996 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Game-theoretic statistics and safe anytime-valid inference

    Full text link
    Safe anytime-valid inference (SAVI) provides measures of statistical evidence and certainty -- e-processes for testing and confidence sequences for estimation -- that remain valid at all stopping times, accommodating continuous monitoring and analysis of accumulating data and optional stopping or continuation for any reason. These measures crucially rely on test martingales, which are nonnegative martingales starting at one. Since a test martingale is the wealth process of a player in a betting game, SAVI centrally employs game-theoretic intuition, language and mathematics. We summarize the SAVI goals and philosophy, and report recent advances in testing composite hypotheses and estimating functionals in nonparametric settings.Comment: 25 pages. Under review. ArXiv does not compile/space some references properl

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    Kernel Density Bayesian Inverse Reinforcement Learning

    Full text link
    Inverse reinforcement learning~(IRL) is a powerful framework to infer an agent's reward function by observing its behavior, but IRL algorithms that learn point estimates of the reward function can be misleading because there may be several functions that describe an agent's behavior equally well. A Bayesian approach to IRL models a distribution over candidate reward functions, alleviating the shortcomings of learning a point estimate. However, several Bayesian IRL algorithms use a QQ-value function in place of the likelihood function. The resulting posterior is computationally intensive to calculate, has few theoretical guarantees, and the QQ-value function is often a poor approximation for the likelihood. We introduce kernel density Bayesian IRL (KD-BIRL), which uses conditional kernel density estimation to directly approximate the likelihood, providing an efficient framework that, with a modified reward function parameterization, is applicable to environments with complex and infinite state spaces. We demonstrate KD-BIRL's benefits through a series of experiments in Gridworld environments and a simulated sepsis treatment task

    Gaussian Control Barrier Functions : A Gaussian Process based Approach to Safety for Robots

    Get PDF
    In recent years, the need for safety of autonomous and intelligent robots has increased. Today, as robots are being increasingly deployed in closer proximity to humans, there is an exigency for safety since human lives may be at risk, e.g., self-driving vehicles or surgical robots. The objective of this thesis is to present a safety framework for dynamical systems that leverages tools from control theory and machine learning. More formally, the thesis presents a data-driven framework for designing safety function candidates which ensure properties of forward invariance. The potential benefits of the results presented in this thesis are expected to help applications such as safe exploration, collision avoidance problems, manipulation tasks, and planning, to name some. We utilize Gaussian processes (GP) to place a prior on the desired safety function candidate, which is to be utilized as a control barrier function (CBF). The resultant formulation is called Gaussian CBFs and they reside in a reproducing kernel Hilbert space. A key concept behind Gaussian CBFs is the incorporation of both safety belief as well as safety uncertainty, which former barrier function formulations did not consider. This is achieved by using robust posterior estimates from a GP where the posterior mean and variance serve as surrogates for the safety belief and uncertainty respectively. We synthesize safe controllers by framing a convex optimization problem where the kernel-based representation of GPs allows computing the derivatives in closed-form analytically. Finally, in addition to the theoretical and algorithmic frameworks in this thesis, we rigorously test our methods in hardware on a quadrotor platform. The platform used is a Crazyflie 2.1 which is a versatile palm-sized quadrotor. We provide our insights and detailed discussions on the hardware implementations which will be useful for large-scale deployment of the techniques presented in this dissertation.Ph.D

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page

    Towards an Unsupervised Bayesian Network Pipeline for Explainable Prediction, Decision Making and Discovery

    Full text link
    An unsupervised learning pipeline for discrete Bayesian networks is proposed to facilitate prediction, decision making, discovery of patterns, and transparency in challenging real-world AI applications, and contend with data limitations. We explore methods for discretizing data, and notably apply the pipeline to prediction and prevention of preterm birth

    Machine learning in portfolio management

    Get PDF
    Financial markets are difficult learning environments. The data generation process is time-varying, returns exhibit heavy tails and signal-to-noise ratio tends to be low. These contribute to the challenge of applying sophisticated, high capacity learning models in financial markets. Driven by recent advances of deep learning in other fields, we focus on applying deep learning in a portfolio management context. This thesis contains three distinct but related contributions to literature. First, we consider the problem of neural network training in a time-varying context. This results in a neural network that can adapt to a data generation process that changes over time. Second, we consider the problem of learning in noisy environments. We propose to regularise the neural network using a supervised autoencoder and show that this improves the generalisation performance of the neural network. Third, we consider the problem of quantifying forecast uncertainty in time-series with volatility clustering. We propose a unified framework for the quantification of forecast uncertainty that results in uncertainty estimates that closely match actual realised forecast errors in cryptocurrencies and U.S. stocks

    Model-based Imputation of Below Detection Limit Missing Data and Group Selection in Bayesian Group Index Regression

    Get PDF
    Investigations into the association between chemical exposure and health outcomes are increasingly focused on the role of chemical mixtures, as opposed to individual chemicals. The analysis of chemical mixture data required the development of novel statistical methods, one of these being Bayesian group index regression. A statistical challenge common to all chemical mixture analyses is the ubiquitous presence of below detection limit (BDL) data. We propose an extension of Bayesian group index regression that treats both regression effects and missing BDL observations as parameters in a model estimated through a Markov Chain Monte Carlo algorithm that we refer to as Pseudo-Gibbs imputation. The Pseudo-Gibbs approach enables the estimated parameters of the health effects model to inform the missing data imputations and vice versa, as well as accounting for the true variance of the BDL imputations. We conduct a simulation study showing greater power to detect chemical indices significantly associated with an outcome and sensitivity for identifying important chemicals within indices at high levels of BDL missing data. We apply our model to a case-control study on the effects of chemical exposure on childhood leukemia. We next address a problem specific to group index models: how to partition a given set of chemicals into groups to form the requisite indices. We first proposed a novel variable clustering algorithm using a variant on the traditional PCA algorithm called Robust PCA. We compared this clustering method with other variable clustering methods from the literature using a simulation study. Finally, we extended the variable clustering method identified previously to incorporate information from an outcome variable. This semi-supervised clustering extension incorporates the ability to constrain clusters based on the direction of association of individual chemicals with the outcome of interest. We apply both unsupervised variable clustering and semi-supervised clustering methods identified to a case-control study on the effects of chemical exposure on non-Hodkin’s lymphoma
    • …
    corecore