59 research outputs found

    A Group-Theoretic Approach to the WSSUS Pulse Design Problem

    Full text link
    We consider the pulse design problem in multicarrier transmission where the pulse shapes are adapted to the second order statistics of the WSSUS channel. Even though the problem has been addressed by many authors analytical insights are rather limited. First we show that the problem is equivalent to the pure state channel fidelity in quantum information theory. Next we present a new approach where the original optimization functional is related to an eigenvalue problem for a pseudo differential operator by utilizing unitary representations of the Weyl--Heisenberg group.A local approximation of the operator for underspread channels is derived which implicitly covers the concepts of pulse scaling and optimal phase space displacement. The problem is reformulated as a differential equation and the optimal pulses occur as eigenstates of the harmonic oscillator Hamiltonian. Furthermore this operator--algebraic approach is extended to provide exact solutions for different classes of scattering environments.Comment: 5 pages, final version for 2005 IEEE International Symposium on Information Theory; added references for section 2; corrected some typos; added more detailed discussion on the relations to quantum information theory; added some more references; added additional calculations as an appendix; corrected typo in III.

    Weighted Norms of Ambiguity Functions and Wigner Distributions

    Full text link
    In this article new bounds on weighted p-norms of ambiguity functions and Wigner functions are derived. Such norms occur frequently in several areas of physics and engineering. In pulse optimization for Weyl--Heisenberg signaling in wide-sense stationary uncorrelated scattering channels for example it is a key step to find the optimal waveforms for a given scattering statistics which is a problem also well known in radar and sonar waveform optimizations. The same situation arises in quantum information processing and optical communication when optimizing pure quantum states for communicating in bosonic quantum channels, i.e. find optimal channel input states maximizing the pure state channel fidelity. Due to the non-convex nature of this problem the optimum and the maximizers itself are in general difficult find, numerically and analytically. Therefore upper bounds on the achievable performance are important which will be provided by this contribution. Based on a result due to E. Lieb, the main theorem states a new upper bound which is independent of the waveforms and becomes tight only for Gaussian weights and waveforms. A discussion of this particular important case, which tighten recent results on Gaussian quantum fidelity and coherent states, will be given. Another bound is presented for the case where scattering is determined only by some arbitrary region in phase space.Comment: 5 twocolumn pages,2 figures, accepted for 2006 IEEE International Symposium on Information Theory, typos corrected, some additional cites, legend in Fig.2 correcte

    Achievable Rates of Underwater Acoustic OFDM Systems over Highly Dispersive Channels

    No full text
    International audienceUnlike the capacity of other channels, the capacity of the shallow water UAC channel has been seldomly addressed. Motivated by recent results in information theory, this paper investigates achievable rates of underwater acoustic OFDM systems. We consider channels where time and frequency dispersion is high enough that (i) neither the transmitter nor the receiver can have a priori knowledge of the channel state information, and (ii) intersymbol/intercarrier interference (ISI/ICI) cannot be neglected in the information theoretic treatment

    Improving Spectral Efficiency While Reducing PAPR Using Faster-Than-Nyquist Multicarrier Signaling

    Get PDF
    Multicarrier modulations are widely used in mobile radio applications due to their adaptability to the time-frequency characteristics of the channel, thus enabling low-complexity equalization. However, their intrinsically high peak-to-average power ratio (PAPR) is a major drawback with regard to implementation issues (e.g., power amplification efficiency, regulatory constraints...). In this paper, we confirm that the PAPR can be decreased as the signaling density (i.e., spectral efficiency at fixed constellation size) increases, even in the case where symbols cannot be perfectly reconstructed using a linear system. In such a two-dimensional generalization of faster-than-Nyquist (FTN) systems, PAPR distribution models from the literature are confirmed by simulation results. Furthermore, for a fixed number of subcarriers, we show that a sufficient condition to yield the optimal PAPR distribution at the output of a critically sampled transmitter is to specify pulse shapes as tight frames. Finally, simulation are performed in the more realistic case of an oversampled transmitted signal

    On Time-Variant Distortions in Multicarrier Transmission with Application to Frequency Offsets and Phase Noise

    Full text link
    Phase noise and frequency offsets are due to their time-variant behavior one of the most limiting disturbances in practical OFDM designs and therefore intensively studied by many authors. In this paper we present a generalized framework for the prediction of uncoded system performance in the presence of time-variant distortions including the transmitter and receiver pulse shapes as well as the channel. Therefore, unlike existing studies, our approach can be employed for more general multicarrier schemes. To show the usefulness of our approach, we apply the results to OFDM in the context of frequency offset and Wiener phase noise, yielding improved bounds on the uncoded performance. In particular, we obtain exact formulas for the averaged performance in AWGN and time-invariant multipath channels.Comment: 10 pages (twocolumn), 5 figure
    • …
    corecore