2,455 research outputs found

    A Path Algorithm for Constrained Estimation

    Full text link
    Many least squares problems involve affine equality and inequality constraints. Although there are variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current paper proposes a new path following algorithm for quadratic programming based on exact penalization. Similar penalties arise in l1l_1 regularization in model selection. Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to \infty, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the lasso and generalized lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well chosen examples illustrate the mechanics and potential of path following.Comment: 26 pages, 5 figure

    A Bayes method for a monotone hazard rate via S-paths

    Full text link
    A class of random hazard rates, which is defined as a mixture of an indicator kernel convolved with a completely random measure, is of interest. We provide an explicit characterization of the posterior distribution of this mixture hazard rate model via a finite mixture of S-paths. A closed and tractable Bayes estimator for the hazard rate is derived to be a finite sum over S-paths. The path characterization or the estimator is proved to be a Rao--Blackwellization of an existing partition characterization or partition-sum estimator. This accentuates the importance of S-paths in Bayesian modeling of monotone hazard rates. An efficient Markov chain Monte Carlo (MCMC) method is proposed to approximate this class of estimates. It is shown that S-path characterization also exists in modeling with covariates by a proportional hazard model, and the proposed algorithm again applies. Numerical results of the method are given to demonstrate its practicality and effectiveness.Comment: Published at http://dx.doi.org/10.1214/009053606000000047 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On Degrees of Freedom of Projection Estimators with Applications to Multivariate Nonparametric Regression

    Full text link
    In this paper, we consider the nonparametric regression problem with multivariate predictors. We provide a characterization of the degrees of freedom and divergence for estimators of the unknown regression function, which are obtained as outputs of linearly constrained quadratic optimization procedures, namely, minimizers of the least squares criterion with linear constraints and/or quadratic penalties. As special cases of our results, we derive explicit expressions for the degrees of freedom in many nonparametric regression problems, e.g., bounded isotonic regression, multivariate (penalized) convex regression, and additive total variation regularization. Our theory also yields, as special cases, known results on the degrees of freedom of many well-studied estimators in the statistics literature, such as ridge regression, Lasso and generalized Lasso. Our results can be readily used to choose the tuning parameter(s) involved in the estimation procedure by minimizing the Stein's unbiased risk estimate. As a by-product of our analysis we derive an interesting connection between bounded isotonic regression and isotonic regression on a general partially ordered set, which is of independent interest.Comment: 72 pages, 7 figures, Journal of the American Statistical Association (Theory and Methods), 201
    corecore