6,421 research outputs found

    Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes

    Full text link
    We define a family of probability distributions for random count matrices with a potentially unbounded number of rows and columns. The three distributions we consider are derived from the gamma-Poisson, gamma-negative binomial, and beta-negative binomial processes. Because the models lead to closed-form Gibbs sampling update equations, they are natural candidates for nonparametric Bayesian priors over count matrices. A key aspect of our analysis is the recognition that, although the random count matrices within the family are defined by a row-wise construction, their columns can be shown to be i.i.d. This fact is used to derive explicit formulas for drawing all the columns at once. Moreover, by analyzing these matrices' combinatorial structure, we describe how to sequentially construct a column-i.i.d. random count matrix one row at a time, and derive the predictive distribution of a new row count vector with previously unseen features. We describe the similarities and differences between the three priors, and argue that the greater flexibility of the gamma- and beta- negative binomial processes, especially their ability to model over-dispersed, heavy-tailed count data, makes these well suited to a wide variety of real-world applications. As an example of our framework, we construct a naive-Bayes text classifier to categorize a count vector to one of several existing random count matrices of different categories. The classifier supports an unbounded number of features, and unlike most existing methods, it does not require a predefined finite vocabulary to be shared by all the categories, and needs neither feature selection nor parameter tuning. Both the gamma- and beta- negative binomial processes are shown to significantly outperform the gamma-Poisson process for document categorization, with comparable performance to other state-of-the-art supervised text classification algorithms.Comment: To appear in Journal of the American Statistical Association (Theory and Methods). 31 pages + 11 page supplement, 5 figure

    A unifying representation for a class of dependent random measures

    Full text link
    We present a general construction for dependent random measures based on thinning Poisson processes on an augmented space. The framework is not restricted to dependent versions of a specific nonparametric model, but can be applied to all models that can be represented using completely random measures. Several existing dependent random measures can be seen as specific cases of this framework. Interesting properties of the resulting measures are derived and the efficacy of the framework is demonstrated by constructing a covariate-dependent latent feature model and topic model that obtain superior predictive performance

    BNP-Seq: Bayesian Nonparametric Differential Expression Analysis of Sequencing Count Data

    Full text link
    We perform differential expression analysis of high-throughput sequencing count data under a Bayesian nonparametric framework, removing sophisticated ad-hoc pre-processing steps commonly required in existing algorithms. We propose to use the gamma (beta) negative binomial process, which takes into account different sequencing depths using sample-specific negative binomial probability (dispersion) parameters, to detect differentially expressed genes by comparing the posterior distributions of gene-specific negative binomial dispersion (probability) parameters. These model parameters are inferred by borrowing statistical strength across both the genes and samples. Extensive experiments on both simulated and real-world RNA sequencing count data show that the proposed differential expression analysis algorithms clearly outperform previously proposed ones in terms of the areas under both the receiver operating characteristic and precision-recall curves.Comment: To appear in Journal of the American Statistical Associatio

    A geoadditive Bayesian latent variable model for Poisson indicators

    Get PDF
    We introduce a new latent variable model with count variable indicators, where usual linear parametric effects of covariates, nonparametric effects of continuous covariates and spatial effects on the continuous latent variables are modelled through a geoadditive predictor. Bayesian modelling of nonparametric functions and spatial effects is based on penalized spline and Markov random field priors. Full Bayesian inference is performed via an auxiliary variable Gibbs sampling technique, using a recent suggestion of Frühwirth-Schnatter and Wagner (2006). As an advantage, our Poisson indicator latent variable model can be combined with semiparametric latent variable models for mixed binary, ordinal and continuous indicator variables within an unified and coherent framework for modelling and inference. A simulation study investigates performance, and an application to post war human security in Cambodia illustrates the approach
    corecore