined by Ishwaran

and James (2001) and, within the more general framework of species sampling models, by Ishwaran

and James (2003a). For a PD(σ, θ) process p̃, equation (36) yields the following weights

q∗i,0 ∝ (θ + σki,n−1)

∫

Θ

k(Xi, θ)P0(dθ), q∗i,j ∝ (ni,j − σ) k(Xi, θ
∗
i,j)

for any j = 1, . . . , ki,n−1. As expected, when σ → 0 one obtains the weights corresponding to the

Dirichlet process. �

Example 11. (Mixture of the generalized gamma NRMI). If the mixing p̃ is a normalized

generalized gamma process described in Example 6, one obtains a mixture discussed in Lijoi, Mena

and Prünster (2007a). The Gibbs sampler is again implemented in a straightforward way since the

EPPF is known: the weights q∗i,j , for j = 0, . . . , ki,n−1, can be determined from the weights of the

predictive, w
(n−1)
ki,n−1

and w
(n−1)
j,ki,n−1

as displayed in Subsection 3.2. In Lijoi, Mena and Prünster (2007a)

it is observed that the parameter σ has a significant influence on the description of the clustering

structure of the data. First of all, the prior distribution on the number of components of the mixture,

induced by p̃, is quite flat if σ is not close to 0. This is in clear contrast to the highly peaked distribution

corresponding to Dirichlet case. Moreover, values of σ close to 1 tend to favour the formation of a

large number of clusters most of which of size (frequency) nj = 1. This phenomenon gives rise to a

reinforcement mechanism driven by σ: the mass allocation, in the predictive distribution, is such that

clusters of small size are penalized whereas those few groups with large frequencies are reinforced in

the sense that it is much more likely that they will be re–observed. The role of σ suggests a slight

modification of the Gibbs sampler above and one needs to consider the full conditional of σ as well.

Hence, if it is supposed that the prior for σ is some density q on [0, 1], one finds out that the conditional

distribution of σ, given the data X and the latent variables θ, is

q
(

σ
∣

∣X,θ
)

= q(σ |θ) ∝ q(σ)σk−1





k
∏

j=1

(1− σ)nj−1





n−1
∑

i=0

(

n− 1

i

)

(−1)i βi/σ Γ

(

k −
i

σ
; β

)

where, again, n1, . . . , nk are the frequencies with which the Kn = k distinct values among the θi’s are

recorded. This strategy turns out to be very useful when inferring on the number of clusters featured

by the data. It is apparent that similar comments about the role of σ apply to the PD(σ, θ) process

as well. �

We close this Subsection with another interesting model of mixture introduced in Petrone (1999a,b):

random Bernstein polynomials.

Example 12. (Random Bernstein polynomials). A popular example of nonparametric mixture

model for density estimation has been introduced by Petrone (1999a,b). The definition of the prior

is inspired by the use of Bernstein polynomials for the approximation of real functions. Indeed, it

is well–known that if F is a continuous function defined on [0, 1] then the polynomial of degree m
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defined by

(42) BFm(x) =

m
∑

j=0

F

(

j

m

) (

m

j

)

xj(1− x)k−j

converges, uniformly on [0, 1], to F as m → ∞. The function BFm in (42) takes on the name of

Bernstein polynomial on [0, 1]. It is clear that, when F is a distribution function on [0, 1], then BFm

is a distribution function as well. Moreover, if the p.d. corresponding to F does not have a positive

mass on {0} and β(x; a, b) denote the density function of a beta random variable with parameters a

and b, then

(43) bFm(x) =

m
∑

j=1

[F (j/m)− F ((j − 1)/m)] β(x; j,m− j + 1)

for any x ∈ [0, 1] is named a Bernstein density. If F has density f , it can be shown that bFm → f

pointwise as m → ∞. These preliminary remarks on approximation properties for Bernstein poly-

nomials suggest that a prior on the space of densities on [0, 1] can be constructed by randomizing

both the polynomial degree m and the weights of the mixture (43). In order to properly define a ran-

dom Bernstein prior, let p̃ be, for instance, some NRMI generated by a CRM µ̃ with Lévy intensity

ρx(ds)α(dx) concentrated on R
+ × [0, 1] and α([0, 1]) = a ∈ (0,∞). Next, for any integer m ≥ 1,

introduce a discretization of α as follows

α(m) =
m
∑

j=1

αj,m δj/m

where the weights αj,m are non–negative and such that
∑m
j=1 αj,m = a. One may note that the

intensity ν(m)(ds, dx) = ρx(ds)α
(m)(dx) defines a NRMI p̃m which is still concentrated on Sm :=

{1/m, . . . , (m− 1)/m, 1}, i.e.

p̃m =
m
∑

j=1

p̃j,m δj/m

where p̃j,m = p(((j − 1)/m, j/m]), for any j = 2, . . . ,m, and p̃1,m = p̃([0, 1/m]). Hence, if π is a

prior on {1, 2, . . .}, a Bernstein random polynomial prior is defined as the p.d. of the random density

f̃(x) =
∑

m≥1 π(m) f̃m(x), where

(44) f̃m(x) =

∫

[0,1]

β(x;my,m−my + 1) p̃m(dy).

is a mixture of the type (40). Conditional on m, f̃m defines a prior on the space of densities on [0, 1].

The previous definition can be given by introducing a vector of latent variables Y = (Y1, . . . , Yn) and

function x 7→ Zm(x) =
∑m
j=1 j 1Bj,m

(x) where B1,m = [0, 1/m] and Bj,m = ((j − 1)/m, j/m] for

any j = 2, . . . ,m. Hence, a Bernstein random polynomial prior can be defined through the following

hierarchical mixture model

Xj |m, p̃, Yj
ind
∼ Beta(Zm(Yj), m− Zm(Yj) + 1) j = 1, . . . , n

Yj |m, p̃
iid
∼ p̃

p̃ |m ∼ Q
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m ∼ π

The original definition provided in Petrone (1999a) involves a Dirichlet process, p̃, with parameter

measure α and the author refers to it as a Bernstein–Dirichlet prior with parameters (π, α). The

use of the Dirichlet process is very useful, especially when implementing the MCMC strategy de-

vised in Petrone (1999a,b) since, conditional on m, the vector of weights (p̃1,m, . . . , p̃m−1,m) in (44)

turns out to be distributed according to an (m − 1)–variate Dirichlet distribution with parameters

(α1,m, . . . , αm,m). Nonetheless, the posterior distribution of (m, p̃m), given X = (X1, . . . , Xn), is

proportional to π(m)π(p1,m, . . . , pm−1,m)
∏n
i=1 f̃m(Xi) which is analytically intractable since it con-

sists of a product of mixtures. For example, it is impossible to evaluate the posterior distribution

π(m|X1, . . . , Xn) which is of great interest since it allows to infer on the number of components in

the mixture and, hence, on the number of clusters in the population. As for density estimation, the

Bayesian estimate of f̃ with respect to a squared loss function is given by

E[f̃(x) |X1, . . . , Xn] =
∑

m≥1

f̃∗m(x)π(m|X1, . . . , Xm)

with f̃∗m(x) =
∑m
j=1E[p̃j,m |m,X1, . . . , Xn]β(x; j, m− j+1). This entails that the posterior estimate

of f̃ is still a Bernstein random polynomial with updated weights. See Petrone (1999b).

Given the analytical difficulties we have just sketched, performing a full Bayesian analysis asks for

the application of suitable computational schemes such as the MCMC algorithm devised in Petrone

(1999b). The implementation of the algorithm is tailored to the Bernstein–Dirichlet process prior.

It is assumed that the distribution function x 7→ F0(x) = α([0, x])/a is absolutely continuous with

density f0. Next, by making use of the latent variables Y , a simple application of Bayes’ theorem

shows that

π(m|Y ,X) ∝ π(m)

m
∏

i=1

β(Xi; Zm(Yj), m− Zm(Yj) + 1).

On the other hand, since p̃ is the Dirichlet process with parameter measure α, one has the following

predictive structure for the latent variables

(45) π(Yj |m,Y−j ,X) ∝ q(Xj ,m) f0(Yj)β(Xj ; Zm(Yj), m− Zm(Yj) + 1) +
∑

i 6=j

q∗i (Xj ,m) δYi

with Y−j denoting the vector of latent variables obtained by deleting Yj , the density b
F0
m defined as

in (43) and

q(Xj ,m) ∝ a bF0
m (Xj), q∗i (Xj ,m) ∝ β(Xj ; Zm(Yi), m− Zm(Yi) + 1)

such that q(Xj ,m) +
∑

i 6=j q
∗
i (Xj ,m) = 1. The predictive distribution in (45) implies that: (i)

with probability q(Xj ,m) the value of Yj is sampled from a density f(y) ∝ f0(y)β(Xj ; Zm(y), m −

Zm(y) + 1) and (ii) with probability q∗i (Xj ,m) the value of Yj coincides with Yi. Hence, one can

apply the following Gibbs sampling algorithm in order to sample from the posterior distribution of

(m,Y , p̃1,m, . . . , p̃m,m). Starting from initial values (m(0),Y (0), p
(0)
1,m, . . . , p

(0)
m,m), at iteration t ≥ 1 one

samples

(1) m(t) from π(m |Y (t−1),X)



Models for density estimation 34

(2) Y
(t)
i from the predictive π(Yi |m

(t), Y
(t)
1 , . . . , Y

(t)
i−1, Y

(t−1)
i+1 , . . . , Y

(t−1)
n ,X) described in (45)

(3) (p
(t)
1,m, . . . , p

(t)
m,m) from an (m − 1)–variate Dirichlet distribution with parameters (α1,m(t) +

n1, . . . , αm(t),m(t)+nm(t)), where nj is the number of latent variables in (Y
(t)
1 , . . . , Y

(t)
n ) in Bj,m(t) .

For further details, see Petrone (1999a). �

4.2. Pólya trees. Pólya trees are another example of priors which, under suitable conditions,

are concentrated on absolutely continuous p.d.’s with respect to the Lebesgue measure on R. A first

definition of Pólya trees can be found in Ferguson (1974) and a systematic treatment is provided by

Lavine (1992, 1994) and Mauldin, Sudderth and Williams (1992). A useful preliminary concept is that

of tailfree prior introduced by Freedman (1963). Let Γ = {Γk : k ≥ 1} be a nested tree of measurable

partitions of X. This means that Γk+1 is a refinement of Γk, i.e. each set in Γk+1 is the union of sets

in Γk, and that ∪k≥1Γk generates X , with X denoting the Borel σ–algebra of X. One can, then,

give the following

Definition 8. A random probability measure p̃ on X ⊂ R is tailfree with respect to Γ if there exist

non–negative random variables {Vk,B : k ≥ 1, B ∈ Γk} such that

(i) the families {V1,B : B ∈ Γ1}, {V2,B : B ∈ Γ2}, . . ., are independent

(ii) if Bk ⊂ Bk−1 ⊂ · · · ⊂ B1, with Bj ∈ Γj , then p̃(Bk) =
∏k
j=1 Vj,Bj

For tailfree processes a structural conjugacy property holds true: if p̃ is tailfree with respect to Γ,

then p̃ given the data is still tailfree with respect to Γ.

Pólya trees can be recovered as special case of tailfree processes with the Vk,B variables having a

beta distribution. To illustrate the connection, consider the family Γ of partitions described as follows

Γ1 = {B0, B1}, Γ2 = {B00, B01, B10, B11}, Γ3 = {B000, B001, B010, . . . , B111}

and so on. In the above definition of the Γi’s we set B0 = B00 ∪B01, B1 = B10 ∪B11 and, given sets

Bε0 and Bε1 in Γk+1, one has

Bε0 ∪Bε1 = Bε

for any ε = (ε1, . . . , εk) ∈ E
k = {0, 1}k. With this notation, the k–th partition can be described as

Γk = {Bε : ε ∈ Ek}. Finally, let E∗ = ∪k≥1E
k be the set of all sequences of zeros and ones and

A = {αε : ε ∈ E
∗} a set of non–negative real numbers.

Definition 9. A random probability measure p̃ is a Pólya tree process with respect to Γ = {Γk : k ≥ 1}

and A , in symbols p̃ ∼ PT(A ,Γ), if

(i) {p̃(Bε0|Bε) : ε ∈ E
∗} is a collection of independent random variables

(ii) p̃(Bε0|Bε) ∼ Beta(αε0, αε1)

The existence of a Pólya tree with respect to the parameters A is guaranteed by the validity of

the following conditions expressed in terms of infinite products

αε0

αε0 + αε1

αε00

αε00 + αε01
· · · = 0,

α1
α0 + α1

α11
α10 + α11

· · · = 0
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These ensure that the Pólya random probability measure is countably additive, almost surely. For a

proof of this fact see, e.g. , Ghosh and Ramamoorthi (2003).

One of the most relevant properties of a Pólya tree prior PT(A ,Γ) is that, under a suitable condition

on the parameters in A , the realizations of p̃ are, almost surely, p.d.’s that are absolutely continuous.

In order to illustrate such a condition we confine ourselves to the case where X = [0, 1], the extension

to the case X = R being straightforward. Suppose that Γ is a sequence of dyadic partitions of [0, 1],

i.e. with ε ∈ Ek one has Bε = (
∑k
j=1 εj 2

−j ,
∑k
j=1 εj 2

−j + 2−k]. As noted in Ferguson (1974), using

a result in Kraft (1964), one can show that if p̃ ∼ PT(A ,Γ) and the αε1 ··· εk ’s, seen as function of the

level on the partition tree, increase at a rate of at k2 or faster, then the p.d. of p̃ is concentrated on

the set of probability measures that are absolutely continuous with respect to the Lebesgue measure.

The beta distribution in the definition above allows for a straightforward characterization of the

marginal distribution of the observations. Indeed, if (Xn)n≥1 is an exchangeable sequence of observa-

tions governed by a PT(A ,Γ) according to model (1), then any Bε ∈ Γk is such that Bε = ∩
k
i=1Bε1···εi

and

P[X1 ∈ Bε] = E [p̃(Bε)] = E

[

k
∏

i=1

p̃(Bε1···εi |Bε1···εi−1)

]

=
k
∏

i=1

E
[

p̃(Bε1···εi |Bε1···εi−1
)
]

=
αε1

α0 + α1

k
∏

i=2

αε1···εi
αε1···εi−10 + αε1···εi−11

(46)

where we have set, by convention, p̃(Bε1 |Bε1ε0) = p̃(Bε1) and the last two equalities follow, respec-

tively, from the independence among the p̃(Bε1···εi |Bε1···εi−1
) and the fact that each of these random

variables has beta distribution. Similar arguments lead one to determine the posterior distribution of

a PT(A ,Γ) prior. See Ferguson (1974), Lavine (1992) and Mauldin, Sudderth and Williams (1992).

Theorem 12. Let p̃ ∼ PT(A ,Γ) and (Xn)n≥1 is an exchangeable sequence of random elements taking

values in X and governed by the p.d. of p̃. Then

p̃ |X ∼ PT(A ∗
n ,Γ)

where A ∗
n = {α∗n,ε : ε ∈ E∗} is the updated set of parameters defined by α∗n,ε = αε +

∑n
i=1 1Bε

(Xi)

and X = (X1, . . . , Xn).

Hence, Pólya trees feature parametric conjugacy. The posterior distribution can be employed in

order to deduce the system of predictive distributions associated to p̃. Since P [Xn+1 ∈ Bε |X] =

E [p̃(Bε) |X] one can combine the previous theorem with the marginal distribution in (46) to obtain

a characterization of the predictive distribution of Xn+1 given the data. Indeed, since p̃|X
d
= p̃n ∼

PT(A ∗
n ,Γ), then for any ε ∈ Ek

P [Xn+1 ∈ Bε |X] =

k
∏

i=1

E
[

p̃n(Bε1···εi |Bε1···εi−1
)
]

=
αε1 + nε1
α0 + α1 + n

k
∏

j=2

αε1 ··· εj + nε1 ··· εj
αε1 ··· εj−10 + αε1 ··· εj−11 + nε1 ··· εj−1
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where nε1 ··· εj =
∑n
i=1 1Bε1 ··· εj

(Xi) is the number of observations in Bε1 ··· εj for j ∈ {1, . . . , k}. The

displayed expression suggests that, even if the predictive density exists, it can be discontinuous and

the discontinuities will depend on the specific sequence of partitions Γ.

The partition tree Γ and the parameters A can be used to incorporate prior opinions on the

unknown distribution function. Lavine (1992) provides some hints in this direction. Suppose, e.g. ,

that the prior guess at the shape of p̃ is P0. Hence, one would like to fix the Pólya tree such that

E[p̃] = P0. If F0(x) = P0((−∞, x]), for any x in R, and F−10 (y) = inf{x : F (x) ≥ y} is the quantile

function of F0, for any y ∈ [0, 1], then the sequence Γ of partitions can be fixed in such a way that

Bε =

(

F−10

(

k
∑

i=1

εi 2
−i

)

, F−10

(

k
∑

i=1

εi 2
−i + 2−k

)]

for any k ≥ 1 and ε ∈ Ek. Then, by setting αε0 = αε1 for any ε ∈ E∗, one has

E [p̃(Bε)] =

k
∏

i=1

αε1···εi
αε1···εi−10 + αε1···εi−11

= 2−k = P0(Bε)

for any k ≥ 1 and ε ∈ Ek. Since ∪k≥1Γk generates B(R), this implies E[p̃] = P0. Having centered

the prior on the desired P0, one still has to face the issue of specifying the actual values of the αε’s.

These control the strength of the prior belief in P0, in the sense that large αε’s tend to concentrate the

Pólya tree around the prior guess P0. Moreover, and more importantly, the choice of A determines

the almost sure realizations of p̃. As we have already noted, if X = [0, 1] and Γ is a sequence of nested

partitions of X into dyadic intervals, then αε = k2, for any ε ∈ Ek and k ≥ 1, implies that p̃ is (almost

surely) absolutely continuous. If, on the other hand αε = 2−k, for any ε ∈ Ek and k ≥ 1, then p̃ is

a Dirichlet process, which selects discrete probabilities with probability 1. Finally, if αε = 1 for any

ε ∈ E∗, then p̃ is continuous singular with probability 1. See Ferguson (1974) and Mauldin, Sudderth

and Williams (1992) for some comments on this issue and further results.

Also alternative strategies are available for selecting the tree of partitions Γ. For example, suppose

the data consist of censored observations, with censoring times occurring at c1 < c2 < · · · < cn.

Within the partitions Γ1, . . . ,Γn, choose B1 = (c1,∞), B11 = (c2,∞), and so on. If p̃ ∼ PT(A ,Γ),

then the posterior of p̃, given the n censored data, is PT(A ∗,Γ). The parameters in A ∗ are identical

to those in A , with the exception of α∗1 = α1 + n, α∗11 = α11 + n − 1, . . ., α∗11 ··· 1 = α11 ··· 1 + 1. For

an application of Pólya trees to survival analysis see Muliere and Walker (1997).

Pólya trees represent an important extension of the Dirichlet process since they stand as priors

for absolutely continuous distributions on R: nonetheless, they features a serious drawback, since the

inferences deduced from a Pólya tree prior heavily depend on the specific sequence of partitions Γ. In

order to overcome the issue, Lavine (1992) suggests the use of mixtures of Pólya trees. This amounts

to assuming the existence of random variables θ and ξ such that

p̃ | (θ, ξ) ∼ PT(A θ,Γξ)

(θ, ξ) ∼ π

If the prior π on the mixing parameters satisfies some suitable conditions, then the dependence on the

partitions is smoothed out and the predictive densities can be continuous. A similar device is adopted

in Paddock, Ruggeri, Lavine and West (2003) where the authors introduce a sequence of independent
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random variables which determine the end points partition elements in Γk, for any k ≥ 1. Mixtures of

Pólya trees are also used in Hanson and Johnson (2002) to model the regression error and the authors

investigate applications to semiparametric accelerated failure time models.

5 Random means

The investigation of general classes of priors as developed in the previous sections is of great

importance when it comes to study some quantities of statistical interest. Among these, here we

devote some attention to random means, namely to linear functionals of random probability measures

p̃(f) =
∫

f dp̃, with f being some measurable function defined on X. For instance, if the data represent

lifetimes,
∫

x p̃(dx) represents the random expected lifetime. The reason for focusing on this topic lies

not only in the statistical issues that can be addressed in terms of means, but also because many of

the results obtained for means of nonparametric priors do have important connections with seemingly

unrelated research topics such as, e.g. , excursions of Bessel processes, the moment problem, special

functions and combinatorics.

The first pioneering fundamental contributions to the study of means are due to D.M. Cifarelli and

E. Regazzini. In their papers (Cifarelli and Regazzini, 1979a, 1979b and 1990) they provide useful

insight into the problem and obtain closed form expressions for the p.d. of p̃(f) when p̃ is a Dirichlet

process. They first determine the remarkable identity for means of the Dirichlet process

(47) E

[

1

{1 + itp̃(f)}θ

]

= exp

{

−

∫

log(1 + itf) dα

}

∀t ∈ R

where f is any measurable function on X such that
∫

log(1 + |f |) dα < ∞ and θ = α(X) ∈ (0,∞).

The left–hand side of (47) is the Stieltjes transform of order θ of the p.d., say Mα,f , of the Dirichlet

mean p̃(f), while the right–hand side is the Laplace transform of
∫

f dγ̃ where γ̃ is a gamma process

with parameter measure α. Equation (47) has been termed Markov–Krein identity because of its

connections to the Markov moment problem, whereas it is named the Cifarelli–Regazzini identity in

James (2006b). By resorting to (47), Cifarelli and Regazzini (1990) apply an inversion formula for

Stieltjes transforms and obtain an expression for Mα,f . For example, if θ = 1, the density function

corresponding to Mα,f coincides with

mα,f (x) =
1

π
sin (πFα∗(x)) exp

{

−PV

∫

R

log |y − x|α∗(dy)

}

where α∗(B) = α({x ∈ R : f(x) ∈ B}) is the image measure of α through f , Fα∗ is the corresponding

distribution function and PV
∫

means that the integral is a principal–value integral. In Diaconis and

Kemperman (1996) one can find an interesting discussion with some applications of the formulae of

Cifarelli and Regazzini (1990).

Alternative expressions forMα,f can be found in Regazzini, Guglielmi and Di Nunno (2002) where

the authors rely on an inversion formula for characteristic functions due to Gurland (1948). Since, in

general, the exact analytic form of Mα,f is involved and difficult to evaluate, it is desirable to devise

some convenient method to sample fromMα,f or to approximate it numerically. For example, Muliere

and Tardella (1998) make use of the stick–breaking representation of the Dirichlet process and suggest

an approximation based on a random stopping rule. In Regazzini, Guglielmi and Di Nunno (2002)

one can find numerical approximation of Mα,f . In Lijoi and Regazzini (2004) it is noted that when
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the baseline measure α is concentrated on a finite number of points, then the left–hand side of (47)

coincides with the fourth Lauricella hypergeometric function. See Exton (1977). Such a connection has

been exploited in order to provide an extension of (47) where the order of the Stieltjes transform does

not need to coincide with the total mass of the baseline measure α. Other interesting characterizations

of Mα,f can also be found in Hjort and Ongaro (2005). It is worth noting that Romik (2004, 2005)

has recently pointed out how the p.d. Mα,f of a Dirichlet random mean coincides with the limiting

distribution of a particular hook walk: it precisely represents the p.d. of the point where the hook

walk intersects, on the plane, the graph of a continual Young diagram. Recall that a continual Young

diagrams is a positive increasing function g on some interval [a, b] and it can be seen as the continuous

analog of the Young diagram which is a graphic representation of a partition of an integer n. Romik

(2004, 2005) has considered the problem of determining a formula for the baseline measure α (with

support a bounded interval [ξ1, ξ2]) corresponding to a specified distribution Mα,f for the Dirichlet

random mean. The solution he obtains is described by

Fα(x) =
1

π
arccot

(

1

πmα,f (x)
PV

∫

[ξ1,ξ2]

mα,f (y)

y − x
dy

)

.

See also Cifarelli and Regazzini (1993) for an alternative representation of Fα and Hill and Monticino

(1998) for an allied contribution.

There have also been recent contributions to the analysis of linear functionals of more general

classes of priors of the type we have been presenting in this chapter. In Regazzini, Lijoi and Prünster

(2003) the authors resort to Gurland’s inversion formula for characteristic functions and provide an

expression for the distribution function of linear functionals p̃(f) of NRMIs. This approach can be

naturally extended to cover means of the mixture of a Dirichlet process (Nieto–Barajas, Prünster and

Walker, 2004). In Epifani, Lijoi and Prünster (2003) one can find an investigation of means of NTR

priors which are connected to exponential functionals of Lévy processes: these are of great interest

in the mathematical finance literature. The determination of the p.d. of a linear functional of a two–

parameter Poisson–Dirichlet process has been the focus of James, Lijoi and Prünster (2008). They rely

on a representation of the Stieltjes transform of p̃(f) as provided in Kerov (1998) and invert it. The

formulae they obtain are of relevance also for the study of excursions of Bessel processes, which nicely

highlights the connection of Bayes Nonparametrics with other areas in strong development. Indeed,

let Y = {Yt, t ≥ 0} denote a real–valued process, such that: (i) the zero set Z of Y is the range of a σ–

stable process and (ii) given |Y |, the signs of excursions of Y away from zero are chosen independently

of each other to be positive with probability p and negative with probability p̄ = 1 − p. Examples

of this kind of process are: Brownian motion (σ = p = 1/2); skew Brownian motion (σ = 1/2 and

0 < p < 1); symmetrized Bessel process of dimension 2− 2σ; skew Bessel process of dimension 2− 2σ.

Then for any random time T which is a measurable function of |Y |,

(48) AT =

∫ T

0

1(0,+∞)(Ys) ds

denotes the time spent positive by Y up to time T and AT /T coincides in distribution with the

distribution of p̃(f) where p̃ is a PD(σ, σ) process and f = 1C , the set C being such that α(C)/θ = p.

See Pitman and Yor (1997b) for a detailed analysis.
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6 Concluding remarks

In the present Chapter we have provided an overview of the various classes of priors which generalize

the Dirichlet process. As we have tried to highlight, most of them are suitable transformations of

CRMs and they all share a common a posteriori structure. As far as the tools for deriving posterior

representations are concerned, there are essentially two general techniques and both take the Laplace

functional in (3) as starting point. The first one, set forth in James (2002) and developed and refined

in subsequent papers, is termed Poisson partition calculus: the key idea consists in facing the problem

at the level of the Poisson process underlying the CRM, according to (7), and then to use Fubini–

type arguments. The second approach, developed by the two authors of the present review and first

outlined in Prünster (2002), tackles directly the problem at the CRM level, interprets observations as

derivatives of the Laplace functional and then obtains the posterior representations as Radon–Nikodým

derivatives.

A last remark concerns asymptotics, a research area under strong development which has been

accounted for in the Chapter by S. Ghosal. Among the asymptotic properties, consistency plays a pre-

dominant role. Despite the general validity of proper Bayesian Doob–style consistency, the “what if”

or frequentist approach to consistency set forth by Diaconis and Freedman (1986) has recently gained

great attention. The evaluation of a Bayesian procedure according to such a frequentist criterion is

appropriate when one believes that data are i.i.d. from some “true” distribution P0 and, nonetheless,

assumes exchangeability as a tool which leads to a sensible rule for making predictions and for induc-

tive reasoning. One is, then, interested to ascertain whether the posterior distribution accumulates in

suitable neighbourhoods of P0 as the sample size increases. A few examples of inconsistency provide a

warning and suggest a careful treatment of this issue. Many sufficient conditions ensuring frequentist

consistency are now available and results on rates of convergence have been derived as well. If one

adheres to such a frequentist point of view, then one should choose, among priors for which consistency

has been proved, the one featuring the fastest rate of convergence. When dealing with the discrete

nonparametric priors examined in Sections 2 and 3 these considerations are clearly of interest: in fact,

most of them, with the exceptions of the Dirichlet and the beta processes, are inconsistent if used to

model directly continuous data. However, even an orthodox Bayesian who does not believe in the exis-

tence of a “true” P0 and, hence, specifies priors regardless of frequentist asymptotic properties, would

hardly use a discrete nonparametric prior on continuous data: this would mean assuming a model,

which generates ties among observations with probability tending to 1 as the sample size diverges,

for data which do not contain ties with probability 1. On the other hand, all the discrete priors we

have been describing are consistent when exploited in situations they are structurally designed for.

Specifically, they are consistent when used for modelling data arising from discrete distributions and,

moreover, they are also consistent, under mild conditions, when exploited in a hierarchical mixture

setup for continuous data. Thus, we have agreement of the two viewpoints on the models to use.

Finally, note that rates of convergence seem not to discriminate between different discrete priors in

a mixture, since they are derived assuming i.i.d. data. In such cases we have to reverse the starting

question and ask “what if the data are not i.i.d. but, indeed, exchangeable”? Then, the assessment

of a prior should naturally be guided by considerations on the flexibility of the posterior and on the

richness of the predictive structure, which also allow for a parsimonious model specification.
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Ann. Statist. 25, 1762–1780.

Wolpert, R.L. and Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics.

Biometrika 85, 251–267.


