5,580 research outputs found

    A unified approach to polynomial sequences with only real zeros

    Get PDF
    We give new sufficient conditions for a sequence of polynomials to have only real zeros based on the method of interlacing zeros. As applications we derive several well-known facts, including the reality of zeros of orthogonal polynomials, matching polynomials, Narayana polynomials and Eulerian polynomials. We also settle certain conjectures of Stahl on genus polynomials by proving them for certain classes of graphs, while showing that they are false in general.Comment: 19 pages, Advances in Applied Mathematics, in pres

    Higher order matching polynomials and d-orthogonality

    Get PDF
    We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials -- the Chebyshev, Hermite, and Laguerre polynomials -- can be interpreted as matching polynomials of paths, cycles, complete graphs, and complete bipartite graphs. The notion of d-orthogonality is a generalization of the usual idea of orthogonality for polynomials and we use sign-reversing involutions to show that the higher-order Chebyshev (first and second kinds), Hermite, and Laguerre polynomials are d-orthogonal. We also investigate the moments and find generating functions of those polynomials.Comment: 21 pages, many TikZ figures; v2: minor clarifications and addition

    Ramanujan Graphs in Polynomial Time

    Full text link
    The recent work by Marcus, Spielman and Srivastava proves the existence of bipartite Ramanujan (multi)graphs of all degrees and all sizes. However, that paper did not provide a polynomial time algorithm to actually compute such graphs. Here, we provide a polynomial time algorithm to compute certain expected characteristic polynomials related to this construction. This leads to a deterministic polynomial time algorithm to compute bipartite Ramanujan (multi)graphs of all degrees and all sizes

    Symmetry Matters for Sizes of Extended Formulations

    Full text link
    In 1991, Yannakakis (J. Comput. System Sci., 1991) proved that no symmetric extended formulation for the matching polytope of the complete graph K_n with n nodes has a number of variables and constraints that is bounded subexponentially in n. Here, symmetric means that the formulation remains invariant under all permutations of the nodes of K_n. It was also conjectured in the paper mentioned above that "asymmetry does not help much," but no corresponding result for general extended formulations has been found so far. In this paper we show that for the polytopes associated with the matchings in K_n with log(n) (rounded down) edges there are non-symmetric extended formulations of polynomial size, while nevertheless no symmetric extended formulations of polynomial size exist. We furthermore prove similar statements for the polytopes associated with cycles of length log(n) (rounded down). Thus, with respect to the question for smallest possible extended formulations, in general symmetry requirements may matter a lot. Compared to the extended abtract that has appeared in the Proceedings of IPCO XIV at Lausanne, this paper does not only contain proofs that had been ommitted there, but it also presents slightly generalized and sharpened lower bounds.Comment: 24 pages; incorporated referees' comments; to appear in: SIAM Journal on Discrete Mathematic
    • …
    corecore