6 research outputs found

    Nonparametric discovery of activity patterns from video collections

    Full text link

    Action classification using a discriminative non-parametric hidden Markov model

    Get PDF
    We classify human actions occurring in videos, using the skeletal joint positions extracted from a depth image sequence as features. Each action class is represented by a non-parametric Hidden Markov Model (NP-HMM) and the model parameters are learnt in a discriminative way. Specifically, we use a Bayesian framework based on Hierarchical Dirichlet Process (HDP) to automatically infer the cardinality of hidden states and formulate a discriminative function based on distance between Gaussian distributions to improve classification performance. We use elliptical slice sampling to efficiently sample parameters from the complex posterior distribution induced by our discriminative likelihood function. We illustrate our classification results for action class models trained using this technique

    Action classification using a discriminative multilevel HDP-HMM

    Get PDF
    We classify human actions occurring in depth image sequences using features based on skeletal joint positions. The action classes are represented by a multi-level Hierarchical Dirichlet Process – Hidden Markov Model (HDP-HMM). The non-parametric HDP-HMM allows the inference of hidden states automatically from training data. The model parameters of each class are formulated as transformations from a shared base distribution, thus promoting the use of unlabelled examples during training and borrowing information across action classes. Further, the parameters are learnt in a discriminative way. We use a normalized gamma process representation of HDP and margin based likelihood functions for this purpose. We sample parameters from the complex posterior distribution induced by our discriminative likelihood function using elliptical slice sampling. Experiments with two different datasets show that action class models learnt using our technique produce good classification results

    Non-Parametric and Regularized Dynamical Wasserstein Barycenters for Time-Series Analysis

    Full text link
    We consider probabilistic time-series models for systems that gradually transition among a finite number of states. We are particularly motivated by applications such as human activity analysis where the observed time-series contains segments representing distinct activities such as running or walking as well as segments characterized by continuous transition among these states. Accordingly, the dynamical Wasserstein barycenter (DWB) model introduced in Cheng et al. in 2021 [1] associates with each state, which we call a pure state, its own probability distribution, and models these continuous transitions with the dynamics of the barycentric weights that combine the pure state distributions via the Wasserstein barycenter. Here, focusing on the univariate case where Wasserstein distances and barycenters can be computed in closed form, we extend [1] by discussing two challenges associated with learning a DWB model and two improvements. First, we highlight the issue of uniqueness in identifying the model parameters. Secondly, we discuss the challenge of estimating a dynamically evolving distribution given a limited number of samples. The uncertainty associated with this estimation may cause a model's learned dynamics to not reflect the gradual transitions characteristic of the system. The first improvement introduces a regularization framework that addresses this uncertainty by imposing temporal smoothness on the dynamics of the barycentric weights while leveraging the understanding of the non-uniqueness of the problem. This is done without defining an entire stochastic model for the dynamics of the system as in [1]. Our second improvement lifts the Gaussian assumption on the pure states distributions in [1] by proposing a quantile-based non-parametric representation. We pose model estimation in a variational framework and propose a finite approximation to the infinite dimensional problem
    corecore