13,493 research outputs found

    Adaptive, cautious, predictive control with Gaussian process priors

    Get PDF
    Nonparametric Gaussian Process models, a Bayesian statistics approach, are used to implement a nonlinear adaptive control law. Predictions, including propagation of the state uncertainty are made over a k-step horizon. The expected value of a quadratic cost function is minimised, over this prediction horizon, without ignoring the variance of the model predictions. The general method and its main features are illustrated on a simulation example

    Nonparametric Hammerstein model based model predictive control for heart rate regulation.

    Full text link
    This paper proposed a novel nonparametric model based model predictive control approach for the regulation of heart rate during treadmill exercise. As the model structure of human cardiovascular system is often hard to determine, nonparametric modelling is a more realistic manner to describe complex behaviours of cardiovascular system. This paper presents a new nonparametric Hammerstein model identification approach for heart rate response modelling. Based on the pseudo-random binary sequence experiment data, we decouple the identification of linear dynamic part and input nonlinearity of the Hammerstein system. Correlation analysis is applied to acquire step response of linear dynamic component. Support Vector Regression is adopted to obtain a nonparametric description of the inverse of input static nonlinearity that is utilized to form an approximate linear model of the Hammerstein system. Based on the established model, a model predictive controller under predefined speed and acceleration constraints is designed to achieve safer treadmill exercise. Simulation results show that the proposed control algorithm can achieve optimal heart rate tracking performance under predefined constraints

    Controversy in mechanistic modelling with Gaussian processes

    Get PDF
    Parameter inference in mechanistic models based on non-affine differential equations is computationally onerous, and various faster alternatives based on gradient matching have been proposed. A particularly promising approach is based on nonparametric Bayesian modelling with Gaussian processes, which exploits the fact that a Gaussian process is closed under differentiation. However, two alternative paradigms have been proposed. The first paradigm, proposed at NIPS 2008 and AISTATS 2013, is based on a product of experts approach and a marginalization over the derivatives of the state variables. The second paradigm, proposed at ICML 2014, is based on a probabilistic generative model and a marginalization over the state variables. The claim has been made that this leads to better inference results. In the present article, we offer a new interpretation of the second paradigm, which highlights the underlying assumptions, approximations and limitations. In particular, we show that the second paradigm suffers from an intrinsic identifiability problem, which the first paradigm is not affected by

    Nonlinear adaptive control using non-parametric Gaussian Process prior models

    Get PDF
    Nonparametric Gaussian Process prior models, taken from Bayesian statistics methodology are used to implement a nonlinear adaptive control law. The expected value of a quadratic cost function is minimised, without ignoring the variance of the model predictions. This leads to implicit regularisation of the control signal (caution), and excitation of the system. The controller has dual features, since it is both tracking a reference signal and learning a model of the system from observed responses. The general method and its main features are illustrated on a simulation example

    Overcoming data scarcity of Twitter: using tweets as bootstrap with application to autism-related topic content analysis

    Full text link
    Notwithstanding recent work which has demonstrated the potential of using Twitter messages for content-specific data mining and analysis, the depth of such analysis is inherently limited by the scarcity of data imposed by the 140 character tweet limit. In this paper we describe a novel approach for targeted knowledge exploration which uses tweet content analysis as a preliminary step. This step is used to bootstrap more sophisticated data collection from directly related but much richer content sources. In particular we demonstrate that valuable information can be collected by following URLs included in tweets. We automatically extract content from the corresponding web pages and treating each web page as a document linked to the original tweet show how a temporal topic model based on a hierarchical Dirichlet process can be used to track the evolution of a complex topic structure of a Twitter community. Using autism-related tweets we demonstrate that our method is capable of capturing a much more meaningful picture of information exchange than user-chosen hashtags.Comment: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 201

    Structure Learning in Coupled Dynamical Systems and Dynamic Causal Modelling

    Get PDF
    Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying generator of some observed measurements, is a profoundly ill posed problem that commonly arises when modelling real world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the comparison of competing models of (ie, hypotheses about) network architectures and implicit coupling functions in terms of their Bayesian model evidence. These methods are collectively referred to as dynamical casual modelling (DCM). We focus on a relatively new approach that is proving remarkably useful; namely, Bayesian model reduction (BMR), which enables rapid evaluation and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active focus of research in neurobiology and the imaging of coupled neuronal systems
    • ā€¦
    corecore