47 research outputs found

    Nonnegative approximations of nonnegative tensors

    Get PDF
    We study the decomposition of a nonnegative tensor into a minimal sum of outer product of nonnegative vectors and the associated parsimonious naive Bayes probabilistic model. We show that the corresponding approximation problem, which is central to nonnegative PARAFAC, will always have optimal solutions. The result holds for any choice of norms and, under a mild assumption, even Bregman divergences.Comment: 14 page

    Multiarray Signal Processing: Tensor decomposition meets compressed sensing

    Get PDF
    We discuss how recently discovered techniques and tools from compressed sensing can be used in tensor decompositions, with a view towards modeling signals from multiple arrays of multiple sensors. We show that with appropriate bounds on a measure of separation between radiating sources called coherence, one could always guarantee the existence and uniqueness of a best rank-r approximation of the tensor representing the signal. We also deduce a computationally feasible variant of Kruskal's uniqueness condition, where the coherence appears as a proxy for k-rank. Problems of sparsest recovery with an infinite continuous dictionary, lowest-rank tensor representation, and blind source separation are treated in a uniform fashion. The decomposition of the measurement tensor leads to simultaneous localization and extraction of radiating sources, in an entirely deterministic manner.Comment: 10 pages, 1 figur

    Fast Decomposition of Large Nonnegative Tensors

    No full text
    International audienceIn Signal processing, tensor decompositions have gained in popularity this last decade. In the meantime, the volume of data to be processed has drastically increased. This calls for novel methods to handle Big Data tensors. Since most of these huge data are issued from physical measurements, which are intrinsically real nonnegative, being able to compress nonnegative tensors has become mandatory. Following recent works on HOSVD compression for Big Data, we detail solutions to decompose a nonnegative tensor into decomposable terms in a compressed domain
    corecore